Skip to content
Snippets Groups Projects
mode_turb_ver_thermo_flux.F90 54.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • !MNH_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier
    !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
    !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
    !MNH_LIC for details. version 1.
    MODULE MODE_TURB_VER_THERMO_FLUX
    IMPLICIT NONE
    CONTAINS
          
    
    SUBROUTINE TURB_VER_THERMO_FLUX(D,CST,CSTURB,TURBN,                 &
    
                          OTURB_FLX,HTURBDIM,HTOM,OOCEAN,ODEEPOC,OHARAT,&
    
                          OCOUPLES,OLES_CALL, OCOMPUTE_SRC,             &
    
                          PDXX,PDYY,PDZZ,PDZX,PDZY,PDIRCOSZW,PZZ,       &
                          PRHODJ,PTHVREF,                               &
                          PSFTHM,PSFRM,PSFTHP,PSFRP,                    &
                          PWM,PTHLM,PRM,PSVM,                           &
                          PTKEM,PLM,PLEPS,                              &
                          PLOCPEXNM,PATHETA,PAMOIST,PSRCM,PFRAC_ICE,    &
                          PBETA, PSQRT_TKE, PDTH_DZ, PDR_DZ, PRED2TH3,  &
                          PRED2R3, PRED2THR3, PBLL_O_E, PETHETA,        &
                          PEMOIST, PREDTH1, PREDR1, PPHI3, PPSI3, PD,   &
                          PFWTH,PFWR,PFTH2,PFR2,PFTHR,MFMOIST,PBL_DEPTH,&
    
                          PWTHV,PRTHLS,PRRS,PTHLP,PRP,PTP,PWTH,PWRC     )
    
    !     ###############################################################
    !
    !
    !!****  *TURB_VER_THERMO_FLUX* -compute the source terms due to the vertical turbulent
    !!       fluxes.
    !!
    !!    PURPOSE
    !!    -------
    !       The purpose of this routine is to compute the vertical turbulent
    !     fluxes of the evolutive variables and give back the source 
    !     terms to the main program.	In the case of large horizontal meshes,
    !     the divergence of these vertical turbulent fluxes represent the whole
    !     effect of the turbulence but when the three-dimensionnal version of
    !     the turbulence scheme is activated (CTURBDIM="3DIM"), these divergences
    !     are completed in the next routine TURB_HOR. 
    !		  An arbitrary degree of implicitness has been implemented for the 
    !     temporal treatment of these diffusion terms.
    !       The vertical boundary conditions are as follows:
    !           *  at the bottom, the surface fluxes are prescribed at the same
    !              as the other turbulent fluxes
    !           *  at the top, the turbulent fluxes are set to 0.
    !       It should be noted that the condensation has been implicitely included
    !     in this turbulence scheme by using conservative variables and computing
    !     the subgrid variance of a statistical variable s indicating the presence 
    !     or not of condensation in a given mesh. 
    !
    !!**  METHOD
    !!    ------
    !!      1D type calculations are made;
    !!      The vertical turbulent fluxes are computed in an off-centered
    !!      implicit scheme (a Crank-Nicholson type with coefficients different
    !!      than 0.5), which allows to vary the degree of implicitness of the
    !!      formulation.
    !!      	 The different prognostic variables are treated one by one. 
    !!      The contributions of each turbulent fluxes are cumulated into the 
    !!      tendency  PRvarS, and into the dynamic and thermal production of 
    !!      TKE if necessary.
    !!        
    !!			 In section 2 and 3, the thermodynamical fields are considered.
    !!      Only the turbulent fluxes of the conservative variables
    !!      (Thetal and Rnp stored in PRx(:,:,:,1))  are computed. 
    !!       Note that the turbulent fluxes at the vertical 
    !!      boundaries are given either by the soil scheme for the surface one
    !!      ( at the same instant as the others fluxes) and equal to 0 at the 
    !!      top of the model. The thermal production is computed by vertically 
    !!      averaging the turbulent flux and multiply this flux at the mass point by
    !!      a function ETHETA or EMOIST, which preform the transformation from the
    !!      conservative variables to the virtual potential temperature. 
    !!     
    !! 	    In section 4, the variance of the statistical variable
    !!      s indicating presence or not of condensation, is determined in function 
    !!      of the turbulent moments of the conservative variables and its
    !!      squarred root is stored in PSIGS. This information will be completed in 
    !!      the horizontal turbulence if the turbulence dimensionality is not 
    !!      equal to "1DIM".
    !!
    !!			 In section 5, the x component of the stress tensor is computed.
    !!      The surface flux <u'w'> is computed from the value of the surface
    !!      fluxes computed in axes linked to the orography ( i", j" , k"):
    !!        i" is parallel to the surface and in the direction of the maximum
    !!           slope
    !!        j" is also parallel to the surface and in the normal direction of
    !!           the maximum slope
    !!        k" is the normal to the surface
    !!      In order to prevent numerical instability, the implicit scheme has 
    !!      been extended to the surface flux regarding to its dependence in 
    !!      function of U. The dependence in function of the other components 
    !!      introduced by the different rotations is only explicit.
    !!      The turbulent fluxes are used to compute the dynamic production of 
    !!      TKE. For the last TKE level ( located at PDZZ(:,:,IKB)/2 from the
    !!      ground), an harmonic extrapolation from the dynamic production at 
    !!      PDZZ(:,:,IKB) is used to avoid an evaluation of the gradient of U
    !!      in the surface layer.
    !!
    !!         In section 6, the same steps are repeated but for the y direction
    !!		  and in section 7, a diagnostic computation of the W variance is 
    !!      performed.
    !!
    !!         In section 8, the turbulent fluxes for the scalar variables are 
    !!      computed by the same way as the conservative thermodynamical variables
    !!
    !!            
    !!    EXTERNAL
    !!    --------
    !!      GX_U_M, GY_V_M, GZ_W_M :  cartesian gradient operators 
    !!      GX_U_UW,GY_V_VW	         (X,Y,Z) represent the direction of the gradient
    !!                               _(M,U,...)_ represent the localization of the 
    !!                               field to be derivated
    !!                               _(M,UW,...) represent the localization of the 
    !!                               field	derivated
    !!                               
    !!
    !!      MXM,MXF,MYM,MYF,MZM,MZF
    !!                             :  Shuman functions (mean operators)     
    !!      DXF,DYF,DZF,DZM
    !!                             :  Shuman functions (difference operators)     
    !!                               
    
    !!      SUBROUTINE TRIDIAG     : to compute the split implicit evolution
    
    !!                               of a variable located at a mass point
    !!
    
    !!      SUBROUTINE TRIDIAG_WIND: to compute the split implicit evolution
    
    !!                               of a variable located at a wind point
    !!
    !!      FUNCTIONs ETHETA and EMOIST  :  
    !!            allows to compute:
    !!            - the coefficients for the turbulent correlation between
    !!            any variable and the virtual potential temperature, of its 
    !!            correlations with the conservative potential temperature and 
    !!            the humidity conservative variable:
    !!            -------              -------              -------
    !!            A' Thv'  =  ETHETA   A' Thl'  +  EMOIST   A' Rnp'  
    !!
    !!
    !!    IMPLICIT ARGUMENTS
    !!    ------------------
    !!      Module MODD_CST : contains physical constants
    !!
    
    !!
    !!      Module MODD_CTURB: contains the set of constants for
    !!                        the turbulence scheme
    !!
    
    !!           CSTURB%XCMFS,XCMFB : cts for the momentum flux
    !!           CSTURB%XCSHF       : ct for the sensible heat flux
    !!           CSTURB%XCHF        : ct for the moisture flux
    !!           CSTURB%XCTV,CSTURB%XCHV   : cts for the T and moisture variances
    
    !!
    !!      Module MODD_PARAMETERS
    !!
    !!           JPVEXT_TURB     : number of vertical external points
    !!           JPHEXT     : number of horizontal external points
    !!
    !!
    !!    REFERENCE
    !!    ---------
    !!      Book 1 of documentation (Chapter: Turbulence)
    !!
    !!    AUTHOR
    !!    ------
    !!      Joan Cuxart             * INM and Meteo-France *
    !!
    !!    MODIFICATIONS
    !!    -------------
    !!      Original       August   19, 1994
    !!      Modifications: February 14, 1995 (J.Cuxart and J.Stein) 
    !!                                  Doctorization and Optimization
    !!      Modifications: March 21, 1995 (J.M. Carriere) 
    !!                                  Introduction of cloud water
    !!      Modifications: June  14, 1995 (J.Cuxart and J. Stein) 
    !!                                 Phi3 and Psi3 at w-point + bug in the all
    !!                                 or nothing condens. 
    !!      Modifications: Sept  15, 1995 (J.Cuxart and J. Stein) 
    !!                                 Change the DP computation at the ground
    !!      Modifications: October 10, 1995 (J.Cuxart and J. Stein) 
    !!                                 Psi for scal var and LES tools
    !!      Modifications: November 10, 1995 (J. Stein)
    !!                                 change the surface	relations 
    !!      Modifications: February 20, 1995 (J. Stein) optimization
    !!      Modifications: May 21, 1996 (J. Stein) 
    !!                                  bug in the vertical flux of the V wind 
    !!                                  component for explicit computation
    !!      Modifications: May 21, 1996 (N. wood) 
    !!                                  modify the computation of the vertical
    !!                                   part or the surface tangential flux
    !!      Modifications: May 21, 1996 (P. Jabouille)
    !!                                  same modification in the Y direction
    !!      
    !!      Modifications: Sept 17, 1996 (J. Stein) change the moist case by using
    !!                                  Pi instead of Piref + use Atheta and Amoist
    !!
    !!      Modifications: Nov  24, 1997 (V. Masson) removes the DO loops 
    !!      Modifications: Mar  31, 1998 (V. Masson) splits the routine TURB_VER_THERMO_FLUX 
    !!      Modifications: Oct  18, 2000 (V. Masson) LES computations
    !!      Modifications: Dec  01, 2000 (V. Masson) conservation of energy from
    !!                                               surface flux in 1DIM case
    !!                                               when slopes are present
    !!                     Nov  06, 2002 (V. Masson) LES budgets
    !!                     Feb  20, 2003 (JP Pinty)  Add PFRAC_ICE
    !!                     May  20, 2003 (JP Pinty)  Correction of ETHETA
    !!                                                         and EMOIST calls
    !!                     July     2005 (S. Tomas, V. Masson)
    !!                                               Add 3rd order moments
    !!                                               and implicitation of PHI3 and PSI3
    !!                     October 2009 (G. Tanguy) add ILENCH=LEN(YCOMMENT) after
    !!                                              change of YCOMMENT
    !!                     2012-02 (Y. Seity) add possibility to run with reversed
    !!                                             vertical levels
    
    !!      Modifications  July 2015 (Wim de Rooy) OHARAT switch
    
    !!  Philippe Wautelet: 05/2016-04/2018: new data structures and calls for I/O
    !!                     2021 (D. Ricard) last version of HGRAD turbulence scheme
    !!                                 Leronard terms instead of Reynolds terms
    !!                                 applied to vertical fluxes of r_np and Thl
    !!                                 for implicit version of turbulence scheme
    !!                                 corrections and cleaning
    !!                     June 2020 (B. Vie) Patch preventing negative rc and ri in 2.3 and 3.3
    !! JL Redelsperger  : 03/2021: Ocean and Autocoupling O-A LES Cases
    !!                             Sfc flux shape for LDEEPOC Case
    
    !!--------------------------------------------------------------------------
    !       
    !*      0. DECLARATIONS
    !          ------------
    !
    
    USE PARKIND1, ONLY : JPRB
    USE YOMHOOK , ONLY : LHOOK, DR_HOOK
    !
    
    USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
    
    USE MODD_FIELD,          ONLY: TFIELDDATA, TYPEREAL
    USE MODD_GRID_n,         ONLY: XZS, XXHAT, XYHAT
    USE MODD_IO,             ONLY: TFILEDATA
    USE MODD_METRICS_n,      ONLY: XDXX, XDYY, XDZX, XDZY, XDZZ
    
    USE MODD_PARAMETERS, ONLY: JPVEXT_TURB, JPHEXT
    
    USE MODD_TURB_n,         ONLY: TURB_t
    
    USE MODD_DIM_n, ONLY: NIMAX_ll, NJMAX_ll
    USE MODD_OCEANH, ONLY: XSSTFL
    
    USE MODD_TURB_n, ONLY: TURB_t
    
    USE MODD_FRC, ONLY: XCENTX_OC, XCENTY_OC, XRADX_OC,XRADY_OC
    
    !
    USE MODI_GRADIENT_U
    USE MODI_GRADIENT_V
    USE MODI_GRADIENT_W
    USE MODI_GRADIENT_M
    
    USE MODI_SHUMAN , ONLY : DZF, DZM, MZF, MZM, MYF, MXF
    
    USE MODE_TRIDIAG_THERMO, ONLY: TRIDIAG_THERMO
    USE MODE_TM06_H, ONLY: TM06_H
    
    USE MODE_IO_FIELD_WRITE, ONLY: IO_FIELD_WRITE
    
    USE MODI_SECOND_MNH
    USE MODE_ll
    USE MODE_GATHER_ll
    !
    
    IMPLICIT NONE
    !
    !*      0.1  declarations of arguments
    !
    !
    !
    
    TYPE(DIMPHYEX_t),       INTENT(IN)   :: D
    
    TYPE(CST_t),            INTENT(IN)   :: CST
    TYPE(CSTURB_t),         INTENT(IN)   :: CSTURB
    TYPE(TURB_t),           INTENT(IN)   :: TURBN
    
    INTEGER,                INTENT(IN)   :: KRR           ! number of moist var.
    
    INTEGER,                INTENT(IN)   :: KSV           ! number of scalar var.
    
    INTEGER,                INTENT(IN)   :: KRRL          ! number of liquid water var.
    INTEGER,                INTENT(IN)   :: KRRI          ! number of ice water var.
    LOGICAL,                INTENT(IN)   ::  OTURB_FLX    ! switch to write the
                                     ! turbulent fluxes in the syncronous FM-file
    
    LOGICAL,                INTENT(IN)   ::  OOCEAN       ! switch for Ocean model version
    
    LOGICAL,                INTENT(IN)   ::  ODEEPOC      ! activates sfc forcing for ideal ocean deep conv
    
    LOGICAL,                INTENT(IN)   ::  OCOMPUTE_SRC ! flag to define dimensions of SIGS and
    CHARACTER(LEN=4),       INTENT(IN)   ::  HTURBDIM     ! dimensionality of the
    
    CHARACTER(LEN=6), INTENT(IN) :: HPROGRAM ! CPROGRAM is the program currently running (modd_conf)
    
    CHARACTER(LEN=4),       INTENT(IN)   ::  HTOM         ! type of Third Order Moment
    
    REAL,                   INTENT(IN)   ::  PIMPL, PEXPL ! Coef. for temporal disc.
    REAL,                   INTENT(IN)   ::  PTSTEP       ! Double Time Step
    
    TYPE(TFILEDATA),        INTENT(IN)   ::  TPFILE       ! Output file
    
    LOGICAL,                INTENT(IN)   ::  OLES_CALL    ! compute the LES diagnostics at current time-step
    LOGICAL,                INTENT(IN)   ::  OCOUPLES     ! switch to activate atmos-ocean LES version 
    
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PDZZ, PDXX, PDYY, PDZX, PDZY
    
    REAL, DIMENSION(D%NIT,D%NJT),   INTENT(IN)   ::  PDIRCOSZW    ! Director Cosinus of the
    
                                                          ! normal to the ground surface
    
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PZZ          ! altitudes
    
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PRHODJ       ! dry density * grid volum
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  MFMOIST      ! moist mass flux dual scheme
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PTHVREF      ! ref. state Virtual 
    
    REAL, DIMENSION(D%NIT,D%NJT),   INTENT(IN)   ::  PSFTHM,PSFRM ! surface fluxes at time
    
    REAL, DIMENSION(D%NIT,D%NJT),   INTENT(IN)   ::  PSFTHP,PSFRP ! surface fluxes at time
    
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PWM 
    
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PTHLM 
    
    ! potential temperature at t-Delta t
    
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT,KRR), INTENT(IN) ::  PRM          ! Mixing ratios 
    
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT,KSV), INTENT(IN) ::  PSVM         ! Mixing ratios 
    
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PTKEM        ! TKE at time t
    
    ! In case OHARAT=TRUE, PLM already includes all stability corrections
    
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PLM          ! Turb. mixing length   
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PLEPS        ! dissipative length   
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PLOCPEXNM    ! Lv(T)/Cp/Exnref at time t-1
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PATHETA      ! coefficients between 
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PAMOIST      ! s and Thetal and Rnp
    REAL, DIMENSION(MERGE(D%NIT,0,OCOMPUTE_SRC),&
                    MERGE(D%NJT,0,OCOMPUTE_SRC),&
                    MERGE(D%NKT,0,OCOMPUTE_SRC)), INTENT(IN)   ::  PSRCM        ! normalized 
    
    ! 2nd-order flux s'r'c/2Sigma_s2 at t-1 multiplied by Lambda_3
    
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PFRAC_ICE    ! ri fraction of rc+ri
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PBETA        ! buoyancy coefficient
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PSQRT_TKE    ! sqrt(e)
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PDTH_DZ      ! d(th)/dz
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PDR_DZ       ! d(rt)/dz
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PRED2TH3     ! 3D Redeslperger number R*2_th
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PRED2R3      ! 3D Redeslperger number R*2_r
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PRED2THR3    ! 3D Redeslperger number R*2_thr
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PBLL_O_E     ! beta * Lk * Leps / tke
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PETHETA      ! Coefficient for theta in theta_v computation
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PEMOIST      ! Coefficient for r in theta_v computation
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PREDTH1      ! 1D Redelsperger number for Th
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PREDR1       ! 1D Redelsperger number for r
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PPHI3        ! Prandtl number for temperature
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PPSI3        ! Prandtl number for vapor
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PD           ! Denominator in Prandtl numbers
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PFWTH        ! d(w'2th' )/dz (at flux point)
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PFWR         ! d(w'2r'  )/dz (at flux point)
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PFTH2        ! d(w'th'2 )/dz (at mass point)
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PFR2         ! d(w'r'2  )/dz (at mass point)
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   ::  PFTHR        ! d(w'th'r')/dz (at mass point)
    REAL, DIMENSION(MERGE(D%NIT,0,HTOM=='TMO6'),&
                    MERGE(D%NJT,0,HTOM=='TMO6')),   INTENT(INOUT)::  PBL_DEPTH    ! BL depth
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT)  :: PWTHV         ! buoyancy flux
    !
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PRTHLS     ! cumulated source for theta
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT,KRR), INTENT(INOUT) :: PRRS       ! cumulated source for rt
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(OUT)   :: PTHLP      ! guess of thl at t+ deltat
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(OUT)   :: PRP        ! guess of r at t+ deltat
    !
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(OUT)   :: PTP       ! Dynamic and thermal
    
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(OUT)   :: PWTH       ! heat flux
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(OUT)   :: PWRC       ! cloud water flux
    
    REAL, DIMENSION(D%NIT,D%NJT,D%NKT)  ::  &
    
           ZA,       & ! work variable for wrc or LES computation
           ZFLXZ,    & ! vertical flux of the treated variable
           ZSOURCE,  & ! source of evolution for the treated variable
           ZKEFF,    & ! effectif diffusion coeff = LT * SQRT( TKE )
           ZF,       & ! Flux in dTh/dt =-dF/dz (evaluated at t-1)(or rt instead of Th)
           ZDFDDTDZ, & ! dF/d(dTh/dz)
           ZDFDDRDZ, & ! dF/d(dr/dz)
    
           Z3RDMOMENT,&  ! 3 order term in flux or variance equation
           ZF_LEONARD,&  ! Leonard terms
           ZRWTHL,    &
           ZRWRNP,    &
    
           ZCLD_THOLD,&
           ZALT,      &
           ZWORK1,ZWORK2, &
           ZWORK3,ZWORK4 ! working var. for shuman operators (array syntax)
    
    INTEGER             :: IKB,IKE      ! I index values for the Beginning and End
                                        ! mass points of the domain in the 3 direct.
    INTEGER             :: IKT          ! array size in k direction
    INTEGER             :: IKTB,IKTE    ! start, end of k loops in physical domain 
    
    INTEGER             :: JI, JJ, JK ! loop indexes 
    
    !
    INTEGER                    :: IIB,IJB       ! Lower bounds of the physical
                                                ! sub-domain in x and y directions
    INTEGER                    :: IIE,IJE       ! Upper bounds of the physical
                                                ! sub-domain in x and y directions
    !
    
    ! NIMPORTE QUOI : TODO TO BE REMOVED OUTSIDE OF TURB ? :
    
    REAL, DIMENSION(1)  :: ZXHAT_ll  !  Position x in the conformal
    
                                                     ! plane (array on the complete domain)
    
    REAL, DIMENSION(1)  :: ZYHAT_ll  !   Position y in the conformal
    
                                                     ! plane (array on the complete domain)
    
    REAL :: ZTIME1, ZTIME2
    REAL :: ZDELTAX
    REAL :: ZXBEG,ZXEND,ZYBEG,ZYEND ! Forcing size for ocean deep convection
    
    REAL, DIMENSION(D%NIT,D%NJT) :: ZDIST ! distance
    
                                       ! from the center of the cooling               
    REAL :: ZFLPROV
    INTEGER           :: JKM          ! vertical index loop
    INTEGER           :: JSW
    REAL :: ZSWA     ! index for time flux interpolation
    !
    INTEGER :: IIU, IJU
    INTEGER :: IRESP
    
    LOGICAL :: GUSERV   ! flag to use water
    LOGICAL :: GFTH2    ! flag to use w'th'2
    LOGICAL :: GFWTH    ! flag to use w'2th'
    LOGICAL :: GFR2     ! flag to use w'r'2
    LOGICAL :: GFWR     ! flag to use w'2r'
    LOGICAL :: GFTHR    ! flag to use w'th'r'
    
    !----------------------------------------------------------------------------
    !
    !*       1.   PRELIMINARIES
    !             -------------
    !
    REAL(KIND=JPRB) :: ZHOOK_HANDLE
    IF (LHOOK) CALL DR_HOOK('TURB_VER_THERMO_FLUX',0,ZHOOK_HANDLE)
    
    !
    !! Compute Shape of sfc flux for Oceanic Deep Conv Case
    ! 
    
      !*       COMPUTES THE PHYSICAL SUBDOMAIN BOUNDS
      !compute ZXHAT_ll = position in the (0:Lx) domain 1 (Lx=Size of domain1 )
      !compute XXHAT_ll = position in the (L0_subproc,Lx_subproc) domain for the current subproc
      !                                     L0_subproc as referenced in the full domain 1
      CALL GATHERALL_FIELD_ll('XX',XXHAT,ZXHAT_ll,IRESP)
      CALL GATHERALL_FIELD_ll('YY',XYHAT,ZYHAT_ll,IRESP)
      CALL GET_DIM_EXT_ll('B',IIU,IJU)
      CALL GET_INDICE_ll(IIB,IJB,IIE,IJE,IIU,IJU)
      DO JJ = IJB,IJE
        DO JI = IIB,IIE
          ZDIST(JI,JJ) = SQRT(                         &
          (( (XXHAT(JI)+XXHAT(JI+1))*0.5 - XCENTX_OC ) / XRADX_OC)**2 + &
          (( (XYHAT(JJ)+XYHAT(JJ+1))*0.5 - XCENTY_OC ) / XRADY_OC)**2   &
                                    )
        END DO
      END DO
      DO JJ=IJB,IJE
        DO JI=IIB,IIE
          IF ( ZDIST(JI,JJ) > 1.) XSSTFL(JI,JJ)=0.
        END DO
      END DO
    END IF !END DEEP OCEAN CONV CASE
    !
    
    IKT=D%NKT  
    IKTB=D%NKTB          
    IKTE=D%NKTE
    IKB=D%NKB
    IKE=D%NKE
    
    !
    GUSERV = (KRR/=0)
    !
    !  compute the coefficients for the uncentred gradient computation near the 
    !  ground
    !
    
    IF (OHARAT) THEN
    ! OHARAT so TKE and length scales at half levels!
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      ZKEFF(:,:,:) =  PLM(:,:,:) * SQRT(PTKEM(:,:,:)) +50.*MFMOIST(:,:,:)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      ZKEFF(:,:,:) = MZM(PLM(:,:,:) * SQRT(PTKEM(:,:,:)), D%NKA, D%NKU, D%NKL)
    
    ! Define a cloud mask with ri and rc (used after with a threshold) for Leonard terms
    !
    
      IF ( KRRL >= 1 ) THEN
        IF ( KRRI >= 1 ) THEN
    
          !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
          ZCLD_THOLD(:,:,:) = PRM(:,:,:,2) + PRM(:,:,:,4)
    
          !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
          !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
          !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
    !
    ! Flags for 3rd order quantities
    !
    GFTH2 = .FALSE.
    GFR2  = .FALSE.
    GFTHR = .FALSE.
    GFWTH = .FALSE.
    GFWR  = .FALSE.
    !
    IF (HTOM/='NONE') THEN
      GFTH2 = ANY(PFTH2/=0.)
      GFR2  = ANY(PFR2 /=0.) .AND. GUSERV
      GFTHR = ANY(PFTHR/=0.) .AND. GUSERV
      GFWTH = ANY(PFWTH/=0.)
      GFWR  = ANY(PFWR /=0.) .AND. GUSERV
    END IF
    !----------------------------------------------------------------------------
    !
    !*       2.   SOURCES OF CONSERVATIVE POTENTIAL TEMPERATURE AND 
    !                                                  PARTIAL THERMAL PRODUCTION 
    !             ---------------------------------------------------------------
    !
    !*       2.1  Splitted value for cons. potential temperature at t+deltat
    !
    ! Compute the turbulent flux F and F' at time t-dt.
    !
    
    ZWORK1 = DZM(PTHLM, D%NKA, D%NKU, D%NKL)
    ZWORK2 = D_PHI3DTDZ_O_DDTDZ(D,CSTURB,PPHI3,PREDTH1,PREDR1,PRED2TH3,PRED2THR3,HTURBDIM,GUSERV)
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      ZF(:,:,:) = -ZKEFF(:,:,:)*ZWORK1(:,:,:)/PDZZ(:,:,:)
      ZDFDDTDZ(:,:,:) = -ZKEFF(:,:,:)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      ZF(:,:,:) = -CSTURB%XCSHF*PPHI3(:,:,:)*ZKEFF(:,:,:)*ZWORK1(:,:,:)/PDZZ(:,:,:)
      ZDFDDTDZ(:,:,:) = -CSTURB%XCSHF*ZKEFF(:,:,:)*ZWORK2(:,:,:)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
     ! Compute the Leonard terms for thl
     ZDELTAX= XXHAT(3) - XXHAT(2)
    
     ZF_LEONARD (:,:,:)= TURBN%XCOEFHGRADTHL*ZDELTAX*ZDELTAX/12.0*(      &
    
                     MXF(GX_W_UW(PWM(:,:,:), XDXX,XDZZ,XDZX,D%NKA,D%NKU,D%NKL))&
                    *MZM(GX_M_M(PTHLM(:,:,:),XDXX,XDZZ,XDZX,D%NKA, D%NKU, D%NKL), D%NKA, D%NKU, D%NKL)  &
                  +  MYF(GY_W_VW(PWM(:,:,:), XDYY,XDZZ,XDZY,D%NKA,D%NKU,D%NKL))  &
                    *MZM(GY_M_M(PTHLM(:,:,:),XDYY,XDZZ,XDZY,D%NKA, D%NKU, D%NKL), D%NKA, D%NKU, D%NKL) )
    
    !
    ! Effect of 3rd order terms in temperature flux (at flux point)
    !
    ! d(w'2th')/dz
    IF (GFWTH) THEN
    
      Z3RDMOMENT= M3_WTH_W2TH(D,CSTURB,PREDTH1,PREDR1,PD,ZKEFF,PTKEM)
      ZWORK1 = D_M3_WTH_W2TH_O_DDTDZ(D,CSTURB,PREDTH1,PREDR1,&
    
       & PD,PBLL_O_E,PETHETA,ZKEFF,PTKEM)
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      ZF(:,:,:)= ZF(:,:,:)       + Z3RDMOMENT(:,:,:) * PFWTH(:,:,:)
      ZDFDDTDZ(:,:,:) = ZDFDDTDZ(:,:,:) + ZWORK1(:,:,:) * PFWTH(:,:,:)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      Z3RDMOMENT= M3_WTH_WTH2(D,CSTURB,PREDTH1,PREDR1,PD,PBLL_O_E,PETHETA)
    
      ZWORK1 = D_M3_WTH_WTH2_O_DDTDZ(D,CSTURB,Z3RDMOMENT,PREDTH1,PREDR1,&
        & PD,PBLL_O_E,PETHETA)
      ZWORK2 = MZM(PFTH2, D%NKA, D%NKU, D%NKL)
    !
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      ZF(:,:,:)       = ZF(:,:,:)       + Z3RDMOMENT(:,:,:) * ZWORK2(:,:,:)
      ZDFDDTDZ(:,:,:) = ZDFDDTDZ(:,:,:) + ZWORK1(:,:,:) * ZWORK2(:,:,:)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      ZWORK1 = M3_WTH_W2R(D,CSTURB,PD,ZKEFF,PTKEM,PBLL_O_E,PEMOIST,PDTH_DZ)
      ZWORK2 = D_M3_WTH_W2R_O_DDTDZ(D,CSTURB,PREDTH1,PREDR1,PD,ZKEFF,PTKEM,PBLL_O_E,PEMOIST)
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      ZF(:,:,:)       = ZF(:,:,:)       + ZWORK1(:,:,:) * PFWR(:,:,:)
      ZDFDDTDZ(:,:,:) = ZDFDDTDZ(:,:,:) + ZWORK2(:,:,:) * PFWR(:,:,:)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      ZWORK1 = M3_WTH_WR2(D,CSTURB,PD,ZKEFF,PTKEM,PSQRT_TKE,PBLL_O_E,PBETA,PLEPS,PEMOIST,PDTH_DZ)
    
      ZWORK2 = MZM(PFR2, D%NKA, D%NKU, D%NKL)
    
      ZWORK3 = D_M3_WTH_WR2_O_DDTDZ(D,CSTURB,PREDTH1,PREDR1,PD,&
    
        & ZKEFF,PTKEM,PSQRT_TKE,PBLL_O_E,PBETA,PLEPS,PEMOIST)
    !
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)    
    
      ZF(:,:,:)       = ZF(:,:,:)       + ZWORK1(:,:,:) * ZWORK2(:,:,:)
      ZDFDDTDZ(:,:,:) = ZDFDDTDZ(:,:,:) + ZWORK3(:,:,:) * ZWORK2(:,:,:)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      Z3RDMOMENT= M3_WTH_WTHR(D,CSTURB,PREDR1,PD,ZKEFF,PTKEM,PSQRT_TKE,PBETA,&
    
      ZWORK1 = D_M3_WTH_WTHR_O_DDTDZ(D,CSTURB,Z3RDMOMENT,PREDTH1,PREDR1,PD,PBLL_O_E,PETHETA)
      ZWORK2 = MZM(PFTHR, D%NKA, D%NKU, D%NKL)
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      ZF(:,:,:)       = ZF(:,:,:)       + Z3RDMOMENT(:,:,:) * ZWORK2(:,:,:)
      ZDFDDTDZ(:,:,:) = ZDFDDTDZ(:,:,:) + ZWORK1(:,:,:) * ZWORK2(:,:,:)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      IF (OOCEAN) THEN    ! ocean model in coupled case
    
        !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE) 
    
        ZF(:,:,IKE) =  (TURBN%XSSTFL_C(:,:,1)+TURBN%XSSRFL_C(:,:,1)) &
    
        !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE) 
    
        !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE) 
    
        ZF(:,:,IKB) =  TURBN%XSSTFL_C(:,:,1) &
    
                      *0.5* ( 1. + PRHODJ(:,:,D%NKA)/PRHODJ(:,:,IKB) )
    
        !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE) 
    
      ENDIF 
    !
    ELSE  ! No coupling O and A cases
      ! atmosp bottom
      !*In 3D, a part of the flux goes vertically,
      ! and another goes horizontally (in presence of slopes)
      !*In 1D, part of energy released in horizontal flux is taken into account in the vertical part
      IF (HTURBDIM=='3DIM') THEN
    
        !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE) 
    
        ZF(:,:,IKB) = ( PIMPL*PSFTHP(:,:) + PEXPL*PSFTHM(:,:) )   &
                           * PDIRCOSZW(:,:)                       &
    
                           * 0.5 * (1. + PRHODJ(:,:,D%NKA) / PRHODJ(:,:,IKB))
    
        !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE) 
    
        !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE) 
    
        ZF(:,:,IKB) = ( PIMPL*PSFTHP(:,:) + PEXPL*PSFTHM(:,:) )   &
                           / PDIRCOSZW(:,:)                       &
    
                           * 0.5 * (1. + PRHODJ(:,:,D%NKA) / PRHODJ(:,:,IKB))
    
        !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE) 
    
        !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
        ZF(:,:,IKE) = XSSTFL(:,:) *0.5*(1. + PRHODJ(:,:,D%NKU) / PRHODJ(:,:,IKE))
    
        !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
      ELSE !end ocean case (in nocoupled case)
        ! atmos top
    #ifdef REPRO48
    #else
          ZF(:,:,IKE)=0.
    #endif
      END IF
    END IF !end no coupled cases
    
    ! Compute the split conservative potential temperature at t+deltat
    
    CALL TRIDIAG_THERMO(D,PTHLM,ZF,ZDFDDTDZ,PTSTEP,PIMPL,PDZZ,&
    
                        PRHODJ,PTHLP)
    !
    ! Compute the equivalent tendency for the conservative potential temperature
    
    !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)    
    
    ZRWTHL(:,:,:)= PRHODJ(:,:,:)*(PTHLP(:,:,:)-PTHLM(:,:,:))/PTSTEP
    
    !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)    
    
    ! replace the flux by the Leonard terms above ZALT and ZCLD_THOLD
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
     ZWORK1 = GZ_W_M(MZM(PRHODJ(:,:,:), D%NKA, D%NKU, D%NKL)*ZF_LEONARD(:,:,:),XDZZ,&
    
     !$mnh_expand_where(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
     WHERE ( (ZCLD_THOLD(:,:,:) >= TURBN%XCLDTHOLD) .AND. ( ZALT(:,:,:) >= TURBN%XALTHGRAD) )
      ZRWTHL(:,:,:) = -ZWORK1(:,:,:)
    
     !$mnh_end_expand_where(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
    ZWORK1 = DZM(PTHLP - PTHLM, D%NKA, D%NKU, D%NKL)
    !
    
    !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
    PRTHLS(:,:,:)= PRTHLS(:,:,:)  + ZRWTHL(:,:,:)
    
    !
    !*       2.2  Partial Thermal Production
    !
    !  Conservative potential temperature flux : 
    !
    
    !
    ZFLXZ(:,:,:)   = ZF(:,:,:) + PIMPL * ZDFDDTDZ(:,:,:) * ZWORK1(:,:,:)/ PDZZ(:,:,:)
    
    !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
    ! replace the flux by the Leonard terms
    
     !$mnh_expand_where(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
     WHERE ( (ZCLD_THOLD(:,:,:) >= TURBN%XCLDTHOLD) .AND. ( ZALT(:,:,:) >= TURBN%XALTHGRAD) )
    
      ZFLXZ(:,:,:) = ZF_LEONARD(:,:,:)
     END WHERE
    
     !$mnh_end_expand_where(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
    !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
    ZFLXZ(:,:,D%NKA) = ZFLXZ(:,:,IKB)
    
    !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
      PWTH(:,:,JK)=0.5*(ZFLXZ(:,:,JK)+ZFLXZ(:,:,JK+D%NKL))
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
    !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
    PWTH(:,:,IKB)=0.5*(ZFLXZ(:,:,IKB)+ZFLXZ(:,:,IKB+D%NKL)) 
    
    !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)    
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
      PWTH(:,:,IKE)=0.5*(ZFLXZ(:,:,IKE)+ZFLXZ(:,:,IKE+D%NKL))
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
      PWTH(:,:,D%NKA)=0.5*(ZFLXZ(:,:,D%NKA)+ZFLXZ(:,:,D%NKA+D%NKL))
      PWTH(:,:,IKE)=PWTH(:,:,IKE-D%NKL)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
    IF ( OTURB_FLX .AND. TPFILE%LOPENED ) THEN
    
      ! stores the conservative potential temperature vertical flux
    
      TZFIELD%CMNHNAME   = 'THW_FLX'
      TZFIELD%CSTDNAME   = ''
      TZFIELD%CLONGNAME  = 'THW_FLX'
      TZFIELD%CUNITS     = 'K m s-1'
      TZFIELD%CDIR       = 'XY'
      TZFIELD%CCOMMENT   = 'Conservative potential temperature vertical flux'
      TZFIELD%NGRID      = 4
      TZFIELD%NTYPE      = TYPEREAL
      TZFIELD%NDIMS      = 3
      TZFIELD%LTIMEDEP   = .TRUE.
      CALL IO_Field_write(TPFILE,TZFIELD,ZFLXZ)
    
    END IF
    !
    ! Contribution of the conservative temperature flux to the buoyancy flux
    
      ZWORK1 = MZF(ZFLXZ,D%NKA, D%NKU, D%NKL )
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      PTP(:,:,:)= CST%XG*CST%XALPHAOC * ZWORK1(:,:,:)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
        ZWORK1 = MZF( MZM(PETHETA,D%NKA, D%NKU, D%NKL) * ZFLXZ,D%NKA, D%NKU, D%NKL )
    
        !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
        PTP(:,:,:)  =  PBETA(:,:,:) * ZWORK1(:,:,:)
    
        !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
        !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
        PTP(:,:,IKB)=  PBETA(:,:,IKB) * PETHETA(:,:,IKB) *   &
    
                       0.5 * ( ZFLXZ(:,:,IKB) + ZFLXZ(:,:,IKB+D%NKL) )
    
        !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
        ZWORK1 = MZF( ZFLXZ,D%NKA, D%NKU, D%NKL )
    
        !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
        PTP(:,:,:)=  PBETA(:,:,:) * ZWORK1(:,:,:)
    
        !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
    !
    ZWORK1 = MZM(PETHETA, D%NKA, D%NKU, D%NKL)
    
    !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
    PWTHV(:,:,:) = ZWORK1(:,:,:) * ZFLXZ(:,:,:)
    
    !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
    PWTHV(:,:,IKB) = PETHETA(:,:,IKB) * ZFLXZ(:,:,IKB)
    
    !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
      ! temperature contribution to Buy flux
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE) 
    
      PWTHV(:,:,IKE) = PETHETA(:,:,IKE) * ZFLXZ(:,:,IKE)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
    !*       2.3  Partial vertical divergence of the < Rc w > flux
    ! Correction for qc and qi negative in AROME 
    
       ZWORK1=DZF(ZFLXZ/PDZZ, D%NKA, D%NKU, D%NKL)
    
         !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
                         PRHODJ(:,:,:)*PATHETA(:,:,:)*2.*PSRCM(:,:,:)*ZWORK1(:,:,:) &
    
                         *(1.0-PFRAC_ICE(:,:,:))
         PRRS(:,:,:,4) = PRRS(:,:,:,4) -                                        &
    
                         PRHODJ(:,:,:)*PATHETA(:,:,:)*2.*PSRCM(:,:,:)* ZWORK1(:,:,:)&
    
         !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
         !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
                         PRHODJ(:,:,:)*PATHETA(:,:,:)*2.*PSRCM(:,:,:)*ZWORK1(:,:,:)
    
         !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
    !
    !*       2.4  Storage in LES configuration
    ! 
    
      CALL LES_MEAN_SUBGRID(MZF(ZFLXZ, D%NKA, D%NKU, D%NKL), X_LES_SUBGRID_WThl ) 
      CALL LES_MEAN_SUBGRID(MZF(PWM*ZFLXZ, D%NKA, D%NKU, D%NKL), X_LES_RES_W_SBG_WThl )
      CALL LES_MEAN_SUBGRID(GZ_W_M(PWM,PDZZ, D%NKA, D%NKU, D%NKL)*MZF(ZFLXZ, D%NKA, D%NKU, D%NKL),&
    
          & X_LES_RES_ddxa_W_SBG_UaThl )
    
      CALL LES_MEAN_SUBGRID(MZF(PDTH_DZ*ZFLXZ, D%NKA, D%NKU, D%NKL), X_LES_RES_ddxa_Thl_SBG_UaThl )
      CALL LES_MEAN_SUBGRID(-CSTURB%XCTP*PSQRT_TKE/PLM*MZF(ZFLXZ, D%NKA, D%NKU, D%NKL), X_LES_SUBGRID_ThlPz ) 
      CALL LES_MEAN_SUBGRID(MZF(MZM(PETHETA, D%NKA, D%NKU, D%NKL)*ZFLXZ, D%NKA, D%NKU, D%NKL), X_LES_SUBGRID_WThv ) 
    
        CALL LES_MEAN_SUBGRID(MZF(PDR_DZ*ZFLXZ, D%NKA, D%NKU, D%NKL), X_LES_RES_ddxa_Rt_SBG_UaThl )
    
      END IF
      !* diagnostic of mixing coefficient for heat
    
      !$mnh_expand_where(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      WHERE (ZA(:,:,:)==0.) 
        ZA(:,:,:)=1.E-6
      END WHERE
    
      !$mnh_end_expand_where(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      ZA(:,:,:) = - ZFLXZ(:,:,:) / ZA(:,:,:) * PDZZ(:,:,:)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
      ZA(:,:,IKB) = CSTURB%XCSHF*PPHI3(:,:,IKB)*ZKEFF(:,:,IKB)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE)
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      ZA(:,:,:) = MIN(MAX(ZA(:,:,:),-1000.),1000.)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
      CALL LES_MEAN_SUBGRID( ZA, X_LES_SUBGRID_Kh   ) 
      !
      CALL SECOND_MNH(ZTIME2)
      XTIME_LES = XTIME_LES + ZTIME2 - ZTIME1
    END IF
    !
    !*       2.5  New boundary layer depth for TOMs
    ! 
    IF (HTOM=='TM06') CALL TM06_H(IKB,IKTB,IKTE,PTSTEP,PZZ,ZFLXZ,PBL_DEPTH)
    !
    !----------------------------------------------------------------------------
    !
    !
    !*       3.   SOURCES OF CONSERVATIVE AND CLOUD MIXING RATIO AND 
    !                                        COMPLETE THERMAL PRODUCTION 
    !             ------------------------------------------------------
    !
    !*       3.1  Splitted value for cons. mixing ratio at t+deltat
    !
    !
    IF (KRR /= 0) THEN
      ! Compute the turbulent flux F and F' at time t-dt.
      !
    
      ZWORK1 = DZM(PRM(:,:,:,1), D%NKA, D%NKU, D%NKL)
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)    
    
      ZF(:,:,:) = -ZKEFF(:,:,:)*ZWORK1(:,:,:)/PDZZ(:,:,:)
      ZDFDDRDZ(:,:,:) = -ZKEFF(:,:,:)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)    
    
      ZWORK2 = D_PSI3DRDZ_O_DDRDZ(D,CSTURB,PPSI3,PREDR1,PREDTH1,PRED2R3,PRED2THR3,HTURBDIM,GUSERV)
    
      !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)    
    
      ZF(:,:,:) = -CSTURB%XCSHF*PPSI3(:,:,:)*ZKEFF(:,:,:)*ZWORK1(:,:,:)/PDZZ(:,:,:)
      ZDFDDRDZ(:,:,:) = -CSTURB%XCSHF*ZKEFF(:,:,:)*ZWORK2(:,:,:)
    
      !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)    
    
      ! Compute Leonard Terms for Cloud mixing ratio
    
        ZF_LEONARD (:,:,:)= TURBN%XCOEFHGRADRM*ZDELTAX*ZDELTAX/12.0*(        &
    
                    MXF(GX_W_UW(PWM(:,:,:),  XDXX,XDZZ,XDZX,D%NKA,D%NKU,D%NKL))       &
                    *MZM(GX_M_M(PRM(:,:,:,1),XDXX,XDZZ,XDZX,D%NKA,D%NKU,D%NKL),D%NKA,D%NKU,D%NKL) &
                    +MYF(GY_W_VW(PWM(:,:,:), XDYY,XDZZ,XDZY,D%NKA,D%NKU,D%NKL))        &
                    *MZM(GY_M_M(PRM(:,:,:,1),XDYY,XDZZ,XDZY,D%NKA,D%NKU,D%NKL),D%NKA,D%NKU,D%NKL) )
    
      ! Effect of 3rd order terms in temperature flux (at flux point)
      !
      ! d(w'2r')/dz
      IF (GFWR) THEN
    
        Z3RDMOMENT= M3_WR_W2R(D,CSTURB,PREDR1,PREDTH1,PD,ZKEFF,PTKEM)
        ZWORK1 = D_M3_WR_W2R_O_DDRDZ(D,CSTURB,PREDR1,PREDTH1,PD,&
    
         & PBLL_O_E,PEMOIST,ZKEFF,PTKEM)
    
        !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
        ZF(:,:,:)       = ZF(:,:,:)       + Z3RDMOMENT(:,:,:) * PFWR(:,:,:)
        ZDFDDRDZ(:,:,:) = ZDFDDRDZ(:,:,:) + ZWORK1(:,:,:) * PFWR(:,:,:)
    
        !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
        Z3RDMOMENT= M3_WR_WR2(D,CSTURB,PREDR1,PREDTH1,PD,PBLL_O_E,PEMOIST)
    
        ZWORK1 = MZM(PFR2, D%NKA, D%NKU, D%NKL)
        ZWORK2 = D_M3_WR_WR2_O_DDRDZ(D,CSTURB,Z3RDMOMENT,PREDR1,&
         & PREDTH1,PD,PBLL_O_E,PEMOIST)
    
        !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
        ZF(:,:,:)       = ZF(:,:,:)       + Z3RDMOMENT(:,:,:) * ZWORK1(:,:,:)
        ZDFDDRDZ(:,:,:) = ZDFDDRDZ(:,:,:) + ZWORK2(:,:,:) * ZWORK1(:,:,:)
    
        !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
         & PTKEM,PBLL_O_E,PETHETA,PDR_DZ)
    
        ZWORK2 = D_M3_WR_W2TH_O_DDRDZ(D,CSTURB,PREDR1,PREDTH1,& 
    
         & PD,ZKEFF,PTKEM,PBLL_O_E,PETHETA)
      !
    
        !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
        ZF(:,:,:)       = ZF(:,:,:)       + ZWORK1(:,:,:) * PFWTH(:,:,:)
        ZDFDDRDZ(:,:,:) = ZDFDDRDZ(:,:,:) + ZWORK2(:,:,:) * PFWTH(:,:,:)
    
        !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
        ZWORK1 = MZM(PFTH2, D%NKA, D%NKU, D%NKL)
    
        ZWORK2 = M3_WR_WTH2(D,CSTURB,PD,ZKEFF,PTKEM,&
    
        & PSQRT_TKE,PBLL_O_E,PBETA,PLEPS,PETHETA,PDR_DZ)
    
        ZWORK3 = D_M3_WR_WTH2_O_DDRDZ(D,CSTURB,PREDR1,PREDTH1,PD,&
    
         &ZKEFF,PTKEM,PSQRT_TKE,PBLL_O_E,PBETA,PLEPS,PETHETA)
        !
    
        !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
        ZF(:,:,:)       = ZF(:,:,:)       + ZWORK2(:,:,:) * ZWORK1(:,:,:)
        ZDFDDRDZ(:,:,:) = ZDFDDRDZ(:,:,:) + ZWORK3(:,:,:) * ZWORK1(:,:,:)
    
        !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
        Z3RDMOMENT= M3_WR_WTHR(D,CSTURB,PREDTH1,PD,ZKEFF,PTKEM,PSQRT_TKE,PBETA,&
    
        ZWORK1 = MZM(PFTHR, D%NKA, D%NKU, D%NKL)
    
        ZWORK2 = D_M3_WR_WTHR_O_DDRDZ(D,CSTURB,Z3RDMOMENT,PREDR1, &
    
         & PREDTH1,PD,PBLL_O_E,PEMOIST)
    
        !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
        ZF(:,:,:)       = ZF(:,:,:)       + Z3RDMOMENT(:,:,:) * ZWORK1(:,:,:)
        ZDFDDRDZ(:,:,:) = ZDFDDRDZ(:,:,:) + ZWORK2(:,:,:) * ZWORK1(:,:,:)
    
        !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE,JK=1:D%NKT)
    
        IF (OOCEAN) THEN    ! ocean model in coupled case
    
          ! evap effect on salinity to be added later !!!
          ZF(:,:,IKE) =  0.
        ELSE                ! atmosph model in coupled case
          ZF(:,:,IKB) =  0.
          ! AJOUTER FLUX EVAP SUR MODELE ATMOS
        ENDIF
    
      ELSE  ! No coupling NH OA case
        ! atmosp bottom
        !* in 3DIM case, a part of the flux goes vertically, and another goes horizontally
        ! (in presence of slopes)
        !* in 1DIM case, the part of energy released in horizontal flux
        ! is taken into account in the vertical part
        !
        IF (HTURBDIM=='3DIM') THEN
    
          !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE) 
    
          ZF(:,:,IKB) = ( PIMPL*PSFRP(:,:) + PEXPL*PSFRM(:,:) )       &
                               * PDIRCOSZW(:,:)                       &
    
                             * 0.5 * (1. + PRHODJ(:,:,D%NKA) / PRHODJ(:,:,IKB))
    
          !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE) 
    
          !$mnh_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE) 
    
          ZF(:,:,IKB) = ( PIMPL*PSFRP(:,:) + PEXPL*PSFRM(:,:) )     &
                             / PDIRCOSZW(:,:)                       &
    
                             * 0.5 * (1. + PRHODJ(:,:,D%NKA) / PRHODJ(:,:,IKB))
    
          !$mnh_end_expand_array(JI=D%NIB:D%NIE,JJ=D%NJB:D%NJE) 
    
          ! General ocean case
          ! salinity/evap effect to be added later !!!!!
          ZF(:,:,IKE) = 0.
        ELSE !end ocean case (in nocoupled case)
          ! atmos top
    #ifdef REPRO48
    #else
          ZF(:,:,IKE)=0.
    #endif
        END IF
      END IF!end no coupled cases