Newer
Older
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!########################
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
MODULE MODI_SPAWN_MODEL2
!########################
!
INTERFACE
!
SUBROUTINE SPAWN_MODEL2 (KRR,KSV_USER,HTURB,HSURF,HCLOUD, &
HCHEM_INPUT_FILE,HSPAFILE,HSPANBR, &
HSONFILE,HINIFILE,HINIFILEPGD,OSPAWN_SURF )
!
INTEGER, INTENT(IN) :: KRR ! Number of moist variables
INTEGER, INTENT(IN) :: KSV_USER ! Number of Users Scalar Variables
CHARACTER (LEN=4), INTENT(IN) :: HTURB ! Kind of turbulence parameterization
CHARACTER (LEN=4), INTENT(IN) :: HSURF ! Kind of surface parameterization
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Kind of cloud parameterization
! model 2 physical domain
CHARACTER (LEN=*), INTENT(IN) :: HSPAFILE ! possible name of the output FM-file
CHARACTER (LEN=*), INTENT(IN) :: HSPANBR ! NumBeR associated to the SPAwned file
CHARACTER (LEN=*), INTENT(IN) :: HSONFILE ! name of the input FM-file SON
CHARACTER (LEN=80), INTENT(IN) :: HCHEM_INPUT_FILE
CHARACTER (LEN=*), INTENT(IN) :: HINIFILE ! Input file
CHARACTER (LEN=*), INTENT(IN) :: HINIFILEPGD ! Input pgd file
LOGICAL, INTENT(IN) :: OSPAWN_SURF ! flag to spawn surface fields
!
END SUBROUTINE SPAWN_MODEL2
!
END INTERFACE
!
END MODULE MODI_SPAWN_MODEL2
! ######spl
SUBROUTINE SPAWN_MODEL2 (KRR,KSV_USER,HTURB,HSURF,HCLOUD, &
HCHEM_INPUT_FILE,HSPAFILE,HSPANBR, &
HSONFILE,HINIFILE,HINIFILEPGD,OSPAWN_SURF )
! #######################################################################
!
!!**** *SPAWN_MODEL2 * - subroutine to prepare by horizontal interpolation and
!! write an initial FM-file spawned from an other FM-file.
!!
!! PURPOSE
!! -------
!!
!! Initializes by horizontal interpolation, the model 2 in a sub-domain of
!! model 1, possibly overwrites model 2 information by model SON1,
!! and writes the resulting fields in a FM-file.
!!
!!
!!** METHOD
!! ------
!!
!! In this routine, only the model 2 variables are known through the
!! MODD_... calls.
!!
!! The directives to perform the preparation of the initial FM
!! file are stored in EXSPA.nam file.
!!
!! The following SPAWN_MODEL2 routine :
!!
!! - sets default values of DESFM files
!! - reads the namelists part of EXSPA file which gives the
!! directives concerning the spawning to perform
!! - controls the domain size of model 2 and initializes its
!! configuration for parameterizations and LBC
!! - allocates memory for arrays
!! - computes the interpolation coefficients needed to spawn model 2
!! 2 types of interpolations are used:
!! 1. Clark and Farley (JAS 1984) on 9 points
!! 2. Bikhardt on 16 points
!! - initializes fields
!! - reads SON1 fields and overwrites on common domain
!! - writes the DESFM file (variables written have been initialized
!! by reading the DESFM file concerning the model 1)
!! - writes the LFIFM file.
!!
!! Finally some control prints are performed on the output listing.
!!
!! EXTERNAL
!! --------
!!
!! FMATTR : to associate a logical unit number to a file
!! Module MODE_GRIDPROJ : contains conformal projection routines
!! SM_GRIDPROJ : to compute some grid variables, in
!! case of conformal projection.
!! Module MODE_GRIDCART : contains cartesian geometry routines
!! SM_GRIDCART : to compute some grid variables, in
!! case of cartesian geometry.
!! SET_REF : to compute rhoJ
!! TOTAL_DMASS : to compute the total mass of dry air
!! ANEL_BALANCE2 : to apply an anelastic correction in the case of changing
!! resolution between the two models
!! FMOPEN : to open a FM-file (DESFM + LFIFM)
!! WRITE_DESFM : to write the DESFM file
!! WRITE_LFIFM : to write the LFIFM file
!! FMCLOS : to close a FM-file (DESFM + LFIFM)
!! INI_BIKHARDT2 : initializes Bikhardt coefficients
!!
!!
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
!! Module MODD_PARAMETERS : contains parameters
!! Module MODD_CONF : contains configuration variables for all models
!! Module MODD_CTURB :
!! XTKEMIN : mimimum value for the TKE
!! Module MODD_GRID : contains grid variables for all models
!! Module USE MODD_DYN : contains configuration for the dynamics
!! Module MODD_REF : contains reference state variables for
!! all models
!!
!! Module MODD_DIM2 : contains dimensions
!! Module MODD_CONF2 : contains configuration variables
!! Module MODD_GRID2 : contains grid variables
!! Module MODD_TIME2 : contains time variables and uses MODD_TIME
!! Module MODD_REF2 : contains reference state variables
!! Module MODD_FIELD2 : contains prognostic variables
!! Module MODD_LSFIELD2 : contains Larger Scale fields
!! Module MODD_GR_FIELD2 : contains surface fields
!! Module MODD_DYN2 : contains dynamic control variables for model 2
!! Module MODD_LBC2 : contains lbc control variables for model 2
!! Module MODD_PARAM2 : contains configuration for physical parameterizations
!!
!! REFERENCE
!! ---------
!!
!! PROGRAM SPAWN_MODEL2 (Book2 of the documentation)
!!
!!
!! AUTHOR
!! ------
!!
!! J.P. Lafore * METEO-FRANCE *
!!
!! MODIFICATIONS
!! -------------
!!
!! Original 11/01/95
!! Modification 27/04/95 (I.Mallet) remove R from the historical variables
!! Modification 16/04/96 (Lafore) Different resolution ratio case introduction
!! Modification 24/04/96 (Lafore & Masson) Initialization of LUSERWs
!! Modification 24/04/96 (Masson) Correction of positivity on Rw and TKE
!! Modification 25/04/96 (Masson) Copies of internal zs on external points
!! Modification 02/05/96 (Stein Jabouille) initialize CCONF
!! Modification 31/05/96 (Lafore) Cumputing time analysis
!! Modification 10/06/96 (Masson) Call to anel_balance in all cases
!! Modification 10/06/96 (Masson) Bikhardt and Clark_and_Farley coefficients
!! incorporated in modules
!! Modification 12/06/96 (Masson) default values of NJMAX and KDYRATIO
!! if 2D version of the model
!! Modification 13/06/96 (Masson) choice of the name of the spawned file
!! Modification 30/07/96 (Lafore) MY_NAME and DAD_NAME writing for nesting
!! Modification 25/09/96 (Masson) grid optionnaly given by a fm file
!! and number of points given relatively
!! to model 1
!! Modification 10/10/96 (Masson) L1D and L2D verifications
!! Modification 12/11/96 (Masson) allocations of XSRCM and XSRCT
!! Modification 19/11/96 (Masson) add deep convection
!! Modification 26/11/96 (Lafore) spawning configuration writing on the FM-file
!! Modification 26/11/96 (Lafore) replacing of TOTAL_DMASS by REAL_DMASS
!! Modification 27/02/97 (Lafore) "surfacic" LS fields
!! Modification 10/04/97 (Lafore) proper treatment of minima
!! Modification 09/07/97 (Masson) absolute pressure and directional z0
!! Modification 10/07/97 (Masson) routines SPAWN_PRESSURE2 and DRY_MASS
!! Modification 17/07/97 (Masson) vertical interpolations and EPS
!! Modification 29/07/97 (Masson) split mode_lfifm_pgd
!! Modification 10/08/97 (Lafore) initialization of LUSERV
!! Modification 14/09/97 (Masson) use of relative humidity
!! Modification 08/12/97 (Masson) deallocation of model 1 variables
!! Modification 24/12/97 (Masson) directional z0 parameters and orographies
!! Modification 20/07/98 (Stein ) add the LB fields
!! Modification 15/03/99 (Masson) cover types
!! Modification 15/07/99 (Jabouille) shift domain initialization in INI_SIZE_SPAWN
!! Modification 04/01/00 (Masson) removes TSZ0 option
!! Modification 29/11/02 (Pinty) add C3R5, ICE2, ICE4
!! Modification 07/07/05 (D.Barbary) spawn with 2 input files (father+son1)
!! Modification 20/05/06 Remove EPS, Clark and Farley interpolation
!! Replace DRY_MASS by TOTAL_DMASS
!! Modification 06/12 (M.Tomasini) Interpolation of the advective forcing (ADVFRC)
!! and of the turbulent fluxes (EDDY_FLUX)
!! Modification 07/13 (Bosseur & Filippi) Adds Forefire

ESCOBAR MUNOZ Juan
committed
!! 24/04/2014 (J.escobar) bypass CRAY internal compiler error on IIJ computation

Gaelle Tanguy
committed
!! Modification 06/2014 (C.Lac) Initialization of physical param of
!! model2 before the call to ini_nsv
!! Modification 05/02/2015 (M.Moge) parallelization of SPAWNING
!! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
!! J.Escobar 02/05/2016 : test ZZS_MAX in //
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_PARAMETERS ! Declarative modules
USE MODD_CST
USE MODD_CONF
USE MODD_CTURB
USE MODD_GRID
USE MODD_REF
USE MODD_DYN
USE MODD_NESTING
USE MODD_SPAWN
USE MODD_NSV
USE MODD_PASPOL
!
USE MODD_DIM_n
USE MODD_DYN_n
USE MODD_CONF_n
USE MODD_LBC_n
USE MODD_GRID_n
USE MODD_TIME_n
USE MODD_REF_n
USE MODD_FIELD_n
USE MODD_LSFIELD_n
USE MODD_DUMMY_GR_FIELD_n
USE MODD_PRECIP_n
USE MODD_ELEC_n
USE MODD_LUNIT_n
USE MODD_PARAM_n
USE MODD_TURB_n
USE MODD_METRICS_n
USE MODD_CH_MNHC_n
USE MODD_PASPOL_n
!$20140515
USE MODD_VAR_ll, ONLY : NPROC
!USE MODD_IO_ll, ONLY : ISP,GSMONOPROC
!
USE MODE_GRIDCART ! Executive modules
USE MODE_GRIDPROJ
USE MODE_ll
!
USE MODI_READ_HGRID
USE MODI_SPAWN_GRID2
USE MODI_SPAWN_FIELD2
USE MODI_SPAWN_SURF
USE MODI_VER_INTERP_FIELD
USE MODI_SPAWN_PRESSURE2
USE MODI_SPAWN_SURF2_RAIN
USE MODI_SET_REF
USE MODI_TOTAL_DMASS
USE MODI_ANEL_BALANCE_n
USE MODI_WRITE_DESFM_n
USE MODI_WRITE_LFIFM_n
USE MODI_METRICS
USE MODI_INI_BIKHARDT_n
USE MODI_DEALLOCATE_MODEL1
USE MODI_BOUNDARIES
USE MODI_INI_NSV
USE MODI_CH_INIT_SCHEME_n
!$20140710
USE MODI_UPDATE_METRICS
!
USE MODE_FM
USE MODE_IO_ll
USE MODE_MODELN_HANDLER
USE MODE_FMREAD
!
USE MODE_THERMO
!
USE MODI_SECOND_MNH
!
#ifdef MNH_NCWRIT
USE MODN_NCOUT
USE MODE_UTIL
#endif
! Modules for EDDY_FLUX
USE MODD_LATZ_EDFLX
USE MODD_DEF_EDDY_FLUX_n
USE MODD_DEF_EDDYUV_FLUX_n
USE MODD_ADVFRC_n
USE MODD_RELFRC_n
USE MODD_2D_FRC
!
!USE MODE_LB_ll, ONLY : SET_LB_FIELD_ll
USE MODI_GET_SIZEX_LB
USE MODI_GET_SIZEY_LB
!
USE MODD_MPIF
USE MODD_VAR_ll
!
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
IMPLICIT NONE
!
!* 0.1.1 Declarations of global variables not declared in the modules :
!
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZJ ! Jacobian
!
!
!* 0.1.2 Declarations of dummy arguments :
!
INTEGER, INTENT(IN) :: KRR ! Number of moist variables
INTEGER, INTENT(IN) :: KSV_USER ! Number of Users Scalar Variables
CHARACTER (LEN=4), INTENT(IN) :: HTURB ! Kind of turbulence parameterization
CHARACTER (LEN=4), INTENT(IN) :: HSURF ! Kind of surface parameterization
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Kind of cloud parameterization
CHARACTER (LEN=*), INTENT(IN) :: HSPAFILE ! possible name of the output FM-file
CHARACTER (LEN=*), INTENT(IN) :: HSPANBR ! NumBeR associated to the SPAwned file
CHARACTER (LEN=*), INTENT(IN) :: HSONFILE ! name of the input FM-file SON
CHARACTER (LEN=80), INTENT(IN) :: HCHEM_INPUT_FILE
CHARACTER (LEN=*), INTENT(IN) :: HINIFILE ! Input file
CHARACTER (LEN=*), INTENT(IN) :: HINIFILEPGD ! Input pgd file
LOGICAL, INTENT(IN) :: OSPAWN_SURF ! flag to spawn surface fields
!
!* 0.1.3 Declarations of local variables :
!
!
INTEGER :: IRESP ! Return codes in FM routines
INTEGER :: ILUOUT ! Logical unit number for the output listing
INTEGER :: INPRAR ! Number of articles predicted in the LFIFM file
INTEGER :: ININAR ! Number of articles present in the LFIFM file
INTEGER :: ITYPE ! Type of file (cpio or not)
INTEGER :: IGRID,ILENCH ! File management
CHARACTER (LEN=100) :: YCOMMENT ! variables
!
CHARACTER (LEN=32) :: YDESFM ! Name of the desfm part of the FM-file
!
!
INTEGER :: IIU ! Upper dimension in x direction
INTEGER :: IJU ! Upper dimension in y direction
INTEGER :: IKU ! Upper dimension in z direction
INTEGER :: IIB ! indice I Beginning in x direction
INTEGER :: IJB ! indice J Beginning in y direction
INTEGER :: IKB ! indice K Beginning in z direction
INTEGER :: IIE ! indice I End in x direction
INTEGER :: IJE ! indice J End in y direction
INTEGER :: IKE ! indice K End in z direction
INTEGER :: JK ! Loop index in z direction
INTEGER :: JLOOP,JKLOOP ! Loop indexes
INTEGER :: JSV ! loop index for scalar variables
INTEGER :: JRR ! loop index for moist variables
!
REAL, DIMENSION(:,:), ALLOCATABLE :: ZZS_LS ! large scale interpolated zs
REAL, DIMENSION(:,:), ALLOCATABLE :: ZZSMT_LS ! large scale interpolated smooth zs
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZZZ_LS ! large scale interpolated z
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZTHVT ! virtual potential temperature
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZHUT ! relative humidity
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSUMRT ! sum of water ratios
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZRHOD ! dry density
!
REAL :: ZTIME1,ZTIME2,ZSTART,ZEND,ZTOT,ZALL,ZPERCALL ! for computing time analysis
REAL :: ZGRID2, ZSURF2, ZFIELD2, ZVER, &
ZPRESSURE2, ZANEL, ZWRITE, ZMISC
REAL :: ZPERCGRID2,ZPERCSURF2,ZPERCFIELD2, ZPERCVER, &
ZPERCPRESSURE2, ZPERCANEL, ZPERCWRITE,ZPERCMISC
!
INTEGER, DIMENSION(2) :: IIJ
INTEGER :: IK4000
INTEGER :: IMI ! Old Model index
!
! Spawning variables for the SON 1 (input one)
INTEGER :: IIMAXSON,IJMAXSON ! physical dimensions
INTEGER :: IIUSON,IJUSON ! upper dimensions
INTEGER :: IXSIZESON,IYSIZESON ! sizes according to model1 grid
INTEGER :: IDXRATIOSON,IDYRATIOSON ! x and y-resolution ratios
INTEGER :: IXORSON,IYORSON ! horizontal position
INTEGER :: IXENDSON,IYENDSON !in x and y directions
! Common indexes for the SON 2 (output one, model2)
INTEGER :: IIB2 ! indice I Beginning in x direction
INTEGER :: IJB2 ! indice J Beginning in y direction
INTEGER :: IIE2 ! indice I End in x direction
INTEGER :: IJE2 ! indice J End in y direction
! Common indexes for the SON 1 (input one)
INTEGER :: IIB1 ! indice I Beginning in x direction
INTEGER :: IJB1 ! indice J Beginning in y direction
INTEGER :: IIE1 ! indice I End in x direction
INTEGER :: IJE1 ! indice J End in y direction
! Logical for no common domain between the 2 sons or no input son
LOGICAL :: GNOSON = .TRUE.
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZWORK3D ! working array
CHARACTER(LEN=28) :: YDAD_SON
!$
INTEGER :: IDIMX, IDIMY
INTEGER :: IINFO_ll
TYPE(LIST_ll), POINTER :: TZFIELDS_ll=>NULL() ! list of fields to exchange
INTEGER :: NXOR_TMP, NYOR_TMP, NXEND_TMP, NYEND_TMP
INTEGER :: IISIZEXF,IJSIZEXF,IISIZEXFU,IJSIZEXFU ! dimensions of the
INTEGER :: IISIZEX4,IJSIZEX4,IISIZEX2,IJSIZEX2 ! West-east LB arrays
INTEGER :: IISIZEYF,IJSIZEYF,IISIZEYFV,IJSIZEYFV ! dimensions of the
INTEGER :: IISIZEY4,IJSIZEY4,IISIZEY2,IJSIZEY2 ! North-south LB arrays
!
CHARACTER(LEN=4) :: YLBTYPE
!
REAL :: ZZS_MAX, ZZS_MAX_ll
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
!-------------------------------------------------------------------------------
!
! Save model index and switch to model 2 variables
IMI = GET_CURRENT_MODEL_INDEX()
CALL GOTO_MODEL(2)
CSTORAGE_TYPE='TT'
!
CALL FMLOOK_ll(CLUOUT,CLUOUT,ILUOUT,IRESP)
!
!* 1. INITIALIZATIONS :
! ---------------
!
!* 1.1 time analysis :
! -------------
!
ZTIME1 = 0
ZTIME2 = 0
ZSTART = 0
ZEND = 0
ZGRID2 = 0
ZSURF2 = 0
ZFIELD2= 0
ZANEL = 0
ZWRITE = 0
ZPERCGRID2 = 0
ZPERCSURF2 = 0
ZPERCFIELD2= 0
ZPERCANEL = 0
ZPERCWRITE = 0
!
CALL SECOND_MNH(ZSTART)
!
ZTIME1 = ZSTART
!
!* 1.2 deallocates not used model 1 variables :
! --------------------------------------
!
CALL DEALLOCATE_MODEL1(1)
CALL DEALLOCATE_MODEL1(2)
!
!-------------------------------------------------------------------------------
!
!
!* 3. PROLOGUE:
! --------
!
!* 3.1 Compute dimensions of model 2 and other indices
!
NIMAX_ll = NXSIZE * NDXRATIO
NJMAX_ll = NYSIZE * NDYRATIO
!
IF (NIMAX_ll==1 .AND. NJMAX_ll==1) THEN
L1D=.TRUE.
L2D=.FALSE.
ELSE IF (NJMAX_ll==1) THEN
L1D=.FALSE.
L2D=.TRUE.
ELSE
L1D=.FALSE.
L2D=.FALSE.
END IF
!
CALL GET_DIM_EXT_ll('B',IIU,IJU)
CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
!
NIMAX = IIE-IIB+1
NJMAX = IJE-IJB+1
!$
IKU = SIZE(XTHVREFZ,1)
NKMAX = IKU - 2*JPVEXT ! initialization of NKMAX (MODD_DIM2)
!
IKB = 1 + JPVEXT
IKE = IKU - JPVEXT
!
!
!* 3.2 Position of model 2 domain relative to model 1 and controls
!
!$20140506 the condition on NXSIZE*NXRATIO ==IIE-IIB+1 only works for monoproc
!$then cancel it
!IF ( (NXSIZE*NDXRATIO) /= (IIE-IIB+1) ) THEN
! WRITE(ILUOUT,*) 'SPAWN_MODEL2: MODEL 2 DOMAIN X-SIZE INCOHERENT WITH THE', &
! ' MODEL1 MESH ',' IIB = ',IIB,' IIE = ', IIE ,'NDXRATIO = ',NDXRATIO
! !callabortstop
! CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
! CALL ABORT
! STOP
!END IF
!$
!$20140506 the condition on NXSIZE*NXRATIO ==IIE-IIB+1 only works for monoproc
!$then cancel it
!IF ( (NYSIZE*NDYRATIO) /= (IJE-IJB+1) ) THEN
! WRITE(ILUOUT,*) 'SPAWN_MODEL2: MODEL 2 DOMAIN Y-SIZE INCOHERENT WITH THE', &
! ' MODEL1 MESH ',' IJB = ',IJB,' IJE = ', IJE ,'NDYRATIO = ',NDYRATIO
! !callabortstop
! CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
! CALL ABORT
! STOP
!END IF
!$
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
!
!* 3.3 Treatement of a SON 1 model (input)
!
IF (LEN_TRIM(HSONFILE) /= 0 ) THEN
!
! 3.3.1 Opening the son input file and reading the grid
!
WRITE(ILUOUT,*) 'SPAWN_MODEL2: spawing with a SON input file :',TRIM(HSONFILE)
CALL FMOPEN_ll(HSONFILE,'READ',CLUOUT,0,2,NVERB,ININAR,IRESP)
CALL FMREAD(HSONFILE,'DAD_NAME',CLUOUT,'--',YDAD_SON,IGRID,ILENCH,YCOMMENT,IRESP)
CALL FMREAD(HSONFILE,'IMAX',CLUOUT,'--',IIMAXSON,IGRID,ILENCH,YCOMMENT,IRESP)
CALL FMREAD(HSONFILE,'JMAX',CLUOUT,'--',IJMAXSON,IGRID,ILENCH,YCOMMENT,IRESP)
CALL FMREAD(HSONFILE,'XOR',CLUOUT,'--',IXORSON,IGRID,ILENCH,YCOMMENT,IRESP)
CALL FMREAD(HSONFILE,'YOR',CLUOUT,'--',IYORSON,IGRID,ILENCH,YCOMMENT,IRESP)
CALL FMREAD(HSONFILE,'DXRATIO',CLUOUT,'--',IDXRATIOSON,IGRID,ILENCH, &
YCOMMENT,IRESP)
CALL FMREAD(HSONFILE,'DYRATIO',CLUOUT,'--',IDYRATIOSON,IGRID,ILENCH, &
YCOMMENT,IRESP)
!
IF (ADJUSTL(ADJUSTR(YDAD_SON)).NE.ADJUSTL(ADJUSTR(CMY_NAME(1)))) THEN
WRITE(ILUOUT,*) 'SPAWN_MODEL2: DAD of SON file is different from the one of model2'
WRITE(ILUOUT,*) ' DAD of SON = ',TRIM(YDAD_SON),' DAD of model2 = ',TRIM(CMY_NAME(1))
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
END IF
IF ( IDXRATIOSON /= NDXRATIO ) THEN
WRITE(ILUOUT,*) 'SPAWN_MODEL2: RATIOX of input SON file is different from the one of model2' ,&
' RATIOX SON = ',IDXRATIOSON,' RATIOX model2 = ',NDXRATIO
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
END IF
IF ( IDYRATIOSON /= NDYRATIO ) THEN
WRITE(ILUOUT,*) 'SPAWN_MODEL2: RATIOY of input SON file is different from the one of model2' ,&
' RATIOY SON = ',IDYRATIOSON,' RATIOY model2 = ',NDYRATIO
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
END IF
!
IIUSON=IIMAXSON+2*JPHEXT
IJUSON=IJMAXSON+2*JPHEXT
!
! 3.3.2 Correspondance of indexes between the input SON and model2
!
IXSIZESON = IIMAXSON/IDXRATIOSON
IYSIZESON = IJMAXSON/IDYRATIOSON
IXENDSON = IXORSON+IXSIZESON
IYENDSON = IYORSON+IYSIZESON
! Is a common domain between the input SON and the output son (model2)?
IF( ( MIN(NXEND-1,IXENDSON)-MAX(NXOR,IXORSON) > 0 ) .OR. &
( MIN(NYEND-1,IYENDSON)-MAX(NYOR,IYORSON) > 0 ) ) THEN
GNOSON=.FALSE.
! Common domain for the model2 (output son) indexes
IIB2 = (MAX(NXOR,IXORSON)-NXOR)*NDXRATIO+1+JPHEXT
IJB2 = (MAX(NYOR,IYORSON)-NYOR)*NDYRATIO+1+JPHEXT
IIE2 = (MIN(NXEND-1,IXENDSON)-NXOR)*NDXRATIO+JPHEXT
IJE2 = (MIN(NYEND-1,IYENDSON)-NYOR)*NDYRATIO+JPHEXT
! Common domain for the SON 1 (input one) indexes
IIB1 = (MAX(NXOR,IXORSON)-IXORSON)*NDXRATIO+1+JPHEXT
IJB1 = (MAX(NYOR,IYORSON)-IYORSON)*NDYRATIO+1+JPHEXT
IIE1 = (MIN(NXEND-1,IXENDSON)-IXORSON)*NDXRATIO+JPHEXT
IJE1 = (MIN(NYEND-1,IYENDSON)-IYORSON)*NDYRATIO+JPHEXT
!
WRITE(ILUOUT,*) ' common domain in the SON grid (IB,IE=', &
1+JPHEXT,'-',IIMAXSON+JPHEXT,' ; JB,JE=', &
1+JPHEXT,'-',IJMAXSON+JPHEXT,'):'
WRITE(ILUOUT,*) 'I=',IIB1,'->',IIE1,' ; J=',IJB1,'->',IJE1
WRITE(ILUOUT,*) ' common domain in the model2 grid (IB,IE=', &
1+JPHEXT,'-',NXSIZE*NDXRATIO+JPHEXT,' ; JB,JE=', &
1+JPHEXT,'-',NYSIZE*NDYRATIO+JPHEXT,'):'
WRITE(ILUOUT,*) 'I=',IIB2,'->',IIE2,' ; J=',IJB2,'->',IJE2
ELSE
WRITE(ILUOUT,*) 'SPAWN_MODEL2: no common domain between input SON and model2:'
WRITE(ILUOUT,*) ' the input SON fields are not taken into account, spawned fields are computed from model1'
END IF
END IF
!
!* 3.4 Initialization of model 2 configuration
!
NRR = KRR ! for MODD_CONF2
NSV_USER = KSV_USER
IF (NSV_CHEM>0) THEN
LUSECHEM=.TRUE.
IF (NSV_CHAC>0) THEN
LUSECHAQ=.TRUE.
ENDIF
IF (NSV_CHIC>0) THEN
LUSECHIC=.TRUE.
ENDIF
CCHEM_INPUT_FILE = HCHEM_INPUT_FILE
CALL CH_INIT_SCHEME_n(1,LUSECHAQ,LUSECHIC,LCH_PH,ILUOUT,NVERB)
END IF

Gaelle Tanguy
committed
!
CTURB = HTURB ! for MODD_PARAM2
CRAD = 'NONE' ! radiation will have to be restarted
CSURF = HSURF ! for surface call
CCLOUD = HCLOUD
CDCONV = 'NONE' ! deep convection will have to be restarted
CSCONV = 'NONE' ! shallow convection will have to be restarted
!
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
CALL INI_NSV(2) ! NSV* are set equal for model 2 and model 1.
! NSV is set to the total number of SV for model 2
!
IF (NRR==0) LUSERV=.FALSE. ! as the default is .T.
IF (NRR>1) LUSERC=.TRUE.
IF (NRR>2) LUSERR=.TRUE.
IF (NRR>3) LUSERI=.TRUE.
IF (NRR>4) LUSERS=.TRUE.
IF (NRR>5) LUSERG=.TRUE.
IF (NRR>6) LUSERH=.TRUE.
!
!
!
!* 3.5 model 2 configuration in MODD_NESTING to be written
!* on the FM-file to allow nesting or coupling
!
CCPLFILE(:) = ' '
LSTEADYLS=.TRUE.
!
NDXRATIO_ALL(:) = 0
NDYRATIO_ALL(:) = 0
NDXRATIO_ALL(2) = NDXRATIO
NDYRATIO_ALL(2) = NDYRATIO
NXOR_ALL(2) = NXOR
NYOR_ALL(2) = NYOR
NXEND_ALL(2) = NXEND
NYEND_ALL(2) = NYEND
!
!* 3.6 size of the RIM area for lbc
!
NRIMX=MIN(JPRIMMAX,IIU/2-1)
IF ( .NOT. L2D ) THEN
NRIMY=MIN(JPRIMMAX,IJU/2-1)
ELSE
NRIMY=0
END IF
IF (NRIMX == IIU/2-1) THEN ! Error ! this case is not supported - it should be, but there is a bug
WRITE(*,*) "Error : The size of the LB zone is too big for the size of the subdomains"
WRITE(*,*) "Try with less cores, a smaller LB size, or a bigger grid"
CALL ABORT
STOP
ENDIF
!
LHORELAX_UVWTH=.TRUE.
LHORELAX_RV=LUSERV
LHORELAX_RC=LUSERC
LHORELAX_RR=LUSERR
LHORELAX_RI=LUSERI
LHORELAX_RS=LUSERS
LHORELAX_RG=LUSERG
LHORELAX_RH=LUSERH
!
IF (CTURB/='NONE') LHORELAX_TKE =.TRUE.
LHORELAX_SV(:)=.FALSE.
DO JSV=1,NSV
LHORELAX_SV(JSV)=.TRUE.
END DO
IF (NSV_CHEM > 0) LHORELAX_SVCHEM = .TRUE.
IF (NSV_CHIC > 0) LHORELAX_SVCHIC = .TRUE.
IF (NSV_C2R2 > 0) LHORELAX_SVC2R2 = .TRUE.
IF (NSV_C1R3 > 0) LHORELAX_SVC1R3 = .TRUE.
IF (NSV_ELEC > 0) LHORELAX_SVELEC = .TRUE.
IF (NSV_AER > 0) LHORELAX_SVAER = .TRUE.
IF (NSV_DST > 0) LHORELAX_SVDST = .TRUE.
IF (NSV_SLT > 0) LHORELAX_SVSLT = .TRUE.
IF (NSV_PP > 0) LHORELAX_SVPP = .TRUE.
#ifdef MNH_FOREFIRE
IF (NSV_FF > 0) LHORELAX_SVFF = .TRUE.
#endif
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
IF (NSV_CS > 0) LHORELAX_SVCS = .TRUE.
LHORELAX_SVLG = .FALSE.
!
!-------------------------------------------------------------------------------
!
!* 4. ALLOCATE MEMORY FOR ARRAYS :
! -----------------------------
!
!* 4.1 Global variables absent from the modules :
!
ALLOCATE(ZJ(IIU,IJU,IKU))
!
!* 4.2 Prognostic (and diagnostic) variables (module MODD_FIELD2) :
!
ALLOCATE(XUT(IIU,IJU,IKU))
ALLOCATE(XVT(IIU,IJU,IKU))
ALLOCATE(XWT(IIU,IJU,IKU))
ALLOCATE(XTHT(IIU,IJU,IKU))
IF (CTURB/='NONE') THEN
ALLOCATE(XTKET(IIU,IJU,IKU))
ELSE
ALLOCATE(XTKET(0,0,0))
END IF
ALLOCATE(XPABST(IIU,IJU,IKU))
ALLOCATE(XRT(IIU,IJU,IKU,NRR))
ALLOCATE(XSVT(IIU,IJU,IKU,NSV))
!
IF (CTURB /= 'NONE' .AND. NRR>1) THEN
ALLOCATE(XSRCT(IIU,IJU,IKU))
ALLOCATE(XSIGS(IIU,IJU,IKU))
ELSE
ALLOCATE(XSRCT(0,0,0))
ALLOCATE(XSIGS(0,0,0))
END IF
!
!
!* 4.4 Grid variables (module MODD_GRID2 and MODD_METRICS2):
!
ALLOCATE(XXHAT(IIU),XYHAT(IJU),XZHAT(IKU))
ALLOCATE(XMAP(IIU,IJU))
ALLOCATE(XLAT(IIU,IJU))
ALLOCATE(XLON(IIU,IJU))
ALLOCATE(XDXHAT(IIU),XDYHAT(IJU))
ALLOCATE(XZS(IIU,IJU))
ALLOCATE(XZSMT(IIU,IJU))
ALLOCATE(XZZ(IIU,IJU,IKU))
!
ALLOCATE(XDXX(IIU,IJU,IKU))
ALLOCATE(XDYY(IIU,IJU,IKU))
ALLOCATE(XDZX(IIU,IJU,IKU))
ALLOCATE(XDZY(IIU,IJU,IKU))
ALLOCATE(XDZZ(IIU,IJU,IKU))
!
ALLOCATE(ZZS_LS(IIU,IJU))
ALLOCATE(ZZSMT_LS(IIU,IJU))
ALLOCATE(ZZZ_LS(IIU,IJU,IKU))
!
!* 4.5 Reference state variables (module MODD_REF2):
!
ALLOCATE(XRHODREF(IIU,IJU,IKU),XTHVREF(IIU,IJU,IKU),XRVREF(IIU,IJU,IKU))
ALLOCATE(XRHODJ(IIU,IJU,IKU),XEXNREF(IIU,IJU,IKU))
!
!* 4.6 Larger Scale fields (module MODD_LSFIELD2):
!
! LS fields for vertical relaxation and diffusion
ALLOCATE(XLSUM(IIU,IJU,IKU))
ALLOCATE(XLSVM(IIU,IJU,IKU))
ALLOCATE(XLSWM(IIU,IJU,IKU))
ALLOCATE(XLSTHM(IIU,IJU,IKU))
IF ( NRR >= 1) THEN
ALLOCATE(XLSRVM(IIU,IJU,IKU))
ENDIF
!
!get the size of the local portion of the LB zone in X and Y direction
CALL GET_SIZEX_LB(CLUOUT,NIMAX_ll,NJMAX_ll,NRIMX, &
IISIZEXF,IJSIZEXF,IISIZEXFU,IJSIZEXFU, &
IISIZEX4,IJSIZEX4,IISIZEX2,IJSIZEX2)
CALL GET_SIZEY_LB(CLUOUT,NIMAX_ll,NJMAX_ll,NRIMY, &
IISIZEYF,IJSIZEYF,IISIZEYFV,IJSIZEYFV, &
IISIZEY4,IJSIZEY4,IISIZEY2,IJSIZEY2)
!on fait des choses inutiles avec GET_SIZEX_LB, on pourrait utiliser seulement GET_LOCAL_LB_SIZE_X_ll
!ILOCLBSIZEX = GET_LOCAL_LB_SIZE_X_ll( NRIMX )
!ILOCLBSIZEY = GET_LOCAL_LB_SIZE_Y_ll( NRIMY )
!
ALLOCATE(XLBXUM(IISIZEXFU,IJU,IKU))
!! ALLOCATE(XLBXUM(2*NRIMX+2*JPHEXT,IJU,IKU))
ALLOCATE(XLBYUM(IIU,IJSIZEYF,IKU))
!! ALLOCATE(XLBYUM(IIU,2*NRIMY+2*JPHEXT,IKU))
ELSE
ALLOCATE(XLBYUM(0,0,0))
END IF
!
ALLOCATE(XLBXVM(IISIZEXF,IJU,IKU))
!! ALLOCATE(XLBXVM(2*NRIMX+2*JPHEXT,IJU,IKU))
!
IF ( .NOT. L2D ) THEN
IF ( NRIMY == 0 ) THEN
ALLOCATE(XLBYVM(IIU,IJSIZEY4,IKU))
ALLOCATE(XLBYVM(IIU,IJSIZEYFV,IKU))
!! ALLOCATE(XLBYVM(IIU,2*NRIMY+2*JPHEXT,IKU))
END IF
ELSE
ALLOCATE(XLBYVM(0,0,0))
END IF
!
ALLOCATE(XLBXWM(IISIZEXF,IJU,IKU))
!! ALLOCATE(XLBXWM(2*NRIMX+2*JPHEXT,IJU,IKU))
ALLOCATE(XLBYWM(IIU,IJSIZEYF,IKU))
!! ALLOCATE(XLBYWM(IIU,2*NRIMY+2*JPHEXT,IKU))
ELSE
ALLOCATE(XLBYWM(0,0,0))
END IF
!
ALLOCATE(XLBXTHM(IISIZEXF,IJU,IKU))
!!ALLOCATE(XLBXTHM(2*NRIMX+2*JPHEXT,IJU,IKU))
ALLOCATE(XLBYTHM(IIU,IJSIZEYF,IKU))
!! ALLOCATE(XLBYTHM(IIU,2*NRIMY+2*JPHEXT,IKU))
ELSE
ALLOCATE(XLBYTHM(0,0,0))
END IF
!
IF (CTURB /= 'NONE') THEN
ALLOCATE(XLBXTKEM(IISIZEXF,IJU,IKU))
!! ALLOCATE(XLBXTKEM(2*NRIMX+2*JPHEXT,IJU,IKU))
ELSE
ALLOCATE(XLBXTKEM(0,0,0))
END IF
!
IF (CTURB /= 'NONE' .AND. (.NOT. L2D)) THEN
ALLOCATE(XLBYTKEM(IIU,IJSIZEYF,IKU))
!! ALLOCATE(XLBYTKEM(IIU,2*NRIMY+2*JPHEXT,IKU))
ELSE
ALLOCATE(XLBYTKEM(0,0,0))
END IF
!
ALLOCATE(XLBXRM(IISIZEXF,IJU,IKU,NRR))
!!ALLOCATE(XLBXRM(2*NRIMX+2*JPHEXT,IJU,IKU,NRR))
ALLOCATE(XLBYRM(IIU,IJSIZEYF,IKU,NRR))
!! ALLOCATE(XLBYRM(IIU,2*NRIMY+2*JPHEXT,IKU,NRR))
ELSE
ALLOCATE(XLBYRM(0,0,0,0))
END IF
!
ALLOCATE(XLBXSVM(IISIZEXF,IJU,IKU,NSV))
!!ALLOCATE(XLBXSVM(2*NRIMX+2*JPHEXT,IJU,IKU,NSV))
ALLOCATE(XLBYSVM(IIU,IJSIZEYF,IKU,NSV))
!! ALLOCATE(XLBYSVM(IIU,2*NRIMY+2*JPHEXT,IKU,NSV))
ELSE
ALLOCATE(XLBYSVM(0,0,0,0))
END IF
!
NSIZELBX_ll=2*NRIMX+2*JPHEXT
NSIZELBXU_ll=2*NRIMX+2*JPHEXT
NSIZELBY_ll=2*NRIMY+2*JPHEXT
NSIZELBYV_ll=2*NRIMY+2*JPHEXT
NSIZELBXR_ll=2*NRIMX+2*JPHEXT
NSIZELBXSV_ll=2*NRIMX+2*JPHEXT
NSIZELBXTKE_ll=2*NRIMX+2*JPHEXT
NSIZELBYTKE_ll=2*NRIMY+2*JPHEXT
NSIZELBYR_ll=2*NRIMY+2*JPHEXT
NSIZELBYSV_ll=2*NRIMY+2*JPHEXT
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
!
!
! 4.8 precipitation variables ! same allocations than in ini_micron
!
IF (CCLOUD /= 'NONE' .AND. CCLOUD /= 'REVE') THEN
ALLOCATE(XINPRR(IIU,IJU))
ALLOCATE(XINPRR3D(IIU,IJU,IKU))
ALLOCATE(XEVAP3D(IIU,IJU,IKU))
ALLOCATE(XACPRR(IIU,IJU))
ELSE
ALLOCATE(XINPRR(0,0))
ALLOCATE(XINPRR3D(0,0,0))
ALLOCATE(XEVAP3D(0,0,0))
ALLOCATE(XACPRR(0,0))
END IF
!
IF (CCLOUD(1:3) == 'ICE' .OR. CCLOUD == 'C2R2' &
.OR. CCLOUD == 'KHKO' ) THEN
ALLOCATE(XINPRC(IIU,IJU))
ALLOCATE(XACPRC(IIU,IJU))
ELSE
ALLOCATE(XINPRC(0,0))
ALLOCATE(XACPRC(0,0))
END IF
!
IF (CCLOUD(1:3) == 'ICE' .OR. CCLOUD == 'C3R5') THEN
ALLOCATE(XINPRS(IIU,IJU))
ALLOCATE(XACPRS(IIU,IJU))
ELSE
ALLOCATE(XINPRS(0,0))
ALLOCATE(XACPRS(0,0))
END IF
!
IF (CCLOUD == 'C3R5' .OR. CCLOUD == 'ICE3' .OR. CCLOUD == 'ICE4' ) THEN
ALLOCATE(XINPRG(IIU,IJU))
ALLOCATE(XACPRG(IIU,IJU))
ELSE
ALLOCATE(XINPRG(0,0))
ALLOCATE(XACPRG(0,0))
END IF
!
IF (CCLOUD == 'ICE4') THEN
ALLOCATE(XINPRH(IIU,IJU))
ALLOCATE(XACPRH(IIU,IJU))
ELSE
ALLOCATE(XINPRH(0,0))
ALLOCATE(XACPRH(0,0))
END IF
!
! 4.8bis electric variables
!
IF (CELEC /= 'NONE' ) THEN
ALLOCATE(XNI_SDRYG(IIU,IJU,IKU))
ALLOCATE(XNI_IDRYG(IIU,IJU,IKU))
ALLOCATE(XNI_IAGGS(IIU,IJU,IKU))
ALLOCATE(XEFIELDU(IIU,IJU,IKU))
ALLOCATE(XEFIELDV(IIU,IJU,IKU))
ALLOCATE(XEFIELDW(IIU,IJU,IKU))
ALLOCATE(XESOURCEFW(IIU,IJU,IKU))
ALLOCATE(XIND_RATE(IIU,IJU,IKU))
ALLOCATE(XIONSOURCEFW(IIU,IJU,IKU))
ALLOCATE(XEW(IIU,IJU,IKU))
ALLOCATE(XCION_POS_FW(IIU,IJU,IKU))
ALLOCATE(XCION_NEG_FW(IIU,IJU,IKU))
ALLOCATE(XMOBIL_POS(IIU,IJU,IKU))
ALLOCATE(XMOBIL_NEG(IIU,IJU,IKU))
ELSE
ALLOCATE(XNI_SDRYG(0,0,0))
ALLOCATE(XNI_IDRYG(0,0,0))
ALLOCATE(XNI_IAGGS(0,0,0))
ALLOCATE(XEFIELDU(0,0,0))
ALLOCATE(XEFIELDV(0,0,0))
ALLOCATE(XEFIELDW(0,0,0))
ALLOCATE(XESOURCEFW(0,0,0))
ALLOCATE(XIND_RATE(0,0,0))
ALLOCATE(XIONSOURCEFW(0,0,0))
ALLOCATE(XEW(0,0,0))
ALLOCATE(XCION_POS_FW(0,0,0))
ALLOCATE(XCION_NEG_FW(0,0,0))
ALLOCATE(XMOBIL_POS(0,0,0))
ALLOCATE(XMOBIL_NEG(0,0,0))
END IF
!
!
!
! 4.9 Passive pollutant variable
!
IF (LPASPOL) THEN
ALLOCATE( XATC(IIU,IJU,IKU,NSV_PP) )
ELSE
ALLOCATE( XATC(0,0,0,0))
END IF
!
! 4.10 Advective forcing variable for 2D (Modif MT)
!
!
IF (L2D_ADV_FRC) THEN
WRITE(ILUOUT,*) 'SPAWN_MODEL2: L2D_ADV_FRC IS SET TO ',L2D_ADV_FRC,' SO ADVECTIVE FORCING WILL BE SPAWN: NADVFRC=',NADVFRC
ALLOCATE(TDTADVFRC(NADVFRC))
ALLOCATE(XDTHFRC(IIU,IJU,IKU,NADVFRC))
ALLOCATE(XDRVFRC(IIU,IJU,IKU,NADVFRC))
WRITE(ILUOUT,*) 'SPAWN_MODEL2: ALLOCATION OF ADV FORCING VARIABLES MADE'
ELSE
ALLOCATE(TDTADVFRC(0))
ALLOCATE(XDTHFRC(0,0,0,0))
ALLOCATE(XDRVFRC(0,0,0,0))
END IF
IF (L2D_REL_FRC) THEN
WRITE(ILUOUT,*) 'SPAWN_MODEL2: L2D_REL_FRC IS SET TO ',L2D_REL_FRC,' SO RELAXATION FORCING WILL BE SPAWN: NRELFRC=',NRELFRC
ALLOCATE(TDTRELFRC(NRELFRC))
ALLOCATE(XTHREL(IIU,IJU,IKU,NRELFRC))
ALLOCATE(XRVREL(IIU,IJU,IKU,NRELFRC))
WRITE(ILUOUT,*) 'SPAWN_MODEL2: ALLOCATION OF REL FORCING VARIABLES MADE'
ELSE
ALLOCATE(TDTRELFRC(0))
ALLOCATE(XTHREL(0,0,0,0))
ALLOCATE(XRVREL(0,0,0,0))
END IF
!
! 4.11 Turbulent fluxes for 2D (Modif MT)
!
!
IF (LUV_FLX) THEN
WRITE(ILUOUT,*) 'SPAWN_MODEL2: XUV_FLX1 IS SET TO ',XUV_FLX1,' SO XVU_FLUX WILL BE SPAWN'
ALLOCATE(XVU_FLUX_M(IIU,IJU,IKU))
WRITE(ILUOUT,*) 'SPAWN_MODEL2: ALLOCATION OF XVU_FLUX_M MADE'
ELSE
ALLOCATE(XVU_FLUX_M(0,0,0))
END IF
!
IF (LTH_FLX) THEN
WRITE(ILUOUT,*) 'SPAWN_MODEL2: XTH_FLX IS SET TO ',XTH_FLX,' SO XVTH_FLUX and XWTH_FLUX WILL BE SPAWN'
ALLOCATE(XVTH_FLUX_M(IIU,IJU,IKU))
ALLOCATE(XWTH_FLUX_M(IIU,IJU,IKU))
WRITE(ILUOUT,*) 'SPAWN_MODEL2: ALLOCATION OF XVTH_FLUX_M and XWTH_FLUX_M MADE'
ELSE
ALLOCATE(XVTH_FLUX_M(0,0,0))
ALLOCATE(XWTH_FLUX_M(0,0,0))
END IF
!
!-------------------------------------------------------------------------------
!
!* 5. INITIALIZE ALL THE MODEL VARIABLES
! ----------------------------------
!
!* 5.1 Bikhardt interpolation coefficients computation :
!
CALL INI_BIKHARDT_n(NDXRATIO,NDYRATIO,2)
!
CALL SECOND_MNH(ZTIME2)
!
ZMISC = ZTIME2 - ZTIME1
!
!* 5.2 Spatial and Temporal grid (for MODD_GRID2 and MODD_TIME2) :
!
CALL SECOND_MNH(ZTIME1)
!
IF(NPROC.GT.1)THEN
CALL GO_TOMODEL_ll(2, IINFO_ll)
CALL GET_FEEDBACK_COORD_ll(NXOR_TMP,NYOR_TMP,NXEND_TMP,NYEND_TMP,IINFO_ll) !phys domain
ELSE
NXOR_TMP = NXOR
NYOR_TMP = NYOR
NXEND_TMP= NXEND
NYEND_TMP = NYEND
ENDIF
XZS=0.
CALL SPAWN_GRID2 (NXOR,NYOR,NXEND,NYEND,NDXRATIO,NDYRATIO, &
XLONORI,XLATORI,XXHAT,XYHAT,XZHAT,LSLEVE,XLEN1,XLEN2, &
XZS,XZSMT,ZZS_LS,ZZSMT_LS,TDTMOD,TDTCUR )