Newer
Older
!SFX_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!SFX_LIC This is part of the SURFEX software governed by the CeCILL-C licence
!SFX_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!SFX_LIC for details. version 1.
! ###############################################################################
SUBROUTINE COUPLING_TEB_n (DTCO, DST, SLT, TOP, SB, G, CHT, NT, TPN, TIR, BOP, NB, TD, GDM, GRM, &
HPROGRAM, HCOUPLING, PTSTEP, KYEAR, KMONTH, KDAY, PTIME, KI, KSV,&
KSW, PTSUN, PZENITH, PAZIM, PZREF, PUREF, PZS, PU, PV, PQA, PTA, &
PRHOA, PSV, PCO2, HSV, PRAIN, PSN, PLW, PDIR_SW, PSCA_SW, &
PSW_BANDS, PPS, PPA, PSFTQ, PSFTH, PSFTS, PSFCO2, PSFU, PSFV, &
PTRAD, PDIR_ALB, PSCA_ALB, PEMIS, PTSURF, PZ0, PZ0H, PQSURF, &
PPEW_A_COEF, PPEW_B_COEF, PPET_A_COEF, PPEQ_A_COEF, PPET_B_COEF, &
PPEQ_B_COEF, HTEST )
! ###############################################################################
!
!!**** *COUPLING_TEB_n * - Driver for TEB
!!
!! PURPOSE
!! -------
!
!!** METHOD
!! ------
!!
!! REFERENCE
!! ---------
!!
!!
!! AUTHOR
!! ------
!! V. Masson
!!
!! MODIFICATIONS
!! -------------
!! Original 01/2004
!! 10/2005 (G.Pigeon) transfer of domestic heating
!! S. Riette 06/2009 Initialisation of XT, XQ, XU and XTKE on canopy levels
!! S. Riette 01/2010 Use of interpol_sbl to compute 10m wind diagnostic
!! G. Pigeon 09/2012 CCH_BEM, ROUGH_WALL, ROUGH_ROOF for building conv. coef
!! G. Pigeon 10/2012 XF_WIN_WIN as arg. of TEB_GARDEN
!! B. Decharme 09/2012 New wind implicitation
!! J. Escobar 09/2012 KI not allowed without-interface , replace by KI
!! V. Masson 08/2013 adds solar panels & occupation calendar
!! B. Decharme 04/2013 new coupling variables
!!---------------------------------------------------------------
!
USE MODD_DATA_COVER_n, ONLY : DATA_COVER_t
USE MODD_DST_n, ONLY : DST_t
USE MODD_SLT_n, ONLY : SLT_t
!
USE MODD_CH_TEB_n, ONLY : CH_TEB_t
USE MODD_CANOPY_n, ONLY: CANOPY_t
USE MODD_SFX_GRID_n, ONLY : GRID_t
USE MODD_TEB_OPTION_n, ONLY : TEB_OPTIONS_t
USE MODD_TEB_PANEL_n, ONLY : TEB_PANEL_t
USE MODD_TEB_IRRIG_n, ONLY : TEB_IRRIG_t
USE MODD_TEB_n, ONLY : TEB_NP_t
USE MODD_SURFEX_n, ONLY : TEB_DIAG_t
USE MODD_BEM_OPTION_n, ONLY : BEM_OPTIONS_t
USE MODD_BEM_n, ONLY : BEM_NP_t
!
USE MODD_SURFEX_n, ONLY : TEB_GARDEN_MODEL_t
USE MODD_SURFEX_n, ONLY : TEB_GREENROOF_MODEL_t
!
USE MODD_REPROD_OPER, ONLY : CIMPLICIT_WIND
!
USE MODD_CSTS, ONLY : XRD, XCPD, XP00, XLVTT, XPI, XKARMAN, XG
USE MODD_SURF_PAR, ONLY : XUNDEF
USE MODD_DST_SURF
USE MODD_SLT_SURF
!
USE MODE_DSLT_SURF
USE MODE_THERMOS
USE MODE_SBLS
!
USE MODI_AVERAGE_RAD
USE MODI_SM10
USE MODI_ADD_FORECAST_TO_DATE_SURF
USE MODI_DIAG_INLINE_TEB_n
USE MODI_CH_AER_DEP
USE MODI_CH_DEP_TOWN
USE MODI_DSLT_DEP
USE MODI_TEB_GARDEN
USE MODI_TEB_CANOPY
!
USE YOMHOOK ,ONLY : LHOOK, DR_HOOK
USE PARKIND1 ,ONLY : JPRB
!
USE MODI_ABOR1_SFX
USE MODI_CANOPY_EVOL
USE MODI_CANOPY_GRID_UPDATE
USE MODI_UTCI_TEB
USE MODI_CIRCUMSOLAR_RAD
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
!
!
TYPE(DATA_COVER_t), INTENT(INOUT) :: DTCO
TYPE(DST_t), INTENT(INOUT) :: DST
TYPE(SLT_t), INTENT(INOUT) :: SLT
!
TYPE(CH_TEB_t), INTENT(INOUT) :: CHT
TYPE(CANOPY_t), INTENT(INOUT) :: SB
TYPE(GRID_t), INTENT(INOUT) :: G
TYPE(TEB_OPTIONS_t), INTENT(INOUT) :: TOP
TYPE(TEB_PANEL_t), INTENT(INOUT) :: TPN
TYPE(TEB_IRRIG_t), INTENT(INOUT) :: TIR
TYPE(TEB_NP_t), INTENT(INOUT) :: NT
!
TYPE(TEB_DIAG_t), INTENT(INOUT) :: TD
!
TYPE(BEM_OPTIONS_t), INTENT(INOUT) :: BOP
TYPE(BEM_NP_t), INTENT(INOUT) :: NB
!
TYPE(TEB_GARDEN_MODEL_t), INTENT(INOUT) :: GDM
TYPE(TEB_GREENROOF_MODEL_t), INTENT(INOUT) :: GRM
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
!
CHARACTER(LEN=6), INTENT(IN) :: HPROGRAM ! program calling surf. schemes
CHARACTER(LEN=1), INTENT(IN) :: HCOUPLING ! type of coupling
! 'E' : explicit
! 'I' : implicit
INTEGER, INTENT(IN) :: KYEAR ! current year (UTC)
INTEGER, INTENT(IN) :: KMONTH ! current month (UTC)
INTEGER, INTENT(IN) :: KDAY ! current day (UTC)
REAL, INTENT(IN) :: PTIME ! current time since midnight (UTC, s)
INTEGER, INTENT(IN) :: KI ! number of points
INTEGER, INTENT(IN) :: KSV ! number of scalars
INTEGER, INTENT(IN) :: KSW ! number of short-wave spectral bands
REAL, DIMENSION(KI), INTENT(IN) :: PTSUN ! solar time (s from midnight)
REAL, INTENT(IN) :: PTSTEP ! atmospheric time-step (s)
REAL, DIMENSION(KI), INTENT(IN) :: PZREF ! height of T,q forcing (m)
REAL, DIMENSION(KI), INTENT(IN) :: PUREF ! height of wind forcing (m)
!
REAL, DIMENSION(KI), INTENT(IN) :: PTA ! air temperature forcing (K)
REAL, DIMENSION(KI), INTENT(IN) :: PQA ! air humidity forcing (kg/m3)
REAL, DIMENSION(KI), INTENT(IN) :: PRHOA ! air density (kg/m3)
REAL, DIMENSION(KI,KSV),INTENT(IN) :: PSV ! scalar variables
! ! chemistry: first char. in HSV: '#' (molecule/m3)
! !
CHARACTER(LEN=6), DIMENSION(KSV),INTENT(IN):: HSV ! name of all scalar variables
REAL, DIMENSION(KI), INTENT(IN) :: PU ! zonal wind (m/s)
REAL, DIMENSION(KI), INTENT(IN) :: PV ! meridian wind (m/s)
REAL, DIMENSION(KI,KSW),INTENT(IN) :: PDIR_SW ! direct solar radiation (on horizontal surf.)
! ! (W/m2)
REAL, DIMENSION(KI,KSW),INTENT(IN) :: PSCA_SW ! diffuse solar radiation (on horizontal surf.)
! ! (W/m2)
REAL, DIMENSION(KSW),INTENT(IN) :: PSW_BANDS ! mean wavelength of each shortwave band (m)
REAL, DIMENSION(KI), INTENT(IN) :: PZENITH ! zenithal angle (radian from the vertical)
REAL, DIMENSION(KI), INTENT(IN) :: PAZIM ! azimuthal angle (radian from North, clockwise)
REAL, DIMENSION(KI), INTENT(IN) :: PLW ! longwave radiation (on horizontal surf.)
! ! (W/m2)
REAL, DIMENSION(KI), INTENT(IN) :: PPS ! pressure at atmospheric model surface (Pa)
REAL, DIMENSION(KI), INTENT(IN) :: PPA ! pressure at forcing level (Pa)
REAL, DIMENSION(KI), INTENT(IN) :: PZS ! atmospheric model orography (m)
REAL, DIMENSION(KI), INTENT(IN) :: PCO2 ! CO2 concentration in the air (kg/m3)
REAL, DIMENSION(KI), INTENT(IN) :: PSN ! snow precipitation (kg/m2/s)
REAL, DIMENSION(KI), INTENT(IN) :: PRAIN ! liquid precipitation (kg/m2/s)
!
!
REAL, DIMENSION(KI), INTENT(OUT) :: PSFTH ! flux of heat (W/m2)
REAL, DIMENSION(KI), INTENT(OUT) :: PSFTQ ! flux of water vapor (kg/m2/s)
REAL, DIMENSION(KI), INTENT(OUT) :: PSFU ! zonal momentum flux (Pa)
REAL, DIMENSION(KI), INTENT(OUT) :: PSFV ! meridian momentum flux (Pa)
REAL, DIMENSION(KI), INTENT(OUT) :: PSFCO2 ! flux of CO2 (kg/m2/s)
REAL, DIMENSION(KI,KSV),INTENT(OUT):: PSFTS ! flux of scalar var. (kg/m2/s)
!
REAL, DIMENSION(KI), INTENT(OUT) :: PTRAD ! radiative temperature (K)
REAL, DIMENSION(KI,KSW),INTENT(OUT):: PDIR_ALB! direct albedo for each spectral band (-)
REAL, DIMENSION(KI,KSW),INTENT(OUT):: PSCA_ALB! diffuse albedo for each spectral band (-)
REAL, DIMENSION(KI), INTENT(OUT) :: PEMIS ! emissivity (-)
!
REAL, DIMENSION(KI), INTENT(OUT) :: PTSURF ! surface effective temperature (K)
REAL, DIMENSION(KI), INTENT(OUT) :: PZ0 ! roughness length for momentum (m)
REAL, DIMENSION(KI), INTENT(OUT) :: PZ0H ! roughness length for heat (m)
REAL, DIMENSION(KI), INTENT(OUT) :: PQSURF ! specific humidity at surface (kg/kg)
!
REAL, DIMENSION(KI), INTENT(IN) :: PPEW_A_COEF! implicit coefficients
REAL, DIMENSION(KI), INTENT(IN) :: PPEW_B_COEF! needed if HCOUPLING='I'
REAL, DIMENSION(KI), INTENT(IN) :: PPET_A_COEF
REAL, DIMENSION(KI), INTENT(IN) :: PPEQ_A_COEF
REAL, DIMENSION(KI), INTENT(IN) :: PPET_B_COEF
REAL, DIMENSION(KI), INTENT(IN) :: PPEQ_B_COEF
CHARACTER(LEN=2), INTENT(IN) :: HTEST ! must be equal to 'OK'
!
!
!* 0.2 declarations of local variables
!
INTEGER :: JSWB ! loop counter on shortwave spectral bands
!
REAL, DIMENSION(KI) :: ZQA ! specific humidity (kg/kg)
REAL, DIMENSION(KI) :: ZEXNA ! Exner function at forcing level
REAL, DIMENSION(KI) :: ZEXNS ! Exner function at surface level
REAL, DIMENSION(KI) :: ZWIND ! wind
!
! Ouput Diagnostics:
!
REAL, DIMENSION(KI) :: ZU_CANYON ! wind in canyon
REAL, DIMENSION(KI) :: ZT_CANYON ! temperature in canyon
REAL, DIMENSION(KI) :: ZQ_CANYON ! specific humidity in canyon
REAL, DIMENSION(KI) :: ZAVG_T_CANYON ! temperature in canyon for town
REAL, DIMENSION(KI) :: ZAVG_Q_CANYON ! specific humidity in canyon for town
REAL, DIMENSION(KI) :: ZT_CAN ! temperature in canyon (evolving in TEB)
REAL, DIMENSION(KI) :: ZQ_CAN ! specific humidity in canyon (evolving in TEB)
!
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
REAL, DIMENSION(KI) :: ZPEW_A_COEF ! implicit coefficients
REAL, DIMENSION(KI) :: ZPEW_B_COEF ! needed if HCOUPLING='I'
!
REAL, DIMENSION(KI) :: ZT_LOWCAN ! temperature at lowest canyon level (K)
REAL, DIMENSION(KI) :: ZQ_LOWCAN ! humidity at lowest canyon level (kg/kg)
REAL, DIMENSION(KI) :: ZU_LOWCAN ! wind at lowest canyon level (m/s)
REAL, DIMENSION(KI) :: ZZ_LOWCAN ! height of lowest canyon level (m)
!
REAL, DIMENSION(KI) :: ZPEW_A_COEF_LOWCAN ! implicit coefficients for wind coupling
REAL, DIMENSION(KI) :: ZPEW_B_COEF_LOWCAN ! between first canopy level and road
!
REAL, DIMENSION(KI) :: ZTA ! temperature at canyon level just above roof (K)
REAL, DIMENSION(KI) :: ZPA ! pressure at canyon level just above roof (K)
REAL, DIMENSION(KI) :: ZUA ! wind at canyon level just above roof (m/s)
REAL, DIMENSION(KI) :: ZUREF ! height of canyon level just above roof (m)
REAL, DIMENSION(KI) :: ZZREF ! height of canyon level just above roof (m)
!
REAL, DIMENSION(KI) :: ZDIR_SW ! total direct SW
REAL, DIMENSION(KI) :: ZSCA_SW ! total diffuse SW
REAL, DIMENSION(KI) :: ZAVG_SCA_SW
REAL, DIMENSION(KI) :: ZAVG_DIR_SW
REAL, DIMENSION(KI,SIZE(PDIR_SW,2)) :: ZDIR_SWB ! total direct SW per band
REAL, DIMENSION(KI,SIZE(PSCA_SW,2)) :: ZSCA_SWB ! total diffuse SW per band
!
!
REAL, DIMENSION(KI) :: ZLE_WL_A ! latent heat flux on walls
REAL, DIMENSION(KI) :: ZLE_WL_B ! latent heat flux on walls
REAL, DIMENSION(KI) :: ZAVG_H_WL
!
REAL, DIMENSION(KI) :: ZPROD_BLD ! averaged energy production from solar panel (W/m2 bld)
REAL, DIMENSION(KI) :: ZHU_BLD
REAL, DIMENSION(KI) :: ZAVG_TI_BLD
REAL, DIMENSION(KI) :: ZAVG_QI_BLD
!
REAL, DIMENSION(KI) :: ZRN_GRND ! net radiation on ground built surf
REAL, DIMENSION(KI) :: ZH_GRND ! sensible heat flux on ground built surf
REAL, DIMENSION(KI) :: ZLE_GRND ! latent heat flux on ground built surf
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
REAL, DIMENSION(KI) :: ZGFLX_GRND ! storage flux in ground built surf
REAL, DIMENSION(KI) :: ZUW_GRND ! momentum flux for ground built surf
REAL, DIMENSION(KI) :: ZDUWDU_GRND !
REAL, DIMENSION(KI) :: ZAC_GRND ! ground built surf aerodynamical conductance
REAL, DIMENSION(KI) :: ZAC_GRND_WAT ! ground built surf water aerodynamical conductance
REAL, DIMENSION(KI) :: ZEMIT_LW_GRND
REAL, DIMENSION(KI) :: ZREF_SW_GRND ! total solar rad reflected from ground
REAL, DIMENSION(KI) :: ZAVG_UW_GRND
REAL, DIMENSION(KI) :: ZAVG_DUWDU_GRND
REAL, DIMENSION(KI) :: ZAVG_H_GRND
REAL, DIMENSION(KI) :: ZAVG_AC_GRND
REAL, DIMENSION(KI) :: ZAVG_AC_GRND_WAT
REAL, DIMENSION(KI) :: ZAVG_E_GRND
REAL, DIMENSION(KI) :: ZAVG_REF_SW_GRND
REAL, DIMENSION(KI) :: ZAVG_EMIT_LW_GRND
!
REAL, DIMENSION(KI) :: ZLEW_RF ! latent heat flux on snowfree roof
REAL, DIMENSION(KI) :: ZRNSN_RF ! net radiation over snow
REAL, DIMENSION(KI) :: ZHSN_RF ! sensible heat flux over snow
REAL, DIMENSION(KI) :: ZLESN_RF ! latent heat flux over snow
REAL, DIMENSION(KI) :: ZGSN_RF ! flux under the snow
REAL, DIMENSION(KI) :: ZMELT_RF ! snow melt
REAL, DIMENSION(KI) :: ZUW_RF ! momentum flux for roofs
REAL, DIMENSION(KI) :: ZDUWDU_RF !
REAL, DIMENSION(KI) :: ZAVG_UW_RF
REAL, DIMENSION(KI) :: ZAVG_DUWDU_RF
REAL, DIMENSION(KI) :: ZAVG_H_RF
REAL, DIMENSION(KI) :: ZAVG_E_RF
!
REAL, DIMENSION(KI) :: ZLEW_RD ! latent heat flux on snowfree road
REAL, DIMENSION(KI) :: ZRNSN_RD ! net radiation over snow
REAL, DIMENSION(KI) :: ZHSN_RD ! sensible heat flux over snow
REAL, DIMENSION(KI) :: ZLESN_RD ! latent heat flux over snow
REAL, DIMENSION(KI) :: ZGSN_RD ! flux under the snow
REAL, DIMENSION(KI) :: ZMELT_RD ! snow melt
REAL, DIMENSION(KI) :: ZAC_RD ! road aerodynamical conductance
REAL, DIMENSION(KI) :: ZAC_RD_WAT ! road water aerodynamical conductance
!
REAL, DIMENSION(KI) :: ZAC_GD ! green area aerodynamical conductance
REAL, DIMENSION(KI) :: ZAC_GD_WAT! green area water aerodynamical conductance
REAL, DIMENSION(KI,1):: ZESN_GD ! green area snow emissivity
!
REAL, DIMENSION(KI) :: ZAC_GRF ! green roof aerodynamical conductance
REAL, DIMENSION(KI) :: ZAC_GRF_WAT! green roof water aerodynamical conductance
!
REAL, DIMENSION(KI) :: ZTRAD ! radiative temperature for current patch
REAL, DIMENSION(KI) :: ZEMIS ! emissivity for current patch
REAL, DIMENSION(KI,TOP%NTEB_PATCH) :: ZTRAD_PATCH ! radiative temperature for each patch
REAL, DIMENSION(KI,TOP%NTEB_PATCH) :: ZEMIS_PATCH ! emissivity for each patch
!
REAL, DIMENSION(KI) :: ZDIR_ALB ! direct albedo of town
REAL, DIMENSION(KI) :: ZSCA_ALB ! diffuse albedo of town
REAL, DIMENSION(KI,KSW,TOP%NTEB_PATCH) :: ZDIR_ALB_PATCH ! direct albedo per wavelength and patch
REAL, DIMENSION(KI,KSW,TOP%NTEB_PATCH) :: ZSCA_ALB_PATCH ! diffuse albedo per wavelength and patch
REAL, DIMENSION(KI) :: ZAVG_DIR_ALB ! direct albedo of town
REAL, DIMENSION(KI) :: ZAVG_SCA_ALB ! diffuse albedo of town
!
REAL, DIMENSION(KI) :: ZSFCO2 ! CO2 flux over town
!
REAL, DIMENSION(KI) :: ZRI ! Richardson number
REAL, DIMENSION(KI) :: ZCD ! drag coefficient
REAL, DIMENSION(KI) :: ZCDN ! neutral drag coefficient
REAL, DIMENSION(KI) :: ZCH ! heat drag
REAL, DIMENSION(KI) :: ZRN ! net radiation over town
REAL, DIMENSION(KI) :: ZH ! sensible heat flux over town
REAL, DIMENSION(KI) :: ZLE ! latent heat flux over town
REAL, DIMENSION(KI) :: ZGFLX ! flux through the ground
REAL, DIMENSION(KI) :: ZEVAP ! evaporation (km/m2/s)
!
REAL, DIMENSION(KI) :: ZAVG_CD ! aggregated drag coefficient
REAL, DIMENSION(KI) :: ZAVG_CDN ! aggregated neutral drag coefficient
REAL, DIMENSION(KI) :: ZAVG_RI ! aggregated Richardson number
REAL, DIMENSION(KI) :: ZAVG_CH ! aggregated Heat transfer coefficient
!
REAL, DIMENSION(KI) :: ZUSTAR ! friction velocity
REAL, DIMENSION(KI) :: ZSFU ! momentum flux for patch (U direction)
REAL, DIMENSION(KI) :: ZSFV ! momentum flux for patch (V direction)
!
REAL, DIMENSION(KI) :: ZH_TRAFFIC ! anthropogenic sensible
REAL, DIMENSION(KI) :: ZLE_TRAFFIC ! anthropogenic latent
REAL :: ZBEGIN_TRAFFIC_TIME ! start traffic time (solar time, s)
REAL :: ZEND_TRAFFIC_TIME ! end traffic time (solar time, s)
!
REAL, DIMENSION(KI) :: ZRESA ! aerodynamical resistance
!
REAL, DIMENSION(KI) :: ZEMIT_LW_FAC
REAL, DIMENSION(KI) :: ZT_RAD_IND ! Indoor mean radiant temperature [K]
REAL, DIMENSION(KI) :: ZREF_SW_FAC ! total solar rad reflected from facade
!
REAL, DIMENSION(KI) :: ZAVG_Z0
REAL, DIMENSION(KI) :: ZAVG_RESA
REAL, DIMENSION(KI) :: ZAVG_USTAR ! town avegared Ustar
REAL, DIMENSION(KI) :: ZAVG_BLD ! town averaged building fraction
REAL, DIMENSION(KI) :: ZAVG_BLD_HEIGHT ! town averaged building height
REAL, DIMENSION(KI) :: ZAVG_WL_O_HOR ! town averaged Wall/hor ratio
REAL, DIMENSION(KI) :: ZAVG_CAN_HW_RATIO ! town averaged road aspect ratio
REAL, DIMENSION(KI) :: ZAVG_H
REAL, DIMENSION(KI) :: ZAVG_LE
REAL, DIMENSION(KI) :: ZAVG_RN
REAL, DIMENSION(KI) :: ZAVG_GFLX
REAL, DIMENSION(KI) :: ZAVG_REF_SW_FAC
REAL, DIMENSION(KI) :: ZAVG_EMIT_LW_FAC
REAL, DIMENSION(KI) :: ZAVG_T_RAD_IND
!
! absorbed solar and infra-red radiation by road, wall and roof
!
REAL, DIMENSION(KI) :: ZU_UTCI ! wind speed for the UTCI calculation (m/s)
REAL, DIMENSION(KI) :: ZALFAU ! V+(1) = alfa u'w'(1) + beta
REAL, DIMENSION(KI) :: ZBETAU ! V+(1) = alfa u'w'(1) + beta
REAL, DIMENSION(KI) :: ZALFAT ! Th+(1) = alfa w'th'(1) + beta
REAL, DIMENSION(KI) :: ZBETAT ! Th+(1) = alfa w'th'(1) + beta
REAL, DIMENSION(KI) :: ZALFAQ ! Q+(1) = alfa w'q'(1) + beta
REAL, DIMENSION(KI) :: ZBETAQ ! Q+(1) = alfa w'q'(1) + beta
REAL, DIMENSION(KI) :: ZWAKE ! reduction of average wind speed
! ! in canyon due to direction average.
!new local variables for UTCI calculation
REAL, DIMENSION(KI) :: ZF1_o_B
!
!***** CANOPY *****
REAL, DIMENSION(KI) :: ZSFLUX_U ! Surface flux u'w' (m2/s2)
REAL, DIMENSION(KI) :: ZSFLUX_T ! Surface flux w'T' (mK/s)
REAL, DIMENSION(KI) :: ZSFLUX_Q ! Surface flux w'q' (kgm2/s)
REAL, DIMENSION(KI,SB%NLVL) :: ZFORC_U ! tendency due to drag force for wind
REAL, DIMENSION(KI,SB%NLVL) :: ZDFORC_UDU! formal derivative of
! ! tendency due to drag force for wind
REAL, DIMENSION(KI,SB%NLVL) :: ZFORC_E ! tendency due to drag force for TKE
REAL, DIMENSION(KI,SB%NLVL) :: ZDFORC_EDE! formal derivative of
! ! tendency due to drag force for TKE
REAL, DIMENSION(KI,SB%NLVL) :: ZFORC_T ! tendency due to drag force for Temp
REAL, DIMENSION(KI,SB%NLVL) :: ZDFORC_TDT! formal derivative of
! ! tendency due to drag force for Temp
REAL, DIMENSION(KI,SB%NLVL) :: ZFORC_Q ! tendency due to drag force for hum
REAL, DIMENSION(KI,SB%NLVL) :: ZDFORC_QDQ! formal derivative of
! ! tendency due to drag force for hum.
REAL, DIMENSION(KI) :: ZLAMBDA_F ! frontal density (-)
REAL, DIMENSION(KI) :: ZLMO ! Monin-Obukhov length at canopy height (m)
REAL, DIMENSION(KI,SB%NLVL) :: ZL ! Mixing length generic profile at mid levels
!
REAL :: ZCONVERTFACM0_SLT, ZCONVERTFACM0_DST
REAL :: ZCONVERTFACM3_SLT, ZCONVERTFACM3_DST
REAL :: ZCONVERTFACM6_SLT, ZCONVERTFACM6_DST
!
INTEGER :: JI
INTEGER :: JLAYER
INTEGER :: JJ
!
! number of TEB patches
!
INTEGER :: JP, IBEG, IEND ! loop counter
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
!
!-------------------------------------------------------------------------------------
! Preliminaries:
!-------------------------------------------------------------------------------------
IF (LHOOK) CALL DR_HOOK('COUPLING_TEB_N',0,ZHOOK_HANDLE)
IF (HTEST/='OK') THEN
CALL ABOR1_SFX('COUPLING_TEBN: FATAL ERROR DURING ARGUMENT TRANSFER')
END IF
!-------------------------------------------------------------------------------------
!
! scalar fluxes
!
PSFTS(:,:) = 0.
!
! broadband radiative fluxes
!
ZDIR_SW(:) = 0.
ZSCA_SW(:) = 0.
DO JSWB=1,KSW
!add directionnal contrib from scattered radiation
CALL CIRCUMSOLAR_RAD(PDIR_SW(:,JSWB), PSCA_SW(:,JSWB), PZENITH, ZF1_o_B)
ZDIR_SWB(:,JSWB) = PDIR_SW(:,JSWB) + PSCA_SW(:,JSWB) * ZF1_o_B
ZSCA_SWB(:,JSWB) = PSCA_SW(:,JSWB) * (1. - ZF1_o_B)
!add directionnal contrib from scattered radiation
DO JJ=1,SIZE(PDIR_SW,1)
ZDIR_SW(JJ) = ZDIR_SW(JJ) + ZDIR_SWB(JJ,JSWB)
ZSCA_SW(JJ) = ZSCA_SW(JJ) + ZSCA_SWB(JJ,JSWB)
ENDDO
END DO
!
DO JJ=1,KI
! specific humidity (conversion from kg/m3 to kg/kg)
!
ZQA(JJ) = PQA(JJ) / PRHOA(JJ)
!
! wind
!
ZWIND(JJ) = SQRT(PU(JJ)**2+PV(JJ)**2)
!
ENDDO
! method of wind coupling
!
IF (HCOUPLING=='I') THEN
ZPEW_A_COEF = PPEW_A_COEF
ZPEW_B_COEF = PPEW_B_COEF
ELSE
ZPEW_A_COEF = 0.
ZPEW_B_COEF = ZWIND
END IF
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Time evolution
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
TOP%TTIME%TIME = TOP%TTIME%TIME + PTSTEP
CALL ADD_FORECAST_TO_DATE_SURF(TOP%TTIME%TDATE%YEAR, TOP%TTIME%TDATE%MONTH,&
TOP%TTIME%TDATE%DAY, TOP%TTIME%TIME)
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Anthropogenic fluxes (except building heating)
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
ZBEGIN_TRAFFIC_TIME = 21600.
ZEND_TRAFFIC_TIME = 64800.
!
WHERE( PTSUN>ZBEGIN_TRAFFIC_TIME .AND. PTSUN<ZEND_TRAFFIC_TIME )
ZH_TRAFFIC (:) = NT%AL(1)%XH_TRAFFIC (:)
ZLE_TRAFFIC (:) = NT%AL(1)%XLE_TRAFFIC (:)
ELSEWHERE
ZH_TRAFFIC (:) = 0.
ZLE_TRAFFIC (:) = 0.
END WHERE
!
!--------------------------------------------------------------------------------------
! Canyon forcing for TEB
!--------------------------------------------------------------------------------------
!-------------------------------------------------------------------------------------
! Town averaged quantities to force canopy atmospheric layers
!-------------------------------------------------------------------------------------
DO JP=1,TOP%NTEB_PATCH
CALL ADD_PATCH_CONTRIB(JP,ZAVG_BLD, NT%AL(JP)%XBLD )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_BLD_HEIGHT, NT%AL(JP)%XBLD_HEIGHT )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_WL_O_HOR, NT%AL(JP)%XWALL_O_HOR )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_CAN_HW_RATIO,NT%AL(JP)%XCAN_HW_RATIO)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_Z0, NT%AL(JP)%XZ0_TOWN )
IF (TOP%LCANOPY) THEN
!-------------------------------------------------------------------------------------
! Updates canopy vertical grid as a function of forcing height
!-------------------------------------------------------------------------------------
!
!* determines where is the forcing level and modifies the upper levels of the canopy grid
!
CALL CANOPY_GRID_UPDATE(KI, ZAVG_BLD_HEIGHT, ZAVG_BLD_HEIGHT+PUREF, SB)
!
!* Initialisations of T, Q, TKE and wind at first time step
!
IF(ANY(SB%XT(:,:) == XUNDEF)) THEN
DO JLAYER=1,SB%NLVL
SB%XT(:,JLAYER) = PTA(:)
SB%XQ(:,JLAYER) = PQA(:)
SB%XU(:,JLAYER) = 2./XPI * ZWIND(:) &
* LOG( ( 2.* NT%AL(1)%XBLD_HEIGHT(:)/3.) / NT%AL(1)%XZ0_TOWN(:)) &
/ LOG( (PUREF(:)+ 2.* NT%AL(1)%XBLD_HEIGHT(:)/3.) / NT%AL(1)%XZ0_TOWN(:))
!
!* default forcing above roof: forcing level
ZUREF(:) = PUREF(:)
ZZREF(:) = PZREF(:)
ZUA(:) = SB%XU(:,SB%NLVL)
ZTA(:) = SB%XT(:,SB%NLVL)
ZQA(:) = SB%XQ(:,SB%NLVL)/PRHOA(:)
ZPA(:) = SB%XP(:,SB%NLVL)
!* for the time being, only one value is kept for wall in-canyon forcing, in the middle of the canyon
ZU_CANYON(:) = ZUA(:)
ZT_CANYON(:) = ZTA(:)
ZQ_CANYON(:) = ZQA(:)
DO JLAYER=1,SB%NLVL-1
DO JI=1,KI
!* finds middle canyon layer
IF (SB%XZ(JI,JLAYER)<ZAVG_BLD_HEIGHT(JI)/2. .AND. SB%XZ(JI,JLAYER+1)>=ZAVG_BLD_HEIGHT(JI)/2.) THEN
ZCOEF(JI) = (ZAVG_BLD_HEIGHT(JI)/2.-SB%XZ(JI,JLAYER))/(SB%XZ(JI,JLAYER+1)-SB%XZ(JI,JLAYER))
ZU_CANYON(JI) = SB%XU(JI,JLAYER) + ZCOEF(JI) * (SB%XU(JI,JLAYER+1)-SB%XU(JI,JLAYER))
ZT_CANYON(JI) = SB%XT(JI,JLAYER) + ZCOEF(JI) * (SB%XT(JI,JLAYER+1)-SB%XT(JI,JLAYER))
ZQ_CANYON(JI) =(SB%XQ(JI,JLAYER) + ZCOEF(JI) * (SB%XQ(JI,JLAYER+1)-SB%XQ(JI,JLAYER)))/PRHOA(JI)
END IF
!* finds layer just above roof (at least 1m above roof)
IF (SB%XZ(JI,JLAYER)<ZAVG_BLD_HEIGHT(JI)+1. .AND. SB%XZ(JI,JLAYER+1)>=ZAVG_BLD_HEIGHT(JI)+1.) THEN
ZUREF(JI) = SB%XZ(JI,JLAYER+1) - ZAVG_BLD_HEIGHT(JI)
ZZREF(JI) = SB%XZ(JI,JLAYER+1) - ZAVG_BLD_HEIGHT(JI)
ZTA (JI) = SB%XT(JI,JLAYER+1)
ZQA (JI) = SB%XQ(JI,JLAYER+1)/PRHOA(JI)
ZUA (JI) = MAX(SB%XU(JI,JLAYER+1) - 2.*SQRT(SB%XTKE(JI,JLAYER+1)) , SB%XU(JI,JLAYER+1)/3.)
ZPA (JI) = SB%XP(JI,JLAYER+1)
ZLMO (JI) = SB%XLMO(JI,JLAYER+1)
END IF
END DO
END DO
ZU_CANYON= MAX(ZU_CANYON,0.2)
ZU_LOWCAN=SB%XU(:,1)
ZT_LOWCAN=SB%XT(:,1)
ZQ_LOWCAN=SB%XQ(:,1) / PRHOA(:)
ZZ_LOWCAN=SB%XZ(:,1)
WHERE(ZPA==XUNDEF) ZPA = PPA ! security for first time step
!
!-------------------------------------------------------------------------------------
! determine the vertical profile for mixing and dissipative lengths (at full levels)
!-------------------------------------------------------------------------------------
!
! frontal density
ZLAMBDA_F(:) = ZAVG_CAN_HW_RATIO*ZAVG_BLD / (0.5*XPI)
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
!
CALL SM10(SB%XZ, ZAVG_BLD_HEIGHT, ZLAMBDA_F, ZL)
!
!-------------------------------------------------------------------------------------
! computes coefficients for implicitation
!-------------------------------------------------------------------------------------
!
ZAVG_UW_GRND(:) = 0.
ZAVG_DUWDU_GRND(:) = 0.
ZAVG_UW_RF(:) = 0.
ZAVG_DUWDU_RF(:) = 0.
ZAVG_H_GRND(:) = 0.
ZAVG_H_WL(:) = 0.
ZAVG_H_RF(:) = 0.
ZAVG_E_GRND(:) = 0.
ZAVG_E_RF(:) = 0.
ZAVG_AC_GRND(:) = 0.
ZAVG_AC_GRND_WAT(:)= 0.
ZSFLUX_U(:) = 0.
ZSFLUX_T(:) = 0.
ZSFLUX_Q(:) = 0.
!
DO JLAYER=1,SB%NLVL-1
!* Monin-Obuhkov theory not used inside the urban canopy
! => neutral mixing if layer is below : (roof level +1 meter)
WHERE (SB%XZ(:,JLAYER)<=ZAVG_BLD_HEIGHT(:)+1.) SB%XLMO(:,JLAYER) = XUNDEF
!
!* computes tendencies on wind and Tke due to canopy
CALL TEB_CANOPY(KI, SB, ZAVG_BLD, ZAVG_BLD_HEIGHT, ZAVG_WL_O_HOR, PPA, PRHOA, &
ZAVG_DUWDU_GRND, ZAVG_UW_RF, ZAVG_DUWDU_RF, ZAVG_H_WL, &
ZAVG_H_RF, ZAVG_E_RF, ZAVG_AC_GRND, ZAVG_AC_GRND_WAT, ZFORC_U, &
ZDFORC_UDU, ZFORC_E, ZDFORC_EDE, ZFORC_T, ZDFORC_TDT, ZFORC_Q, &
ZDFORC_QDQ )
!
!* computes coefficients for implicitation
CALL CANOPY_EVOL(SB, KI, PTSTEP, 1, ZL, ZWIND, PTA, PQA, PPA, PRHOA, &
ZSFLUX_U, ZSFLUX_T, ZSFLUX_Q, ZFORC_U, ZDFORC_UDU, &
ZFORC_E, ZDFORC_EDE, ZFORC_T, ZDFORC_TDT, ZFORC_Q, &
ZDFORC_QDQ, SB%XLM, SB%XLEPS, ZAVG_USTAR, ZALFAU, &
ZBETAU, ZALFAT, ZBETAT, ZALFAQ, ZBETAQ)
!
ZPEW_A_COEF_LOWCAN = - ZALFAU / PRHOA
ZPEW_B_COEF_LOWCAN = ZBETAU
!
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!* skimming flow for h/w>1 (maximum effect of direction on wind in the canyon);
!* isolated flow for h/w<0.5 (wind is the same in large streets for all dir.)
!* wake flow between.
!
ZWAKE(JI)= 1. + (2./XPI-1.) * 2. * (ZAVG_CAN_HW_RATIO(JI)-0.5)
ZWAKE(JI)= MAX(MIN(ZWAKE(JI),1.),2./XPI)
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
!
!* Estimation of canyon wind speed from wind just above roof level
! (at 1.33h). Wind at 1.33h is estimated using the log law.
!
IF (ZAVG_BLD_HEIGHT(JI) .GT. 0.) THEN
ZU_CANYON(JI) = ZWAKE(JI) * EXP(-ZAVG_CAN_HW_RATIO(JI)/4.) * ZWIND(JI) &
* LOG( ( 2.* ZAVG_BLD_HEIGHT(JI)/3.) / ZAVG_Z0(JI)) &
/ LOG( (PUREF(JI)+ 2.* ZAVG_BLD_HEIGHT(JI)/3.) / ZAVG_Z0(JI))
ZZ_LOWCAN(JI) = ZAVG_BLD_HEIGHT(JI) / 2.
ELSE
ZU_CANYON(JI) = ZWIND(JI)
ZZ_LOWCAN(JI) = PZREF(JI)
ENDIF
END DO
!
!* Without SBL scheme, canyon air is assumed at mid height
ZU_LOWCAN = ZU_CANYON
ZT_LOWCAN = NT%AL(1)%XT_CANYON
ZQ_LOWCAN = NT%AL(1)%XQ_CANYON
ZT_CANYON = NT%AL(1)%XT_CANYON
ZQ_CANYON = NT%AL(1)%XQ_CANYON
ZUREF = PUREF
ZZREF = PZREF
ZTA = PTA
ZUA = ZWIND
ZPA = PPA
ZPEW_A_COEF_LOWCAN = 0.
ZPEW_B_COEF_LOWCAN = ZU_CANYON
END IF
!
! Exner functions
!
ZEXNS (:) = (PPS(:)/XP00)**(XRD/XCPD)
ZEXNA (:) = (ZPA(:)/XP00)**(XRD/XCPD)
!--------------------------------------------------------------------------------------
! Over Urban surfaces/towns:
!--------------------------------------------------------------------------------------
!
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
DO JP = 1,TOP%NTEB_PATCH
!
ZT_CAN = ZT_CANYON
ZQ_CAN = ZQ_CANYON
!
IF (TOP%LCANOPY) THEN
NT%AL(JP)%XT_CANYON(:) = ZT_CANYON(:)
NT%AL(JP)%XQ_CANYON(:) = ZQ_CANYON(:)
END IF
!
ZLESN_RF(:) = 0.
ZLESN_RD(:) = 0.
TD%NDMT%AL(JP)%XG_GREENROOF_ROOF(:) = 0.
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Call the physical routines of TEB (including gardens & greenroofs)
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
CALL TEB_GARDEN(DTCO, G, TOP, NT%AL(JP), BOP, NB%AL(JP), TPN, TIR, TD%NDMT%AL(JP), GDM, GRM, JP, &
CIMPLICIT_WIND, PTSUN, ZT_CAN, ZQ_CAN, ZU_CANYON, ZT_LOWCAN, ZQ_LOWCAN, &
ZU_LOWCAN, ZZ_LOWCAN, ZPEW_A_COEF, ZPEW_B_COEF, ZPEW_A_COEF_LOWCAN, &
ZPEW_B_COEF_LOWCAN, PPS, ZPA, ZEXNS, ZEXNA, ZTA, ZQA, PRHOA, PCO2, PLW, &
ZDIR_SWB, ZSCA_SWB, PSW_BANDS, KSW, PZENITH, PAZIM, PRAIN, PSN, ZZREF, &
ZUREF, ZUA, ZH_TRAFFIC, ZLE_TRAFFIC, PTSTEP, ZLEW_RF, ZLEW_RD, ZLE_WL_A,&
ZLE_WL_B, ZRNSN_RF, ZHSN_RF, ZLESN_RF, ZGSN_RF, ZMELT_RF, ZRNSN_RD, &
ZHSN_RD, ZLESN_RD, ZGSN_RD, ZMELT_RD, ZRN_GRND, ZH_GRND, ZLE_GRND, &
ZGFLX_GRND, ZRN, ZH, ZLE, ZGFLX, ZEVAP, ZSFCO2, ZUW_GRND, &
ZUW_RF, ZDUWDU_GRND, ZDUWDU_RF, ZUSTAR, ZCD, ZCDN, ZCH, ZRI, ZTRAD, &
ZEMIS, ZDIR_ALB, ZSCA_ALB, ZRESA, ZAC_RD, ZAC_GD, ZAC_GRF, ZAC_RD_WAT, &
ZAC_GD_WAT, ZAC_GRF_WAT, KDAY, ZEMIT_LW_FAC, ZEMIT_LW_GRND, ZT_RAD_IND, &
ZREF_SW_GRND, ZREF_SW_FAC, ZHU_BLD, PTIME, ZPROD_BLD )
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
CALL ADD_PATCH_CONTRIB(JP,ZAVG_T_CANYON,ZT_CAN)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_Q_CANYON,ZQ_CAN)
!
! Momentum fluxes
!
ZSFU = 0.
ZSFV = 0.
DO JJ=1,SIZE(PU)
IF (ZWIND(JJ)>0.) THEN
ZCOEF(JJ) = - PRHOA(JJ) * ZUSTAR(JJ)**2 / ZWIND(JJ)
ZSFU(JJ) = ZCOEF(JJ) * PU(JJ)
ZSFV(JJ) = ZCOEF(JJ) * PV(JJ)
ENDIF
ENDDO
CALL ADD_PATCH_CONTRIB(JP,PSFU,ZSFU)
CALL ADD_PATCH_CONTRIB(JP,PSFV,ZSFV)
!
ENDIF
!
!-------------------------------------------------------------------------------------
! Outputs:
!-------------------------------------------------------------------------------------
!
! Grid box average fluxes/properties: Arguments and standard diagnostics
!
CALL ADD_PATCH_CONTRIB(JP,PSFTH,ZH)
CALL ADD_PATCH_CONTRIB(JP,PSFTQ,ZEVAP)
CALL ADD_PATCH_CONTRIB(JP,PSFCO2,ZSFCO2)
!
!
! Albedo for each wavelength and patch
!
DO JSWB=1,SIZE(PSW_BANDS)
DO JJ=1,SIZE(ZDIR_ALB)
ZDIR_ALB_PATCH(JJ,JSWB,JP) = ZDIR_ALB(JJ)
ZSCA_ALB_PATCH(JJ,JSWB,JP) = ZSCA_ALB(JJ)
ENDDO
END DO
!
! emissivity and radiative temperature
!
ZEMIS_PATCH(:,JP) = ZEMIS
ZTRAD_PATCH(:,JP) = ZTRAD
!
! computes some aggregated diagnostics
!
CALL ADD_PATCH_CONTRIB(JP,ZAVG_CD ,ZCD )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_CDN,ZCDN)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_RI ,ZRI )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_CH ,ZCH )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_RN ,ZRN )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_H ,ZH )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_LE ,ZLE )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_GFLX ,ZGFLX )
!
!* warning: aerodynamical resistance does not yet take into account gardens
CALL ADD_PATCH_CONTRIB(JP,ZAVG_RESA,1./ZRESA)
IF (JP==TOP%NTEB_PATCH) ZAVG_RESA = 1./ZAVG_RESA
!
!-------------------------------------------------------------------------------------
! Diagnostics on each patch
!-------------------------------------------------------------------------------------
!
IF (TD%MTO%LSURF_MISC_BUDGET) THEN
!
! cumulated diagnostics
! ---------------------
!
CALL CUMUL_DIAG_TEB_n(TD%NDMTC%AL(JP), TD%NDMT%AL(JP), GDM%VD%NDEC%AL(JP), GDM%VD%NDE%AL(JP), &
GRM%VD%NDEC%AL(JP), GRM%VD%NDE%AL(JP), TOP, PTSTEP)
!
END IF
!
!
!-------------------------------------------------------------------------------------
! Computes averaged parameters necessary for UTCI
!-------------------------------------------------------------------------------------
!
IF (TD%O%N2M >0 .AND. TD%DUT%LUTCI) THEN
CALL ADD_PATCH_CONTRIB(JP,ZAVG_REF_SW_GRND ,ZREF_SW_GRND )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_REF_SW_FAC ,ZREF_SW_FAC )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_SCA_SW ,ZSCA_SW )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_DIR_SW ,ZDIR_SW )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_EMIT_LW_FAC ,ZEMIT_LW_FAC )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_EMIT_LW_GRND,ZEMIT_LW_GRND)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_T_RAD_IND ,ZT_RAD_IND )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_TI_BLD ,NB%AL(JP)%XTI_BLD)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_QI_BLD ,NB%AL(JP)%XQI_BLD)
END IF
!
!-------------------------------------------------------------------------------------
! Use of the canopy version of TEB
!-------------------------------------------------------------------------------------
!
IF (TOP%LCANOPY) THEN
!-------------------------------------------------------------------------------------
! Town averaged quantities to force canopy atmospheric layers
!-------------------------------------------------------------------------------------
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
CALL ADD_PATCH_CONTRIB(JP,ZAVG_DUWDU_GRND, ZDUWDU_GRND )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_UW_RF , ZUW_RF)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_DUWDU_RF , ZDUWDU_RF)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_H_WL , 0.5*(TD%NDMT%AL(JP)%XH_WALL_A+TD%NDMT%AL(JP)%XH_WALL_B))
CALL ADD_PATCH_CONTRIB(JP,ZAVG_H_RF , (TD%NDMT%AL(JP)%XH_ROOF + NT%AL(JP)%XH_INDUSTRY))
CALL ADD_PATCH_CONTRIB(JP,ZAVG_E_RF , (TD%NDMT%AL(JP)%XLE_ROOF+ NT%AL(JP)%XLE_INDUSTRY)/XLVTT)
!
!-------------------------------------------------------------------------------------
! Computes the impact of canopy and surfaces on air
!-------------------------------------------------------------------------------------
!
ZAC_GRND (:) = (NT%AL(JP)%XROAD(:)*ZAC_RD (:) + NT%AL(JP)%XGARDEN(:)*ZAC_GD (:)) / &
(NT%AL(JP)%XROAD(:)+NT%AL(JP)%XGARDEN(:))
ZAC_GRND_WAT(:) = (NT%AL(JP)%XROAD(:)*ZAC_RD_WAT(:) + NT%AL(JP)%XGARDEN(:)*ZAC_GD_WAT(:)) / &
(NT%AL(JP)%XROAD(:)+NT%AL(JP)%XGARDEN(:))
!
CALL ADD_PATCH_CONTRIB(JP,ZAVG_AC_GRND , ZAC_GRND )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_AC_GRND_WAT, ZAC_GRND_WAT)
CALL ADD_PATCH_CONTRIB(JP,ZSFLUX_U , ZUW_GRND * (1.-NT%AL(JP)%XBLD))
CALL ADD_PATCH_CONTRIB(JP,ZSFLUX_T , ZH_GRND * (1.-NT%AL(JP)%XBLD)/XCPD/PRHOA)
CALL ADD_PATCH_CONTRIB(JP,ZSFLUX_Q , ZLE_GRND * (1.-NT%AL(JP)%XBLD)/XLVTT)
!
END IF
!
!-------------------------------------------------------------------------------------
! end of loop on TEB patches
END DO
!-------------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------------
!* Evolution of canopy air if canopy option is active
!-------------------------------------------------------------------------------------
!
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
IF (TOP%LCANOPY) THEN
!
!-------------------------------------------------------------------------------------
!* Impact of TEB fluxes on the air
!-------------------------------------------------------------------------------------
!
CALL TEB_CANOPY(KI, SB, ZAVG_BLD, ZAVG_BLD_HEIGHT, ZAVG_WL_O_HOR, PPA, PRHOA, &
ZAVG_DUWDU_GRND, ZAVG_UW_RF, ZAVG_DUWDU_RF, ZAVG_H_WL, &
ZAVG_H_RF, ZAVG_E_RF, ZAVG_AC_GRND, ZAVG_AC_GRND_WAT, ZFORC_U, &
ZDFORC_UDU, ZFORC_E, ZDFORC_EDE, ZFORC_T, ZDFORC_TDT, ZFORC_Q, &
ZDFORC_QDQ )
!
!-------------------------------------------------------------------------------------
!* Evolution of canopy air due to these impacts
!-------------------------------------------------------------------------------------
!
CALL CANOPY_EVOL(SB, KI, PTSTEP, 2, ZL, ZWIND, PTA, PQA, PPA, PRHOA, &
ZSFLUX_U, ZSFLUX_T, ZSFLUX_Q, ZFORC_U, ZDFORC_UDU, &
ZFORC_E, ZDFORC_EDE, ZFORC_T, ZDFORC_TDT, ZFORC_Q, &
ZDFORC_QDQ, SB%XLM, SB%XLEPS, ZAVG_USTAR, ZALFAU, &
ZBETAU, ZALFAT, ZBETAT, ZALFAQ, ZBETAQ )
!
!-------------------------------------------------------------------------------------
! Momentum fluxes in the case canopy is active
!-------------------------------------------------------------------------------------
!
PSFU=0.
PSFV=0.
ZAVG_Z0(:) = MIN(ZAVG_Z0(:),PUREF(:)*0.5)
ZAVG_CDN=(XKARMAN/LOG(PUREF(:)/ZAVG_Z0(:)))**2
ZAVG_CD = ZAVG_CDN
ZAVG_RI = 0.
DO JJ=1,SIZE(PU)
IF (ZWIND(JJ)>0.) THEN
ZCOEF(JJ) = - PRHOA(JJ) * ZAVG_USTAR(JJ)**2 / ZWIND(JJ)
PSFU(JJ) = ZCOEF(JJ) * PU(JJ)
PSFV(JJ) = ZCOEF(JJ) * PV(JJ)
ZAVG_CD(JJ) = ZAVG_USTAR(JJ)**2 / ZWIND(JJ)**2
ZAVG_RI(JJ) = -XG/PTA(JJ)*ZSFLUX_T(JJ)/ZAVG_USTAR(JJ)**4
ENDIF
ENDDO
!
!-------------------------------------------------------------------------------------
! End of specific case with canopy option
!-------------------------------------------------------------------------------------
!
END IF
!
!-------------------------------------------------------------------------------------
! Outputs:
!-------------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------------
!Radiative properties should be at time t+1 (see by the atmosphere) in order to close
!the energy budget between surfex and the atmosphere. It is not the case here
!for ALB and EMIS
!-------------------------------------------------------------------------------------
CALL AVERAGE_RAD(TOP%XTEB_PATCH, ZDIR_ALB_PATCH, ZSCA_ALB_PATCH, ZEMIS_PATCH, &
ZTRAD_PATCH, PDIR_ALB, PSCA_ALB, PEMIS, PTRAD )
!
!-------------------------------------------------------------------------------
!Physical properties see by the atmosphere in order to close the energy budget
!between surfex and the atmosphere. All variables should be at t+1 but very
!difficult to do. Maybe it will be done later. However, Ts can be at time t+1
!-------------------------------------------------------------------------------
!
PTSURF (:) = PTRAD (:) ! Should be the surface effective temperature; not radative
PZ0 (:) = ZAVG_Z0 (:) ! Should account for ISBA (greenroof and garden) Z0
PZ0H (:) = PZ0 (:) / 200. ! Should account for ISBA (greenroof and garden) Z0
PQSURF (:) = NT%AL(1)%XQ_CANYON(:) ! Should account for ISBA (greenroof and garden) Qs
!
!-------------------------------------------------------------------------------------
! Scalar fluxes:
!-------------------------------------------------------------------------------------
!
ZAVG_USTAR (:) = SQRT(SQRT(PSFU**2+PSFV**2))
!
!
IF (CHT%SVT%NBEQ>0) THEN
IBEG = CHT%SVT%NSV_CHSBEG
IEND = CHT%SVT%NSV_CHSEND
IF (CHT%CCH_DRY_DEP == "WES89") THEN
CALL CH_DEP_TOWN(ZAVG_RESA, ZAVG_USTAR, PTA, PTRAD, ZAVG_WL_O_HOR,&
PSV(:,IBEG:IEND), CHT%SVT%CSV(IBEG:IEND), CHT%XDEP(:,1:CHT%SVT%NBEQ) )
!cdir nodep
DO JJ=1,SIZE(PSFTS,1)
PSFTS(JJ,JI) = - PSV(JJ,JI) * CHT%XDEP(JJ,JI-IBEG+1)
IF (CHT%SVT%NAEREQ > 0 ) THEN
IBEG = CHT%SVT%NSV_AERBEG
IEND = CHT%SVT%NSV_AEREND
CALL CH_AER_DEP(PSV(:,IBEG:IEND), PSFTS(:,IBEG:IEND), &
ZAVG_USTAR, ZAVG_RESA, PTA, PRHOA)
IBEG = CHT%SVT%NSV_CHSBEG
IEND = CHT%SVT%NSV_CHSEND
DO JI=IBEG,IEND
IBEG = CHT%SVT%NSV_AERBEG
IEND = CHT%SVT%NSV_AEREND
IF(IBEG.LT.IEND) THEN
DO JI=IBEG,IEND
PSFTS(:,JI) =0.
ENDDO
ENDIF
ENDIF
! Blindage à enlever lorsque que TEB aura été corrigé
ZUSTAR(:) = MIN(ZUSTAR(:), 10.)
ZRESA (:) = MAX(ZRESA(:), 10.)
!
IBEG = CHT%SVT%NSV_DSTBEG
IEND = CHT%SVT%NSV_DSTEND
CALL DSLT_DEP(PSV(:,IBEG:IEND), PSFTS(:,IBEG:IEND), ZUSTAR, ZRESA, PTA, PRHOA, &
DST%XEMISSIG_DST, DST%XEMISRADIUS_DST, JPMODE_DST, XDENSITY_DST, &
XMOLARWEIGHT_DST, ZCONVERTFACM0_DST, ZCONVERTFACM6_DST, &
ZCONVERTFACM3_DST, LVARSIG_DST, LRGFIX_DST, CVERMOD )
PSFTS(:,IBEG:IEND), & !I/O ![kg/m2/sec] In: flux of only mass, out: flux of moments
DST%XEMISRADIUS_DST, &!I [um] emitted radius for the modes (max 3)
DST%XEMISSIG_DST, &!I [-] emitted sigma for the different modes (max 3)
NDSTMDE, &
ZCONVERTFACM0_DST, &
ZCONVERTFACM6_DST, &
ZCONVERTFACM3_DST, &
LVARSIG_DST, LRGFIX_DST )
ENDIF
IF (CHT%SVT%NSLTEQ>0) THEN
!
IBEG = CHT%SVT%NSV_SLTBEG
IEND = CHT%SVT%NSV_SLTEND
!
CALL DSLT_DEP(PSV(:,IBEG:IEND), PSFTS(:,IBEG:IEND), ZUSTAR, ZRESA, PTA, PRHOA, &
SLT%XEMISSIG_SLT, SLT%XEMISRADIUS_SLT, JPMODE_SLT, XDENSITY_SLT, &
XMOLARWEIGHT_SLT, ZCONVERTFACM0_SLT, ZCONVERTFACM6_SLT, &
ZCONVERTFACM3_SLT, LVARSIG_SLT, LRGFIX_SLT, CVERMOD )
PSFTS(:,IBEG:IEND), & !I/O ![kg/m2/sec] In: flux of only mass, out: flux of moments
SLT%XEMISRADIUS_SLT, &!I [um] emitted radius for the modes (max 3)
SLT%XEMISSIG_SLT, &!I [-] emitted sigma for the different modes (max 3)
NSLTMDE, &
ZCONVERTFACM0_SLT, &
ZCONVERTFACM6_SLT, &
ZCONVERTFACM3_SLT, &
LVARSIG_SLT, LRGFIX_SLT )
ENDIF
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Inline diagnostics