Newer
Older
! ######spl
SUBROUTINE ARO_TURB_MNH( KKA,KKU,KKL,KLON,KLEV,KRR,KRRL,KRRI,KSV, &
KTCOUNT, KGRADIENTS, LDHARATU, PTSTEP, &
PZZ, PZZF, PZZTOP, &

RODIER Quentin
committed
PRHODJ, PTHVREF,PRHODREF,HINST_SFU,HMF_UPDRAFT,HCLOUD,&
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
PSFTH,PSFRV,PSFSV,PSFU,PSFV, &
PPABSM,PUM,PVM,PWM,PTKEM,PEPSM,PSVM,PSRCM, &
PTHM,PRM, &
PRUS,PRVS,PRWS,PRTHS,PRRS,PRSVSIN,PRSVS,PRTKES,PRTKES_OUT,PREPSS, &
ZHGRAD,PSIGS,OSUBG_COND, &
PFLXZTHVMF,PLENGTHM,PLENGTHH,MFMOIST, &
PDRUS_TURB,PDRVS_TURB, &
PDRTHLS_TURB,PDRRTS_TURB,PDRSVS_TURB, &
PDP,PTP,PTPMF,PTDIFF,PTDISS,PEDR,YDDDH,YDLDDH,YDMDDH)
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
! ##########################################################################
!
!!**** * - compute the turbulence sources and the TKE evolution for Arome
!!
!!
!!
!! PURPOSE
!! -------
!! The purpose of this routine is to compute the turbulence sources
!! and the TKE evolution for the Arome model
!!
!!
!!** METHOD
!! ------
!! This routine calls the mesoNH turbulence scheme
!! in its 1DIM configutation.
!!
!!
!! EXTERNAL
!! --------
!! Subroutine TURB (routine de MesoNH)
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAMETERS : contains declarations of parameter variables
!! JPHEXT : Horizontal external points number
!! JPVEXT_TURB : Vertical external points number
!! Module MODD_CST
!! XP00 ! Reference pressure
!! XRD ! Gaz constant for dry air
!! XCPD ! Cpd (dry air)
!!
!! REFERENCE
!! ---------
!!
!! Documentation AROME
!!
!! AUTHOR
!! ------
!! S.Malardel and Y.Seity
!!
!! MODIFICATIONS
!! -------------
!! Original 10/03/03
!! 2012-02 Y. Seity, add possibility to run with reversed vertical levels
!! 2015-07 Wim de Rooy possibility to run with LHARATU=TRUE (Racmo turbulence scheme)
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CONF
USE MODD_CST
USE MODD_PARAMETERS

RODIER Quentin
committed
USE MODD_IO, ONLY: TFILEDATA
USE MODD_BUDGET, ONLY: NBUDGET_RI, TBUDGETDATA
!
USE MODI_TURB
!
USE DDH_MIX, ONLY : TYP_DDH
USE YOMLDDH, ONLY : TLDDH
USE YOMMDDH, ONLY : TMDDH
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
!
INTEGER, INTENT(IN) :: KLON !KFDIA under CPG
INTEGER, INTENT(IN) :: KLEV !Number of vertical levels
INTEGER, INTENT(IN) :: KKA !Index of point near ground
INTEGER, INTENT(IN) :: KKU !Index of point near top
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO
INTEGER, INTENT(IN) :: KRR ! Number of moist variables
INTEGER, INTENT(IN) :: KRRL ! Number of liquide water variables
INTEGER, INTENT(IN) :: KRRI ! Number of ice variables
INTEGER, INTENT(IN) :: KSV ! Number of passive scalar
INTEGER, INTENT(IN) :: KTCOUNT ! Temporal loop counter
INTEGER, INTENT(IN) :: KGRADIENTS ! Number of stored horizontal gradients
LOGICAL, INTENT(IN) :: LDHARATU ! HARATU scheme active
CHARACTER (LEN=4), INTENT(IN) :: HMF_UPDRAFT ! Type of mass flux scheme

RODIER Quentin
committed
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Type of microphysical scheme
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
REAL, INTENT(IN) :: PTSTEP ! Time step
!
!
REAL, DIMENSION(KLON,1,KLEV), INTENT(IN) :: PZZ ! Height of layer boundaries
REAL, DIMENSION(KLON,1,KLEV), INTENT(IN) :: PZZF ! Height of level
REAL, DIMENSION(KLON), INTENT(IN) :: PZZTOP ! Height of highest level
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: PRHODJ !Dry density * Jacobian
! MFMOIST used in case LHARATU=TRUE
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: MFMOIST !Moist mass flux from Dual scheme
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: PTHVREF ! Virtual Potential
! Temperature of the reference state
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: PRHODREF ! dry density of the
! reference state
CHARACTER(LEN=1) , INTENT(IN) :: HINST_SFU ! temporal location of the
! surface friction flux
!
REAL, DIMENSION(KLON,1), INTENT(INOUT) :: PSFTH,PSFRV
! normal surface fluxes of theta and Rv
REAL, DIMENSION(KLON,1), INTENT(INOUT) :: PSFU,PSFV
! normal surface fluxes of (u,v) parallel to the orography
REAL, DIMENSION(KLON,1,KSV), INTENT(INOUT) :: PSFSV
! normal surface fluxes of Scalar var.
!
! prognostic variables at t- deltat
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: PPABSM ! Pressure at time t-1
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: PUM,PVM,PWM ! wind components
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: PTKEM ! TKE
REAL, DIMENSION(0,0,0), INTENT(INOUT) :: PEPSM ! dissipation of TKE
REAL, DIMENSION(KLON,1,KLEV,KSV), INTENT(INOUT) :: PSVM ! passive scal. var.
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: PSRCM ! Second-order flux
! s'rc'/2Sigma_s2 at time t-1 multiplied by Lambda_3
!
! PLENGTHM, PLENGTH used in case LHARATU=true
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: PLENGTHM, PLENGTHH ! length scales vdfexcu
!
! thermodynamical variables which are transformed in conservative var.
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: PTHM ! pot. temp.
REAL, DIMENSION(KLON,1,KLEV,KRR), INTENT(INOUT) :: PRM ! mixing ratio
!
! sources of momentum, conservative potential temperature, Turb. Kin. Energy,
! TKE dissipation
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: PRUS,PRVS,PRWS
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: PRTHS
REAL, DIMENSION(KLON,1,KLEV), INTENT(IN) :: PRTKES
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(OUT) :: PRTKES_OUT
REAL, DIMENSION(0,0,0) , INTENT(INOUT) ::PREPSS
! Source terms for all water kinds, PRRS(:,:,:,1) is used for the conservative
! mixing ratio
REAL, DIMENSION(KLON,1,KLEV,KRR), INTENT(INOUT) :: PRRS
! Source terms for all passive scalar variables
REAL, DIMENSION(KLON,1,KLEV,KSV), INTENT(IN) :: PRSVSIN
REAL, DIMENSION(KLON,1,KLEV,KSV), INTENT(OUT) :: PRSVS
! Sigma_s at time t+1 : square root of the variance of the deviation to the
! saturation
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(OUT) :: PSIGS
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(OUT) :: PDRUS_TURB ! evolution of rhoJ*U by turbulence only
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(OUT) :: PDRVS_TURB ! evolution of rhoJ*V by turbulence only
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(OUT) :: PDRTHLS_TURB ! evolution of rhoJ*thl by turbulence only
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(OUT) :: PDRRTS_TURB ! evolution of rhoJ*rt by turbulence only
REAL, DIMENSION(KLON,1,KLEV,KSV), INTENT(OUT) :: PDRSVS_TURB ! evolution of rhoJ*Sv by turbulence only
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: PFLXZTHVMF
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(OUT) :: PEDR ! EDR
!
LOGICAL , INTENT(IN) :: OSUBG_COND ! switch
! !for SUBGrid CONDensation
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(OUT) :: PDP, PTP, PTPMF, PTDIFF, PTDISS
! !for TKE DDH budgets
!
TYPE(TYP_DDH), INTENT(INOUT), TARGET :: YDDDH
TYPE(TLDDH), INTENT(IN), TARGET :: YDLDDH
TYPE(TMDDH), INTENT(IN), TARGET :: YDMDDH

RODIER Quentin
committed
TYPE(TBUDGETDATA), DIMENSION(NBUDGET_RI) :: YLBUDGET !NBUDGET_RI is the one with the highest number needed for turb
TYPE(TFILEDATA) :: ZTFILE !I/O for MesoNH
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
!* 0.2 Declarations of local variables :
!
INTEGER :: JRR,JSV ! Loop index for the moist and scalar variables
INTEGER :: IIB ! Define the physical domain
INTEGER :: IIE !
INTEGER :: IJB !
INTEGER :: IJE !
INTEGER :: IKB !
INTEGER :: IKE !
INTEGER :: IKTB !
INTEGER :: IKTE !
INTEGER :: IKT !
INTEGER :: JL, JK, JLON
!
INTEGER ::II
!
!
INTEGER :: IMI ! model index number
CHARACTER(LEN=4),DIMENSION(2) :: HLBCX, HLBCY ! X- and Y-direc LBC
INTEGER :: ISPLIT ! number of time-splitting
LOGICAL :: OTURB_FLX ! switch to write the
! turbulent fluxes in the syncronous FM-file
LOGICAL :: OTURB_DIAG ! switch to write some
! diagnostic fields in the syncronous FM-file
LOGICAL :: ORMC01 ! switch for RMC01 lengths in SBL
CHARACTER(LEN=4) :: HTURBDIM ! dimensionality of the
! turbulence scheme
CHARACTER(LEN=4) :: HTURBLEN ! kind of mixing length
REAL :: ZIMPL ! degree of implicitness
!
REAL, DIMENSION(KLON,1,KLEV+2) :: ZDXX,ZDYY,ZDZZ,ZDZX,ZDZY
! metric coefficients
REAL, POINTER :: ZDIRCOSXW(:,:), ZDIRCOSYW(:,:), ZDIRCOSZW(:,:)
! Director Cosinus along x, y and z directions at surface w-point
REAL, POINTER :: ZCOSSLOPE(:,:) ! cosinus of the anglebetween i and the slope vector
REAL, POINTER :: ZSINSLOPE(:,:) ! sinus of the angle between i and the slope vector
REAL,DIMENSION(KLON,1,KLEV+2) :: ZCEI
REAL :: ZCEI_MIN,ZCEI_MAX,ZCOEF_AMPL_SAT
REAL, DIMENSION(KLON,1) :: ZBL_DEPTH, ZSBL_DEPTH
REAL,DIMENSION(KLON,1,KLEV+2) :: ZWTH ! heat flux
REAL,DIMENSION(KLON,1,KLEV+2) :: ZWRC ! cloud water flux
REAL,DIMENSION(KLON,1,KLEV+2,KSV) :: ZWSV,ZSVM,ZRSVS,ZDRSVS_TURB ! scalar flux
REAL,DIMENSION(KLON,1,KLEV+2) :: ZZZ ! Local value of PZZ
REAL,DIMENSION(KLON,1,KLEV+2,KRR) :: ZRM,ZRRS
REAL,DIMENSION(KLON,1,KLEV+2,KGRADIENTS) :: ZHGRAD ! Horizontal Gradients
!
REAL, DIMENSION(KLON,1), TARGET :: ZERO, ZONE
!
CHARACTER(LEN=4) :: CL
!------------------------------------------------------------------------------
!
!* 1. PRELIMINARY COMPUTATIONS
! ------------------------
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('ARO_TURB_MNH',0,ZHOOK_HANDLE)
IIB=1+JPHEXT
IIE=SIZE(PZZ,1) - JPHEXT
IJB=1+JPHEXT
IJE=SIZE(PZZ,2) - JPHEXT
IKTB=1+JPVEXT_TURB
IKT=SIZE(PZZ,3)+2*JPVEXT_TURB
IKTE=IKT - JPVEXT_TURB
IKB=KKA+JPVEXT_TURB*KKL
IKE=KKU-JPVEXT_TURB*KKL
!
!
!------------------------------------------------------------------------------
!
!* 2. INITIALISATION (CAS DU MODELE 1D)
!
! ---------------------------------
! Numero du modele si grid nestind, toujours egal a 1
IMI=1

RODIER Quentin
committed
! Fichier I/O pour MesoNH (non-utilise dans AROME)
ZTFILE%LOPENED=.FALSE.
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
! Type de condition � la limite. En 1D, sans importance. A etudier en 3D.
HLBCX(:)='CYCL'
HLBCY(:)='CYCL'
! en dur a 1 dans MNH
ISPLIT=1
! pour ecriture et diagnostic dans mesoNH, � priori les switches toujours � .F.
OTURB_FLX=.FALSE.
OTURB_DIAG=.FALSE.
! a mettre en namelist
ORMC01=.FALSE.
HTURBDIM='1DIM'
HTURBLEN='BL89'
ZIMPL=1.
! tableau a recalculer a chaque pas de temps
! attention, ZDZZ est l'altitude entre deux niveaux (et pas l'�paisseur de la couche)
!WRITE(20,*)'sous aro_turb_mnh PZZF', PZZF(1,1,58:60)
!WRITE(20,*)'sous aro_turb_mnh PZZ', PZZ(1,1,58:60)
ZZZ(IIB:IIE,1,2:KLEV+1)=PZZ(IIB:IIE,1,1:KLEV)
ZZZ(IIB:IIE,1,1) = PZZTOP(IIB:IIE)
ZDZZ(IIB:IIE,1,KLEV+2)=-999.
DO JK = 2 , KLEV
DO JL = IIB,IIE
ZDZZ(JL,1,JK)=PZZF(JL,1,JK-1)-PZZF(JL,1,JK)
ENDDO
ENDDO
DO JL = IIB,IIE
ZZZ(JL,1,KLEV+2) = 2*PZZ(JL,1,KLEV)-PZZ(JL,1,KLEV-1)
ZDZZ(JL,1,1)=ZZZ(JL,1,KKU)-ZZZ(JL,1,IKE)
ZDZZ(JL,1,KLEV+1)=PZZF(JL,1,KLEV)-(1.5*ZZZ(JL,1,KLEV+1)-0.5*ZZZ(JL,1,KLEV))
ENDDO
! tableaux qui devront etre initialis�s plus en amont dans Aladin s'il
! n'existent pas d�ja. Dans le cas du 1D, il n'y a pas de relief,
! ils ont donc des valeurs triviales.
ZERO(:,:) = 0.
ZONE(:,:) = 1.
ZDIRCOSXW=>ZONE(:,:)
ZDIRCOSYW=>ZONE(:,:)
ZDIRCOSZW=>ZONE(:,:)
ZCOSSLOPE=>ZONE(:,:)
ZSINSLOPE=>ZERO(:,:)
!------------------------------------------------------------------------------
!
!
!* 4. MULTIPLICATION PAR RHODJ
! POUR OBTENIR LES TERMES SOURCES DE MESONH
!
! -----------------------------------------------
! WRITE (15,*)'PRUS debut AC_TURB_MNH=',PRUS
! WRITE (15,*)'PRVS debut AC_TURB_MNH=',PRVS
! WRITE (15,*)'PRWS debut AC_TURB_MNH=',PRWS
! WRITE (15,*)'PRTHS debut AC_TURB_MNH=',PRTHS
! WRITE (15,*)'PRRS debut AC_TURB_MNH=',PRRS
DO JK=2,KLEV+1
DO JL = 1,KLON
PRUS(JL,1,JK) = PRUS(JL,1,JK) *PRHODJ(JL,1,JK)
PRVS(JL,1,JK) = PRVS(JL,1,JK) *PRHODJ(JL,1,JK)
PRWS(JL,1,JK) = PRWS(JL,1,JK) *PRHODJ(JL,1,JK)
PRTHS(JL,1,JK) = PRTHS(JL,1,JK) *PRHODJ(JL,1,JK)
PRTKES_OUT(JL,1,JK) = PRTKES(JL,1,JK-1)*PRHODJ(JL,1,JK)
ENDDO
ENDDO
DO JRR=1,KRR
DO JK=2,KLEV+1
DO JL = 1,KLON
ZRRS(JL,1,JK,JRR) = PRRS(JL,1,JK-1,JRR)*PRHODJ(JL,1,JK)
ENDDO
ZRM(:,1,JK,JRR) = PRM(:,1,JK-1,JRR)
ENDDO
ZRRS(:,1,1,JRR )= ZRRS(:,1,2,JRR)
ZRRS(:,1,KLEV+2,JRR)= ZRRS(:,1,KLEV+1,JRR)
ZRM(:,1,1,JRR )= ZRM(:,1,2,JRR)
ZRM(:,1,KLEV+2,JRR)= ZRM(:,1,KLEV+1,JRR)
ENDDO
DO JSV=1,KSV
DO JK=2,KLEV+1
DO JL = 1,KLON
ZRSVS(JL,1,JK,JSV) = PRSVSIN(JL,1,JK-1,JSV)*PRHODJ(JL,1,JK)
ENDDO
ZSVM(:,1,JK,JSV) = PSVM(:,1,JK-1,JSV)
ENDDO
ZRSVS(:,1,1,JSV )= ZRSVS(:,1,2,JSV)
ZRSVS(:,1,KLEV+2,JSV)= ZRSVS(:,1,KLEV+1,JSV)
ZSVM(:,1,1,JSV )= ZSVM(:,1,2,JSV)
ZSVM(:,1,KLEV+2,JSV)= ZSVM(:,1,KLEV+1,JSV)
ENDDO
!------------------------------------------------------------------------------
!
!* 3. Add 2*JPVEXT_TURB values on the vertical
!
!
CALL VERTICAL_EXTEND(PRHODJ)
CALL VERTICAL_EXTEND(PTHVREF)
CALL VERTICAL_EXTEND(PRHODREF)
CALL VERTICAL_EXTEND(PPABSM)
CALL VERTICAL_EXTEND(PUM)
CALL VERTICAL_EXTEND(PVM)
CALL VERTICAL_EXTEND(PWM)
CALL VERTICAL_EXTEND(PTKEM)
PSRCM(:,:,1)=0.
PSRCM(:,:,KLEV+2)=0.
CALL VERTICAL_EXTEND(PTHM)
CALL VERTICAL_EXTEND(PFLXZTHVMF)
IF (LDHARATU) THEN
CALL VERTICAL_EXTEND(PLENGTHM)
CALL VERTICAL_EXTEND(PLENGTHH)
ENDIF
CALL VERTICAL_EXTEND(MFMOIST)
CALL VERTICAL_EXTEND(PRUS)
CALL VERTICAL_EXTEND(PRVS)
CALL VERTICAL_EXTEND(PRWS)
CALL VERTICAL_EXTEND(PRTHS)
CALL VERTICAL_EXTEND(PRTKES_OUT)
!------------------------------------------------------------------------------
!
!
!* 5. APPEL DE LA TURBULENCE MESONH
!
! ---------------------------------
!pour AROME, on n'utilise pas les modifs de Mireille pour la turb au bord des nuages
ZCEI_MAX=1.0
ZCEI_MIN=0.0
ZCEI=0.0
ZCOEF_AMPL_SAT=0.0
DO JRR=1, NBUDGET_RI
YLBUDGET(JRR)%NBUDGET=JRR
YLBUDGET(JRR)%YDDDH=>YDDDH
YLBUDGET(JRR)%YDLDDH=>YDLDDH
YLBUDGET(JRR)%YDMDDH=>YDMDDH
ENDDO
CALL TURB (KLEV+2,1,KKL,IMI, KRR, KRRL, KRRI, HLBCX, HLBCY, ISPLIT,IMI, &
& OTURB_FLX,OTURB_DIAG,OSUBG_COND,ORMC01, &

RODIER Quentin
committed
& HTURBDIM,HTURBLEN,'NONE','NONE',HCLOUD, &

RODIER Quentin
committed
& ZIMPL, &

RODIER Quentin
committed
& 2*PTSTEP,ZTFILE, &
& ZDXX,ZDYY,ZDZZ,ZDZX,ZDZY,ZZZ, &
& ZDIRCOSXW,ZDIRCOSYW,ZDIRCOSZW,ZCOSSLOPE,ZSINSLOPE, &

RODIER Quentin
committed
& PRHODJ,PTHVREF, &
& PSFTH,PSFRV,PSFSV,PSFU,PSFV, &
& PPABSM,PUM,PVM,PWM,PTKEM,ZSVM,PSRCM, &
& PLENGTHM,PLENGTHH,MFMOIST, &
& ZBL_DEPTH,ZSBL_DEPTH, &

RODIER Quentin
committed
& ZCEI,ZCEI_MIN,ZCEI_MAX,ZCOEF_AMPL_SAT, &
& PTHM,ZRM, &
& PRUS,PRVS,PRWS,PRTHS,ZRRS,ZRSVS,PRTKES_OUT, &

RODIER Quentin
committed
& PSIGS, &
& PFLXZTHVMF,ZWTH,ZWRC,ZWSV,PDP,PTP,PTDIFF,PTDISS,&
& YLBUDGET, KBUDGETS=SIZE(YLBUDGET),PEDR=PEDR,PTPMF=PTPMF,&
& PDRUS_TURB=PDRUS_TURB,PDRVS_TURB=PDRVS_TURB, &
& PDRTHLS_TURB=PDRTHLS_TURB,PDRRTS_TURB=PDRRTS_TURB,PDRSVS_TURB=ZDRSVS_TURB)
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
!
!
!------------------------------------------------------------------------------
!
!
!* 5. DIVISION PAR RHODJ DES TERMES SOURCES DE MESONH
! (on obtient des termes homog�nes � des tendances)
!
! -----------------------------------------------
DO JK=2,KLEV+1
DO JL = 1,KLON
PRUS(JL,1,JK) = PRUS(JL,1,JK) /PRHODJ(JL,1,JK)
PRVS(JL,1,JK) = PRVS(JL,1,JK) /PRHODJ(JL,1,JK)
PRTHS(JL,1,JK) = PRTHS(JL,1,JK) /PRHODJ(JL,1,JK)
PRTKES_OUT(JL,1,JK) = PRTKES_OUT(JL,1,JK) /PRHODJ(JL,1,JK)
PDRUS_TURB(JL,1,JK) = PDRUS_TURB(JL,1,JK) /PRHODJ(JL,1,JK)
PDRVS_TURB(JL,1,JK) = PDRVS_TURB(JL,1,JK) /PRHODJ(JL,1,JK)
PDRTHLS_TURB(JL,1,JK) = PDRTHLS_TURB(JL,1,JK) /PRHODJ(JL,1,JK)
PDRRTS_TURB(JL,1,JK) = PDRRTS_TURB(JL,1,JK) /PRHODJ(JL,1,JK)
ENDDO
ENDDO
DO JRR=1,KRR
DO JK=2,KLEV+1
DO JL = 1,KLON
PRRS(JL,1,JK-1,JRR) = ZRRS(JL,1,JK,JRR)/PRHODJ(JL,1,JK)
ENDDO
PRM(:,1,JK-1,JRR) = ZRM(:,1,JK,JRR)
ENDDO
ENDDO
DO JSV=1,KSV
DO JK=2,KLEV+1
DO JL = 1,KLON
PRSVS(JL,1,JK-1,JSV) = ZRSVS(JL,1,JK,JSV)/PRHODJ(JL,1,JK)
PDRSVS_TURB(JL,1,JK-1,JSV) = ZDRSVS_TURB(JL,1,JK,JSV)/PRHODJ(JL,1,JK)
ENDDO
ENDDO
ENDDO
IF (LHOOK) CALL DR_HOOK('ARO_TURB_MNH',1,ZHOOK_HANDLE)
CONTAINS
SUBROUTINE VERTICAL_EXTEND(PX)
! fill extra vetical levels to fit MNH interface
REAL, DIMENSION(KLON,1,KLEV+2), INTENT(INOUT) :: PX
! NO DR_HOOK, PLEASE ! Rek
PX(:,1,1 )= PX(:,1,2)
PX(:,1,KLEV+2)= PX(:,1,KLEV+1)
END SUBROUTINE VERTICAL_EXTEND
END SUBROUTINE ARO_TURB_MNH