Newer
Older

WAUTELET Philippe
committed
!MNH_LIC Copyright 2013-2021 CNRS, Meteo-France and Universite Paul Sabatier

WAUTELET Philippe
committed
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! ##################################
MODULE MODI_LIMA_PRECIP_SCAVENGING
! ##################################
!
INTERFACE
SUBROUTINE LIMA_PRECIP_SCAVENGING (HCLOUD, KLUOUT, KTCOUNT, PTSTEP, &
PRRT, PRHODREF, PRHODJ, PZZ, &
PPABST, PTHT, PSVT, PRSVS, PINPAP )

WAUTELET Philippe
committed
use modd_nsv, only: nsv_lima_beg
CHARACTER(LEN=4), INTENT(IN) :: HCLOUD ! cloud paramerization
INTEGER, INTENT(IN) :: KLUOUT ! unit for output listing
INTEGER, INTENT(IN) :: KTCOUNT ! iteration count
REAL, INTENT(IN) :: PTSTEP ! Double timestep except
! for the first time step
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rain mixing ratio at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF ! Air Density [kg/m**3]
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! Dry Density [kg]
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ ! Altitude
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! Absolute pressure at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT ! Theta at time t
!

WAUTELET Philippe
committed
REAL, DIMENSION(:,:,:,NSV_LIMA_BEG:), INTENT(IN) :: PSVT ! Particle Concentration [kg-1]
REAL, DIMENSION(:,:,:,NSV_LIMA_BEG:), INTENT(INOUT) :: PRSVS ! Total Number Scavenging Rate
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
!
REAL, DIMENSION(:,:), INTENT(INOUT) :: PINPAP
!
END SUBROUTINE LIMA_PRECIP_SCAVENGING
END INTERFACE
END MODULE MODI_LIMA_PRECIP_SCAVENGING
!
!########################################################################
SUBROUTINE LIMA_PRECIP_SCAVENGING (HCLOUD, KLUOUT, KTCOUNT, PTSTEP, &
PRRT, PRHODREF, PRHODJ, PZZ, &
PPABST, PTHT, PSVT, PRSVS, PINPAP )
!########################################################################x
!
!! PURPOSE
!! -------
!! The purpose of this routine is to compute the total number
!! below-cloud scavenging rate.
!!
!!
!!** METHOD
!! ------
!! We assume a generalized gamma distribution law for the raindrop.
!! The aerosols particles distribution follows a log-normal law.
!! First, we have to compute the Collision Efficiency, which takes
!! account of the three most important wet removal mechanism :
!! Brownian diffusion, interception and inertial impaction.
!! It is a function of several number (like Reynolds, Schmidt
!! or Stokes number for instance). Consequently,
!! we need first to calculate these numbers.
!!
!! Then the scavenging coefficient is deduced from the integration
!! of the droplet size distribution, the falling velocity of
!! raindrop and aerosol, their diameter, and the collision
!! (or collection) efficiency, over the spectrum of droplet
!! diameters.
!!
!! The total scavenging rate of aerosol is computed from the
!! integration, over all the spectrum of particles aerosols
!! diameters, of the scavenging coefficient.
!!
!!
!! EXTERNAL
!! --------
!! Subroutine SCAV_MASS_SEDIMENTATION
!!
!! Function COLL_EFFIC : computes the collision efficiency
!!
!! Function CONTJV |
!! Function GAUHER |
!! Function GAULAG |-> in lima_functions.f90
!! Function GAMMLN |
!!
!!
!! REFERENCES
!! ----------
!! Seinfeld and Pandis
!! Andronache
!!
!! AUTHOR
!! ------
!! J.-P. Pinty * Laboratoire d'Aerologie*
!! S. Berthet * Laboratoire d'Aerologie*
!! B. Vié * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original ??/??/13
!!

WAUTELET Philippe
committed
! P. Wautelet 28/05/2018: corrected truncated integer division (3/2 -> 1.5)
! P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
! P. Wautelet 28/05/2019: move COUNTJV function to tools.f90
! P. Wautelet 03/2020: use the new data structures and subroutines for budgets
! P. Wautelet 03/06/2020: bugfix: correct array starts for PSVT and PRSVS
! P. Wautelet 11/02/2021: bugfix: ZRTMIN was of wrong size (replaced by a scalar)

WAUTELET Philippe
committed
! P. Wautelet 11/02/2021: budgets: add missing term SCAV for NSV_LIMA_SCAVMASS budget
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
!-------------------------------------------------------------------------------
!
!* 0.DECLARATIONS
! --------------
!
USE MODD_NSV
USE MODD_CST
USE MODD_PARAMETERS
USE MODI_INI_NSV
USE MODI_GAMMA
USE MODI_LIMA_FUNCTIONS
!
! Previous versions by S. Berthet were compatible with all schemes
! Here : Compatibility with LIMA only
USE MODD_PARAM_LIMA, ONLY : NMOD_IFN, NSPECIE, XFRAC, &
XMDIAM_IFN, XSIGMA_IFN, XRHO_IFN, &
NMOD_CCN, XR_MEAN_CCN, XLOGSIG_CCN, XRHO_CCN, &
XALPHAR, XNUR, &
LAERO_MASS, NDIAMR, NDIAMP, XT0SCAV, XTREF, XNDO, &
XMUA0, XT_SUTH_A, XMFPA0, XVISCW, XRHO00, &
XRTMIN, XCTMIN
USE MODD_PARAM_LIMA_WARM, ONLY : XCR, XDR
!
USE MODD_BUDGET
USE MODI_BUDGET
!
IMPLICIT NONE
!
!* 0.1 declarations of dummy arguments :
!
CHARACTER(LEN=4), INTENT(IN) :: HCLOUD ! cloud paramerization
INTEGER, INTENT(IN) :: KLUOUT ! unit for output listing
INTEGER, INTENT(IN) :: KTCOUNT ! iteration count
REAL, INTENT(IN) :: PTSTEP ! Double timestep except
! for the first time step
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rain mixing ratio at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF ! Air Density [kg/m**3]
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! Dry Density [kg]
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ ! Altitude
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! Absolute pressure at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT ! Theta at time t
!

WAUTELET Philippe
committed
REAL, DIMENSION(:,:,:,NSV_LIMA_BEG:), INTENT(IN) :: PSVT ! Particle Concentration [/m**3]
REAL, DIMENSION(:,:,:,NSV_LIMA_BEG:), INTENT(INOUT) :: PRSVS ! Total Number Scavenging Rate
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
!
REAL, DIMENSION(:,:), INTENT(INOUT) :: PINPAP
!
!* 0.2 Declarations of local variables :
!
INTEGER :: IIB ! Define the domain where is
INTEGER :: IIE ! the microphysical sources have to be computed
INTEGER :: IJB !
INTEGER :: IJE !
INTEGER :: IKB !
INTEGER :: IKE !
!
INTEGER :: JSV ! CCN or IFN mode
INTEGER :: J1, J2, IJ, JMOD
!
LOGICAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2),SIZE(PRHODREF,3)) &
:: GRAIN, &! Test where rain is present
GSCAV ! Test where rain is present
INTEGER , DIMENSION(SIZE(GSCAV)) :: I1,I2,I3 ! Used to replace the COUNT
INTEGER :: JL ! and PACK intrinsics
INTEGER :: ISCAV
!
REAL :: ZDENS_RATIO, & !density ratio
ZNUM, & !PNU-1.
ZSHAPE_FACTOR
!
REAL, DIMENSION(SIZE(PZZ,1),SIZE(PZZ,2),SIZE(PZZ,3)) :: ZW ! work array
REAL, DIMENSION(SIZE(PZZ,1),SIZE(PZZ,2),SIZE(PZZ,3)) :: PCRT ! cloud droplet conc.
!
REAL, DIMENSION(:), ALLOCATABLE :: ZLAMBDAR, & !slope parameter of the
! generalized Gamma
!distribution law for the
!raindrop
ZVISC_RATIO, & !viscosity ratio
ZMFPA, & !Mean Free Path
ZRHODREF, & !Air Density [kg/m**3]
ZVISCA, & !Viscosity of Air [kg/(m*s)]
ZT, & !Absolute Temperature
ZPABST, &
ZRRT, &
ZCONCP, &
ZCONCR, &
ZTOT_SCAV_RATE,&
ZTOT_MASS_RATE,&
ZMEAN_SCAV_COEF
!
REAL, DIMENSION(:,:), ALLOCATABLE :: &
ZVOLDR, & !Mean volumic Raindrop diameter [m]
ZBC_SCAV_COEF, &
ZCUNSLIP, & !CUnningham SLIP correction factor
ZST_STAR, & !critical Stokes number for impaction
ZSC, & !aerosol particle Schmidt number
ZRE, & !raindrop Reynolds number (for radius)
ZFVELR, & !Falling VELocity of the Raindrop
ZRELT, & !RELaxation Time of the particle [s]
ZDIFF !Particle Diffusivity
!
REAL, DIMENSION(NDIAMP) :: ZVOLDP, & !Mean volumic diameter [m]
ZABSCISSP, & !Aerosol Abscisses
ZWEIGHTP !Aerosol Weights
REAL, DIMENSION(NDIAMR) :: ZABSCISSR, & !Raindrop Abscisses
ZWEIGHTR !Raindrop Weights
!
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZCOL_EF, &! Collision efficiency
ZSIZE_RATIO, &! Size Ratio
ZST ! Stokes number
!
REAL, DIMENSION(SIZE(PRRT,1),SIZE(PRRT,2),SIZE(PRRT,3)) :: ZRRS
!
REAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2),SIZE(PRHODREF,3)) &
:: PMEAN_SCAV_COEF, & !Mean Scavenging
! Coefficient
PTOT_SCAV_RATE, & !Total Number
! Scavenging Rate
PTOT_MASS_RATE !Total Mass
! Scavenging Rate
REAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2),SIZE(PRHODREF,3),NDIAMP) &
::PBC_SCAV_COEF !Scavenging Coefficient
REAL, DIMENSION(:), ALLOCATABLE :: ZKNUDSEN ! Knuudsen number
!
! Opt. BVIE
REAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2),SIZE(PRHODREF,3)) &
:: ZT_3D, ZCONCR_3D, ZVISCA_3D, ZMFPA_3D, &
ZVISC_RATIO_3D, ZLAMBDAR_3D, FACTOR_3D
REAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2),SIZE(PRHODREF,3),NDIAMP) &
:: ZVOLDR_3D, ZVOLDR_3D_INV, ZVOLDR_3D_POW, &
ZFVELR_3D, ZRE_3D, ZRE_3D_SQRT, ZST_STAR_3D
REAL, DIMENSION(:), ALLOCATABLE :: FACTOR
REAL, DIMENSION(:,:), ALLOCATABLE :: &
ZRE_SQRT, & ! SQRT of raindrop Reynolds number
ZRE_INV, & ! INV of raindrop Reynolds number
ZSC_INV, & ! INV of aerosol particle Schmidt number
ZSC_SQRT, & ! SQRT of aerosol particle Schmidt number
ZSC_3SQRT, & ! aerosol particle Schmidt number**(1./3.)
ZVOLDR_POW, & ! Mean volumic Raindrop diameter [m] **(2+ZDR)
ZVOLDR_INV ! INV of Mean volumic Raindrop diameter [m]
REAL :: ZDENS_RATIO_SQRT
INTEGER :: SV_VAR, NM, JM
REAL :: XMDIAMP
REAL :: XSIGMAP
REAL :: XRHOP
REAL :: XFRACP
!
!
!
!------------------------------------------------------------------------------
!
!
!* 1. PRELIMINARY COMPUTATIONS
! ------------------------
!
!
IIB=1+JPHEXT
IIE=SIZE(PRHODREF,1) - JPHEXT
IJB=1+JPHEXT
IJE=SIZE(PRHODREF,2) - JPHEXT
IKB=1+JPVEXT
IKE=SIZE(PRHODREF,3) - JPVEXT
!
! PCRT
PCRT(:,:,:)=PSVT(:,:,:,NSV_LIMA_NR)
!
! Rain mask
GRAIN(:,:,:) = .FALSE.
GRAIN(IIB:IIE,IJB:IJE,IKB:IKE) = (PRRT(IIB:IIE,IJB:IJE,IKB:IKE)>XRTMIN(3) &
.AND. PCRT(IIB:IIE,IJB:IJE,IKB:IKE)>XCTMIN(3) )
!
! Initialize the total mass scavenging rate if LAERO_MASS=T
IF (LAERO_MASS) PTOT_MASS_RATE(:,:,:) = 0.
!
! Quadrature method: compute absissae and weights
CALL GAUHER(ZABSCISSP,ZWEIGHTP,NDIAMP)
ZNUM = XNUR-1.0E0
CALL GAULAG(ZABSCISSR,ZWEIGHTR,NDIAMR,ZNUM)
!
!
!------------------------------------------------------------------------------
!
!
!* 2. NUMERICAL OPTIMIZATION
! ----------------------
!
!
! Optimization : compute in advance parameters depending on rain particles and
! environment conditions only, to avoid multiple identical computations in loops
!
!
ZSHAPE_FACTOR = GAMMA_X0D(XNUR+3./XALPHAR)/GAMMA_X0D(XNUR)
!
WHERE ( GRAIN(:,:,:) )
!
ZT_3D(:,:,:) = PTHT(:,:,:) * ( PPABST(:,:,:)/XP00 )**(XRD/XCPD)
ZCONCR_3D(:,:,:) = PCRT(:,:,:) * PRHODREF(:,:,:) ![/m3]
! Sutherland law for viscosity of air
ZVISCA_3D(:,:,:) = XMUA0*(ZT_3D(:,:,:)/XTREF)**1.5*(XTREF+XT_SUTH_A) &
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
/(XT_SUTH_A+ZT_3D(:,:,:))
! Air mean free path
ZMFPA_3D(:,:,:) = XMFPA0*(XP00*ZT_3D(:,:,:))/(PPABST(:,:,:)*XT0SCAV)
! Viscosity ratio
ZVISC_RATIO_3D(:,:,:) = ZVISCA_3D(:,:,:)/XVISCW !!!!! inversé par rapport à orig. !
! Rain drops parameters
ZLAMBDAR_3D(:,:,:) = ( ((XPI/6.)*ZSHAPE_FACTOR*XRHOLW*ZCONCR_3D(:,:,:)) &
/(PRHODREF(:,:,:)*PRRT(:,:,:)) )**(1./3.) ![/m]
FACTOR_3D(:,:,:) = XPI*0.25*ZCONCR_3D(:,:,:)*XCR*(XRHO00/PRHODREF(:,:,:))**(0.4)
!
END WHERE
!
DO J2=1,NDIAMR
WHERE ( GRAIN(:,:,:) )
! exchange of variables: [m]
ZVOLDR_3D(:,:,:,J2) = ZABSCISSR(J2)**(1./XALPHAR)/ZLAMBDAR_3D(:,:,:)
ZVOLDR_3D_INV(:,:,:,J2) = 1./ZVOLDR_3D(:,:,:,J2)
ZVOLDR_3D_POW(:,:,:,J2) = ZVOLDR_3D(:,:,:,J2)**(2.+XDR)
! Raindrop Falling VELocity [m/s]
ZFVELR_3D(:,:,:,J2) = XCR*(ZVOLDR_3D(:,:,:,J2)**XDR)*(XRHO00/PRHODREF(:,:,:))**(0.4)
! Reynolds number
ZRE_3D(:,:,:,J2) = ZVOLDR_3D(:,:,:,J2)*ZFVELR_3D(:,:,:,J2) &
*PRHODREF(:,:,:)/(2.0*ZVISCA_3D(:,:,:))
ZRE_3D_SQRT(:,:,:,J2) = SQRT( ZRE_3D(:,:,:,J2) )
! Critical Stokes number
ZST_STAR_3D(:,:,:,J2) = (1.2+(LOG(1.+ZRE_3D(:,:,:,J2)))/12.) &
/(1.+LOG(1.+ZRE_3D(:,:,:,J2)))
END WHERE
END DO
!
!
!------------------------------------------------------------------------------
!
!
!* 3. AEROSOL SCAVENGING
! ------------------
!
!
! Iteration over the aerosol type and mode
!
DO JSV = 1, NMOD_CCN+NMOD_IFN
!
IF (JSV .LE. NMOD_CCN) THEN
JMOD = JSV
SV_VAR = NSV_LIMA_CCN_FREE -1 + JMOD ! Variable number in PSVT
NM = 1 ! Number of species (for IFN int. mixing)
ELSE
JMOD = JSV - NMOD_CCN
SV_VAR = NSV_LIMA_IFN_FREE -1 + JMOD
NM = NSPECIE
END IF
!
PBC_SCAV_COEF(:,:,:,:) = 0.
PMEAN_SCAV_COEF(:,:,:) = 0.
PTOT_SCAV_RATE(:,:,:) = 0.
!
GSCAV(:,:,:) = .FALSE.
GSCAV(IIB:IIE,IJB:IJE,IKB:IKE) =GRAIN(IIB:IIE,IJB:IJE,IKB:IKE) .AND. &
(PSVT(IIB:IIE,IJB:IJE,IKB:IKE,SV_VAR)>1.0E-2)
ISCAV = COUNTJV(GSCAV(:,:,:),I1(:),I2(:),I3(:))
!
IF( ISCAV>=1 ) THEN
ALLOCATE(ZVISC_RATIO(ISCAV))
ALLOCATE(ZRHODREF(ISCAV))
ALLOCATE(ZVISCA(ISCAV))
ALLOCATE(ZT(ISCAV))
ALLOCATE(ZRRT(ISCAV))
ALLOCATE(ZCONCR(ISCAV))
ALLOCATE(ZLAMBDAR(ISCAV))
ALLOCATE(ZCONCP(ISCAV))
ALLOCATE(ZMFPA(ISCAV))
ALLOCATE(ZTOT_SCAV_RATE(ISCAV))
ALLOCATE(ZTOT_MASS_RATE(ISCAV))
ALLOCATE(ZMEAN_SCAV_COEF(ISCAV))
ALLOCATE(ZPABST(ISCAV))
ALLOCATE(ZKNUDSEN(ISCAV))
ALLOCATE(FACTOR(ISCAV))
!
ALLOCATE(ZCUNSLIP(ISCAV,NDIAMP))
ALLOCATE(ZBC_SCAV_COEF(ISCAV,NDIAMP))
ALLOCATE(ZSC(ISCAV,NDIAMP))
ALLOCATE(ZSC_INV(ISCAV,NDIAMP))
ALLOCATE(ZSC_SQRT(ISCAV,NDIAMP))
ALLOCATE(ZSC_3SQRT(ISCAV,NDIAMP))
ALLOCATE(ZRELT(ISCAV,NDIAMP))
ALLOCATE(ZDIFF(ISCAV,NDIAMP))
ALLOCATE(ZVOLDR(ISCAV,NDIAMR))
ALLOCATE(ZVOLDR_POW(ISCAV,NDIAMR))
ALLOCATE(ZVOLDR_INV(ISCAV,NDIAMR))
ALLOCATE(ZRE(ISCAV,NDIAMR))
ALLOCATE(ZRE_INV(ISCAV,NDIAMR))
ALLOCATE(ZRE_SQRT(ISCAV,NDIAMR))
ALLOCATE(ZST_STAR(ISCAV,NDIAMR))
ALLOCATE(ZFVELR(ISCAV,NDIAMR))
ALLOCATE(ZST(ISCAV,NDIAMP,NDIAMR))
ALLOCATE(ZCOL_EF(ISCAV,NDIAMP,NDIAMR))
ALLOCATE(ZSIZE_RATIO(ISCAV,NDIAMP,NDIAMR))
!
ZMEAN_SCAV_COEF(:)=0.
ZTOT_SCAV_RATE(:) =0.
ZTOT_MASS_RATE(:) =0.
DO JL=1,ISCAV
ZRHODREF(JL) = PRHODREF(I1(JL),I2(JL),I3(JL))
ZT(JL) = ZT_3D(I1(JL),I2(JL),I3(JL))
ZRRT(JL) = PRRT(I1(JL),I2(JL),I3(JL))
ZPABST(JL) = PPABST(I1(JL),I2(JL),I3(JL))
ZCONCP(JL) = PSVT(I1(JL),I2(JL),I3(JL),SV_VAR)*ZRHODREF(JL)![/m3]
ZCONCR(JL) = ZCONCR_3D(I1(JL),I2(JL),I3(JL)) ![/m3]
ZVISCA(JL) = ZVISCA_3D(I1(JL),I2(JL),I3(JL))
ZMFPA(JL) = ZMFPA_3D(I1(JL),I2(JL),I3(JL))
ZVISC_RATIO(JL) = ZVISC_RATIO_3D(I1(JL),I2(JL),I3(JL))
ZLAMBDAR(JL) = ZLAMBDAR_3D(I1(JL),I2(JL),I3(JL))
FACTOR(JL) = FACTOR_3D(I1(JL),I2(JL),I3(JL))
ZVOLDR(JL,:) = ZVOLDR_3D(I1(JL),I2(JL),I3(JL),:)
ZVOLDR_POW(JL,:) = ZVOLDR_3D_POW(I1(JL),I2(JL),I3(JL),:)
ZVOLDR_INV(JL,:) = ZVOLDR_3D_INV(I1(JL),I2(JL),I3(JL),:)
ZFVELR(JL,:) = ZFVELR_3D(I1(JL),I2(JL),I3(JL),:)
ZRE(JL,:) = ZRE_3D(I1(JL),I2(JL),I3(JL),:)
ZRE_SQRT(JL,:) = ZRE_3D_SQRT(I1(JL),I2(JL),I3(JL),:)
ZST_STAR(JL,:) = ZST_STAR_3D(I1(JL),I2(JL),I3(JL),:)
ENDDO
ZRE_INV(:,:) = 1./ZRE(:,:)
IF (ANY(ZCONCR .eq. 0.)) print *, 'valeur nulle dans ZLAMBDAR !'
IF (ANY(ZLAMBDAR .eq. 0.)) print *, 'valeur nulle dans ZLAMBDAR !'
!
!------------------------------------------------------------------------------------
!
! Loop over the different species (for IFN int. mixing)
!
DO JM = 1, NM ! species (DM1,DM2,BC,O) for IFN
IF ( JSV .LE. NMOD_CCN ) THEN ! CCN case
XRHOP = XRHO_CCN(JMOD)
XMDIAMP = 2*XR_MEAN_CCN(JMOD)
XSIGMAP = EXP(XLOGSIG_CCN(JMOD))
XFRACP = 1.0
ELSE ! IFN case
XRHOP = XRHO_IFN(JM)
XMDIAMP = XMDIAM_IFN(JM)
XSIGMAP = XSIGMA_IFN(JM)
XFRACP = XFRAC(JM,JMOD)
END IF
!-----------------------------------------------------------------------------
! Loop over the aerosols particles diameters (log normal distribution law) :
!
DO J1=1,NDIAMP
! exchange of variables: [m]
ZVOLDP(J1) = XMDIAMP * EXP(ZABSCISSP(J1)*SQRT(2.)*LOG(XSIGMAP))
! Cunningham slip correction factor (1+alpha*Knudsen)
ZKNUDSEN(:) = MIN( 20.,ZVOLDP(J1)/ZMFPA(:) )
ZCUNSLIP(:,J1) = 1.0+2.0/ZKNUDSEN(:)*(1.257+0.4*EXP(-0.55*ZKNUDSEN(:)))
! Diffusion coefficient
ZDIFF(:,J1) = XBOLTZ*ZT(:)*ZCUNSLIP(:,J1)/(3.*XPI*ZVISCA(:)*ZVOLDP(J1))
! Schmidt number
ZSC(:,J1) = ZVISCA(:)/(ZRHODREF(:)*ZDIFF(:,J1))
ZSC_INV(:,J1) = 1./ZSC(:,J1)
ZSC_SQRT(:,J1) = SQRT( ZSC(:,J1) )
ZSC_3SQRT(:,J1) = ZSC(:,J1)**(1./3.)
! Characteristic Time Required for reaching terminal velocity
ZRELT(:,J1) = (ZVOLDP(J1)**2)*ZCUNSLIP(:,J1)*XRHOP/(18.*ZVISCA(:))
! Density number
ZDENS_RATIO = XRHOP/XRHOLW
ZDENS_RATIO_SQRT = SQRT(ZDENS_RATIO)
! Initialisation
ZBC_SCAV_COEF(:,J1)=0.
!-------------------------------------------------------------------------
! Loop over the drops diameters (generalized Gamma distribution) :
!
DO J2=1,NDIAMR
! Stokes number
ZST(:,J1,J2) = 2.*ZRELT(:,J1)*(ZFVELR(:,J2)-ZRELT(1,J1)*XG) &
*ZVOLDR_INV(:,J2)
! Size Ratio
ZSIZE_RATIO(:,J1,J2) = ZVOLDP(J1)*ZVOLDR_INV(:,J2)
! Collision Efficiency
ZCOL_EF(:,J1,J2) = COLL_EFFI(ZRE, ZRE_INV, ZRE_SQRT, ZSC, ZSC_INV, &
ZSC_SQRT, ZSC_3SQRT, ZST, ZST_STAR, &
ZSIZE_RATIO, ZVISC_RATIO, ZDENS_RATIO_SQRT)
! Below-Cloud Scavenging Coefficient for a fixed ZVOLDP: [/s]
ZBC_SCAV_COEF(:,J1) = ZBC_SCAV_COEF(:,J1) + &
ZCOL_EF(:,J1,J2) * ZWEIGHTR(J2) * FACTOR(:) * ZVOLDR_POW(:,J2)
END DO
! End of the loop over the drops diameters
!--------------------------------------------------------------------------
! Total NUMBER Scavenging Rate of aerosol [m**-3.s**-1]
ZTOT_SCAV_RATE(:) = ZTOT_SCAV_RATE(:) - &
ZWEIGHTP(J1)*XFRACP*ZCONCP(:)*ZBC_SCAV_COEF(:,J1)
! Total MASS Scavenging Rate of aerosol [kg.m**-3.s**-1]
ZTOT_MASS_RATE(:) = ZTOT_MASS_RATE(:) + &
ZWEIGHTP(J1)*XFRACP*ZCONCP(:)*ZBC_SCAV_COEF(:,J1) &
*XPI/6.*XRHOP*(ZVOLDP(J1)**3)
END DO
! End of the loop over the drops diameters
!--------------------------------------------------------------------------
! Total NUMBER Scavenging Rate of aerosol [m**-3.s**-1]
PTOT_SCAV_RATE(:,:,:)=UNPACK(ZTOT_SCAV_RATE(:),MASK=GSCAV(:,:,:),FIELD=0.0)
! Free particles (CCN or IFN) [/s]:
PRSVS(:,:,:,SV_VAR) = max(PRSVS(:,:,:,SV_VAR)+PTOT_SCAV_RATE(:,:,:) &
* PRHODJ(:,:,:)/PRHODREF(:,:,:) , 0.0 )
! Total MASS Scavenging Rate of aerosol which REACH THE FLOOR because of
! rain sedimentation [kg.m**-3.s**-1]
IF (LAERO_MASS)THEN
PTOT_MASS_RATE(:,:,:) = PTOT_MASS_RATE(:,:,:) + &
UNPACK(ZTOT_MASS_RATE(:), MASK=GSCAV(:,:,:), FIELD=0.0)
CALL SCAV_MASS_SEDIMENTATION( HCLOUD, PTSTEP, KTCOUNT, PZZ, PRHODJ, &
PRHODREF, PRRT, PSVT(:,:,:,NSV_LIMA_SCAVMASS),&
PRSVS(:,:,:,NSV_LIMA_SCAVMASS), PINPAP )
PRSVS(:,:,:,NSV_LIMA_SCAVMASS)=PRSVS(:,:,:,NSV_LIMA_SCAVMASS) + &
PTOT_MASS_RATE(:,:,:)*PRHODJ(:,:,:)/PRHODREF(:,:,:)
END IF
ENDDO
! End of the loop over the aerosol species
!--------------------------------------------------------------------------
!
!
!
DEALLOCATE(FACTOR)
DEALLOCATE(ZSC_INV)
DEALLOCATE(ZSC_SQRT)
DEALLOCATE(ZSC_3SQRT)
DEALLOCATE(ZRE_INV)
DEALLOCATE(ZRE_SQRT)
DEALLOCATE(ZVOLDR_POW)
DEALLOCATE(ZVOLDR_INV)
!
DEALLOCATE(ZFVELR)
DEALLOCATE(ZRE)
DEALLOCATE(ZST_STAR)
DEALLOCATE(ZST)
DEALLOCATE(ZSIZE_RATIO)
DEALLOCATE(ZCOL_EF)
DEALLOCATE(ZVOLDR)
DEALLOCATE(ZDIFF)
DEALLOCATE(ZRELT)
DEALLOCATE(ZSC)
DEALLOCATE(ZCUNSLIP)
DEALLOCATE(ZBC_SCAV_COEF)
!
DEALLOCATE(ZTOT_SCAV_RATE)
DEALLOCATE(ZTOT_MASS_RATE)
DEALLOCATE(ZMEAN_SCAV_COEF)
!
DEALLOCATE(ZRRT)
DEALLOCATE(ZCONCR)
DEALLOCATE(ZLAMBDAR)
DEALLOCATE(ZCONCP)
DEALLOCATE(ZVISC_RATIO)
DEALLOCATE(ZRHODREF)
DEALLOCATE(ZVISCA)
DEALLOCATE(ZPABST)
DEALLOCATE(ZKNUDSEN)
DEALLOCATE(ZT)
DEALLOCATE(ZMFPA)
ENDIF
ENDDO
!
IF (LBUDGET_SV) THEN
IF (NMOD_CCN.GE.1) THEN
DO JL=1, NMOD_CCN
CALL BUDGET ( PRSVS(:,:,:,NSV_LIMA_CCN_FREE+JL-1), &
12+NSV_LIMA_CCN_FREE+JL-1,'SCAV_BU_RSV')
END DO
END IF
IF (NMOD_IFN.GE.1) THEN
DO JL=1, NMOD_IFN
CALL BUDGET ( PRSVS(:,:,:,NSV_LIMA_IFN_FREE+JL-1), &
12+NSV_LIMA_IFN_FREE+JL-1,'SCAV_BU_RSV')
END DO
END IF

WAUTELET Philippe
committed
IF ( LAERO_MASS ) THEN
CALL BUDGET ( PRSVS(:,:,:,NSV_LIMA_SCAVMASS), &
12+NSV_LIMA_SCAVMASS, 'SCAV_BU_RSV')
END IF
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
END IF
!
!------------------------------------------------------------------------------
!
!
!* 3. SUBROUTINE AND FUNCTION
! -----------------------
!
!
CONTAINS
!
!------------------------------------------------------------------------------
! ##########################################################################
SUBROUTINE SCAV_MASS_SEDIMENTATION( HCLOUD, PTSTEP, KTCOUNT, PZZ, PRHODJ,&
PRHODREF, PRAIN, PSVT_MASS, PRSVS_MASS, PINPAP )
! ##########################################################################
!
!!
!! PURPOSE
!! -------
!! The purpose of this routine is to compute the total mass of aerosol
!! scavenged by precipitations
!!
!!
!!** METHOD
!! ------
!!
!! EXTERNAL
!! --------
!! None
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAMETERS
!! JPHEXT : Horizontal external points number
!! JPVEXT : Vertical external points number
!! Module MODD_CONF :
!! CCONF configuration of the model for the first time step
!!
!! REFERENCE
!! ---------
!! Book1 of the documentation ( routine CH_AQUEOUS_SEDIMENTATION )
!!
!! AUTHOR
!! ------
!! J.-P. Pinty * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original 22/07/07
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_PARAMETERS
USE MODD_CONF
!
USE MODD_PARAM_LIMA, ONLY : XCEXVT, XRTMIN
USE MODD_PARAM_LIMA_WARM, ONLY : XBR, XDR, XFSEDRR
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Cloud parameterization
REAL, INTENT(IN) :: PTSTEP ! Time step
INTEGER, INTENT(IN) :: KTCOUNT ! Current time step number
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ ! Height (z)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! Dry Density [kg]
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRAIN ! Rain water m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSVT_MASS ! Precip. aerosols at t
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRSVS_MASS ! Precip. aerosols source
!
REAL, DIMENSION(:,:), INTENT(INOUT) :: PINPAP
!
!* 0.2 Declarations of local variables :
!
INTEGER :: JJ, JK, JN, JRR ! Loop indexes
INTEGER :: IIB, IIE, IJB, IJE, IKB, IKE ! Physical domain
!
REAL :: ZTSPLITR ! Small time step for rain sedimentation
REAL :: ZTSTEP ! Large time step for rain sedimentation
!
!
LOGICAL, DIMENSION(SIZE(PZZ,1),SIZE(PZZ,2),SIZE(PZZ,3)) &
:: GSEDIM ! where to compute the SED processes
INTEGER :: ISEDIM
INTEGER , DIMENSION(SIZE(GSEDIM)) :: I1,I2,I3 ! Used to replace the COUNT
INTEGER :: JL ! and PACK intrinsics
!
!
REAL, DIMENSION(SIZE(PZZ,1),SIZE(PZZ,2),SIZE(PZZ,3)) &
:: ZW, & ! work array
ZWSED, & ! sedimentation fluxes
ZZS ! Rain water m.r. source
!
REAL, DIMENSION(:), ALLOCATABLE :: ZRRS, & ! Rain water m.r. source
ZRHODREF, & ! RHO Dry REFerence
ZZW ! Work array
!

WAUTELET Philippe
committed
REAL :: ZRTMIN3
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
!
!
REAL :: ZVTRMAX, ZDZMIN, ZT
REAL, SAVE :: ZEXSEDR
LOGICAL, SAVE :: GSFIRSTCALL = .TRUE.
INTEGER, SAVE :: ISPLITR
!
!-------------------------------------------------------------------------------
!
!* 1. COMPUTE THE LOOP BOUNDS
! -----------------------
!
IIB=1+JPHEXT
IIE=SIZE(PZZ,1) - JPHEXT
IJB=1+JPHEXT
IJE=SIZE(PZZ,2) - JPHEXT
IKB=1+JPVEXT
IKE=SIZE(PZZ,3) - JPVEXT
!
!-------------------------------------------------------------------------------
!
!* 2. COMPUTE THE SEDIMENTATION (RS) SOURCE
! -------------------------------------
!
!* 2.1 splitting factor for high Courant number C=v_fall*(del_Z/del_T)
!
firstcall : IF (GSFIRSTCALL) THEN
GSFIRSTCALL = .FALSE.
ZVTRMAX = 10.
ZDZMIN = MINVAL(PZZ(IIB:IIE,IJB:IJE,IKB+1:IKE+1)-PZZ(IIB:IIE,IJB:IJE,IKB:IKE))
ISPLITR = 1
SPLIT : DO
ZT = 2.* PTSTEP / FLOAT(ISPLITR)
IF ( ZT * ZVTRMAX / ZDZMIN .LT. 1.) EXIT SPLIT
ISPLITR = ISPLITR + 1
END DO SPLIT
!
ZEXSEDR = (XBR+XDR+1.0)/(XBR+1.0)
!
END IF firstcall
!
!* 2.2 time splitting loop initialization
!
IF( (KTCOUNT==1) .AND. (CCONF=='START') ) THEN
ZTSPLITR = PTSTEP / FLOAT(ISPLITR) ! Small time step
ZTSTEP = PTSTEP ! Large time step
ELSE
ZTSPLITR= 2. * PTSTEP / FLOAT(ISPLITR)
ZTSTEP = 2. * PTSTEP
END IF
!
!* 2.3 compute the fluxes
!
! optimization by looking for locations where
! the precipitating fields are larger than a minimal value only !!!
!

WAUTELET Philippe
committed
ZRTMIN3 = XRTMIN(3) / ZTSTEP
ZZS(:,:,:) = PRAIN(:,:,:)
DO JN = 1 , ISPLITR
GSEDIM(:,:,:) = .FALSE.

WAUTELET Philippe
committed
GSEDIM(IIB:IIE,IJB:IJE,IKB:IKE) = ZZS(IIB:IIE,IJB:IJE,IKB:IKE) > ZRTMIN3
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
!
ISEDIM = COUNTJV( GSEDIM(:,:,:),I1(:),I2(:),I3(:))
IF( ISEDIM >= 1 ) THEN
IF( JN==1 ) THEN
ZZS(:,:,:) = ZZS(:,:,:) * ZTSTEP
DO JK = IKB , IKE-1
ZW(:,:,JK) =ZTSPLITR*2./(PRHODREF(:,:,JK)*(PZZ(:,:,JK+2)-PZZ(:,:,JK)))
END DO
ZW(:,:,IKE) =ZTSPLITR/(PRHODREF(:,:,IKE)*(PZZ(:,:,IKE+1)-PZZ(:,:,IKE)))
END IF
ALLOCATE(ZRRS(ISEDIM))
ALLOCATE(ZRHODREF(ISEDIM))
DO JL=1,ISEDIM
ZRRS(JL) = ZZS(I1(JL),I2(JL),I3(JL))
ZRHODREF(JL) = PRHODREF(I1(JL),I2(JL),I3(JL))
ENDDO
ALLOCATE(ZZW(ISEDIM)) ; ZZW(:) = 0.0
!
!* 2.2.1 for rain
!
ZZW(:) = XFSEDRR * ZRRS(:)**(ZEXSEDR) * ZRHODREF(:)**(ZEXSEDR-XCEXVT)
ZWSED(:,:,:) = UNPACK( ZZW(:),MASK=GSEDIM(:,:,:),FIELD=0.0 )
DO JK = IKB , IKE
ZZS(:,:,JK) = ZZS(:,:,JK) + ZW(:,:,JK)*(ZWSED(:,:,JK+1)-ZWSED(:,:,JK))
END DO
IF( JN==1 ) THEN
PINPAP(:,:) = ZWSED(:,:,IKB)* &

WAUTELET Philippe
committed
( PSVT_MASS(:,:,IKB)/MAX(ZRTMIN3,PRRT(:,:,IKB)) )
END IF
DEALLOCATE(ZRHODREF)
DEALLOCATE(ZRRS)
DEALLOCATE(ZZW)
IF( JN==ISPLITR ) THEN
GSEDIM(:,:,:) = .FALSE.

WAUTELET Philippe
committed
GSEDIM(IIB:IIE,IJB:IJE,IKB:IKE) = ZZS(IIB:IIE,IJB:IJE,IKB:IKE) > ZRTMIN3
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
ZWSED(:,:,:) = 0.0
WHERE( GSEDIM(:,:,:) )
ZWSED(:,:,:) = 1.0/ZTSTEP - PRAIN(:,:,:)/ZZS(:,:,:)
END WHERE
END IF
END IF
END DO
!
! Apply the rain sedimentation rate to the WR_xxx aqueous species
!
PRSVS_MASS(:,:,:) = PRSVS_MASS(:,:,:) + ZWSED(:,:,:)*PSVT_MASS(:,:,:)
!
END SUBROUTINE SCAV_MASS_SEDIMENTATION
!
!------------------------------------------------------------------------------
!
!###################################################################
FUNCTION COLL_EFFI (PRE, PRE_INV, PRE_SQRT, PSC, PSC_INV, PSC_SQRT, &
PSC_3SQRT, PST, PST_STAR, PSIZE_RATIO, &
PVISC_RATIO, PDENS_RATIO_SQRT) RESULT(PCOL_EF)
!###################################################################
!
!Compute the Raindrop-Aerosol Collision Efficiency
!
!* 0. DECLARATIONS
! ---------------
!
IMPLICIT NONE
!
INTEGER :: I
!
REAL, DIMENSION(:,:), INTENT(IN) :: PRE
REAL, DIMENSION(:,:), INTENT(IN) :: PRE_INV
REAL, DIMENSION(:,:), INTENT(IN) :: PRE_SQRT
REAL, DIMENSION(:,:), INTENT(IN) :: PSC
REAL, DIMENSION(:,:), INTENT(IN) :: PSC_INV
REAL, DIMENSION(:,:), INTENT(IN) :: PSC_SQRT
REAL, DIMENSION(:,:), INTENT(IN) :: PSC_3SQRT
REAL, DIMENSION(:,:), INTENT(IN) :: PST_STAR
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PST
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSIZE_RATIO
!
REAL, DIMENSION(:), INTENT(IN) :: PVISC_RATIO
REAL, INTENT(IN) :: PDENS_RATIO_SQRT
!
REAL, DIMENSION(SIZE(ZRE,1)) :: PCOL_EF !result : collision efficiency
!
!-------------------------------------------------------------------------------
!
PCOL_EF(:) = (4.*PSC_INV(:,J1)*PRE_INV(:,J2)*(1.+0.4*PRE_SQRT(:,J2) &
*PSC_3SQRT(:,J1)+0.16*PRE_SQRT(:,J2)*PSC_SQRT(:,J1))) &
+(4.*PSIZE_RATIO(:,J1,J2)*(PVISC_RATIO(:) &
+(1.+2.*PRE_SQRT(:,J2))*PSIZE_RATIO(:,J1,J2)))
DO I=1,ISCAV
IF (PST(I,J1,J2)>PST_STAR(I,J2)) THEN
PCOL_EF(I) = PCOL_EF(I) &
+(PDENS_RATIO_SQRT*((PST(I,J1,J2)-PST_STAR(I,J2)) &
/(PST(I,J1,J2)-PST_STAR(I,J2)+2./3.))**(3./2.))
ENDIF
ENDDO
END FUNCTION COLL_EFFI
!
!------------------------------------------------------------------------------
!
END SUBROUTINE LIMA_PRECIP_SCAVENGING