Newer
Older

WAUTELET Philippe
committed
!MNH_LIC Copyright 2013-2024 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! ##########################
MODULE MODI_LIMA_WARM_NUCL
! ##########################
!

RIETTE Sébastien
committed
IMPLICIT NONE
INTERFACE
SUBROUTINE LIMA_WARM_NUCL( OACTIT, PTSTEP, KMI, TPFILE, &
PRHODREF, PEXNREF, PPABST, PT, PTM, PW_NU, &
PRVT, PRCT, PRRT, &
PAERO,PSOLORG, PMI, HACTCCN, &
PTHS, PRVS, PRCS, PCCS, PNFS, PNAS )
!
USE MODD_IO, ONLY: TFILEDATA

RIETTE Sébastien
committed
IMPLICIT NONE
!
LOGICAL, INTENT(IN) :: OACTIT ! Switch to activate the
! activation by radiative
! tendency
REAL, INTENT(IN) :: PTSTEP ! Double Time step
! (single if cold start)
INTEGER, INTENT(IN) :: KMI ! Model index
TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Output file
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF ! Reference density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PEXNREF ! Reference Exner function
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! abs. pressure at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PT ! Temperature
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTM ! Temperature at time t-dt
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PW_NU ! updraft velocity used for
! the nucleation param.
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rain water m.r. at t
!
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PAERO ! Aerosol concentration
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PSOLORG ![%] solubility fraction of soa
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PMI
CHARACTER(LEN=4), INTENT(IN) :: HACTCCN ! kind of CCN activation
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTHS ! Theta source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRVS ! Water vapor m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRCS ! Cloud water m.r. source
!
REAL, DIMENSION(:,:,:) , INTENT(INOUT) :: PCCS ! Cloud water C. source
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PNFS ! CCN C. available source
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PNAS ! CCN C. activated source
!
END SUBROUTINE LIMA_WARM_NUCL
END INTERFACE
END MODULE MODI_LIMA_WARM_NUCL
! #######################################################################
SUBROUTINE LIMA_WARM_NUCL( OACTIT, PTSTEP, KMI, TPFILE, &
PRHODREF, PEXNREF, PPABST, PT, PTM, PW_NU, &
PRVT, PRCT, PRRT, &
PAERO,PSOLORG, PMI, HACTCCN, &
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
PTHS, PRVS, PRCS, PCCS, PNFS, PNAS )
! #######################################################################
!
!!
!! PURPOSE
!! -------
!! The purpose of this routine is to compute the activation of CCN
!! according to Cohard and Pinty, QJRMS, 2000
!!
!!
!!** METHOD
!! ------
!! The activation of CCN is checked for quasi-saturated air parcels
!! to update the cloud droplet number concentration.
!!
!! Computation steps :
!! 1- Check where computations are necessary
!! 2- and 3- Compute the maximum of supersaturation using the iterative
!! Ridder algorithm
!! 4- Compute the nucleation source
!! 5- Deallocate local variables
!!
!! Contains :
!! 6- Functions : Ridder algorithm
!!
!!
!! REFERENCE
!! ---------
!!
!! Cohard, J.-M. and J.-P. Pinty, 2000: A comprehensive two-moment warm
!! microphysical bulk scheme.
!! Part I: Description and tests
!! Part II: 2D experiments with a non-hydrostatic model
!! Accepted for publication in Quart. J. Roy. Meteor. Soc.
!!
!! AUTHOR
!! ------
!! J.-M. Cohard * Laboratoire d'Aerologie*
!! J.-P. Pinty * Laboratoire d'Aerologie*
!! S. Berthet * Laboratoire d'Aerologie*
!! B. Vié * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original ??/??/13
!! J. Escobar : 10/2017 , for real*4 use XMNH_EPSILON
!! Philippe Wautelet: 05/2016-04/2018: new data structures and calls for I/O
! P. Wautelet 10/04/2019: replace ABORT and STOP calls by Print_msg
! P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
! P. Wautelet 28/05/2019: move COUNTJV function to tools.f90
! B. Vie 03/03/2020: use DTHRAD instead of dT/dt in Smax diagnostic computation
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!

RODIER Quentin
committed
USE MODD_CH_AEROSOL, ONLY: LORILAM
USE MODD_CST

RODIER Quentin
committed
USE MODD_DUST, ONLY: LDUST
use modd_field, only: TFIELDMETADATA, TYPEREAL
USE MODD_IO, ONLY: TFILEDATA
USE MODD_LUNIT_n, ONLY: TLUOUT
USE MODD_PARAMETERS, ONLY : JPHEXT, JPVEXT
USE MODD_PARAM_LIMA
USE MODD_PARAM_LIMA_WARM

RODIER Quentin
committed
USE MODD_SALT, ONLY: LSALT
USE MODE_IO_FIELD_WRITE, only: IO_Field_write
use mode_tools, only: Countjv

WAUTELET Philippe
committed
USE MODI_CH_AER_ACTIVATION
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
USE MODI_GAMMA
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
LOGICAL, INTENT(IN) :: OACTIT ! Switch to activate the
! activation by radiative
! tendency
REAL, INTENT(IN) :: PTSTEP ! Double Time step
! (single if cold start)
INTEGER, INTENT(IN) :: KMI ! Model index
TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Output file
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF ! Reference density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PEXNREF ! Reference Exner function
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! abs. pressure at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PT ! Temperature
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTM ! Temperature at time t-dt
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PW_NU ! updraft velocity used for
! the nucleation param.
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PAERO ! Aerosol concentration
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PSOLORG ![%] solubility fraction of soa
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PMI
CHARACTER(LEN=4), INTENT(IN) :: HACTCCN ! kind of CCN activation
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
!
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTHS ! Theta source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRVS ! Water vapor m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRCS ! Cloud water m.r. source
!
REAL, DIMENSION(:,:,:) , INTENT(INOUT) :: PCCS ! Cloud water C. source
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PNFS ! CCN C. available source
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PNAS ! CCN C. activated source
!
!
!* 0.1 Declarations of local variables :
!
! Packing variables
LOGICAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2),SIZE(PRHODREF,3)) :: GNUCT
INTEGER :: INUCT
INTEGER , DIMENSION(SIZE(GNUCT)) :: I1,I2,I3 ! Used to replace the COUNT
INTEGER :: JL ! and PACK intrinsics
!
! Packed micophysical variables
REAL, DIMENSION(:) , ALLOCATABLE :: ZRCS ! cloud mr source
REAL, DIMENSION(:) , ALLOCATABLE :: ZCCS ! cloud conc. source
REAL, DIMENSION(:,:), ALLOCATABLE :: ZNFS ! available nucleus conc. source
REAL, DIMENSION(:,:), ALLOCATABLE :: ZNAS ! activated nucleus conc. source
!
! Other packed variables
REAL, DIMENSION(:) , ALLOCATABLE :: ZRHODREF ! RHO Dry REFerence
REAL, DIMENSION(:) , ALLOCATABLE :: ZEXNREF ! EXNer Pressure REFerence
REAL, DIMENSION(:) , ALLOCATABLE :: ZZT ! Temperature
!
! Work arrays
REAL, DIMENSION(:), ALLOCATABLE :: ZZW1, ZZW2, ZZW3, ZZW4, ZZW5, ZZW6, &
ZCTMIN, &
ZZTDT, & ! dT/dt
ZSW, & ! real supersaturation
ZSMAX, & ! Maximum supersaturation
ZVEC1
!
REAL, DIMENSION(:,:), ALLOCATABLE :: ZTMP, ZCHEN_MULTI
!
REAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2),SIZE(PRHODREF,3)) &
:: ZTDT, ZDRC, ZRVSAT, ZW, ZW2
REAL, DIMENSION(SIZE(PNFS,1),SIZE(PNFS,2),SIZE(PNFS,3)) &
:: ZCONC_TOT ! total CCN C. available
!
INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC1 ! Vectors of indices for
! interpolations
REAL, DIMENSION(:), ALLOCATABLE :: ZMCN
REAL, DIMENSION(:) , ALLOCATABLE :: ZPABST ! Pressure
REAL, DIMENSION(:,:), ALLOCATABLE :: ZAERO, ZAEROS, ZSOLORG, ZMI
!
!
REAL :: ZEPS ! molar mass ratio
REAL :: ZS1, ZS2, ZXACC
INTEGER :: JMOD
INTEGER :: IIB, IIE, IJB, IJE, IKB, IKE ! Physical domain
!
INTEGER :: ILUOUT ! Logical unit of output listing
TYPE(TFIELDMETADATA) :: TZFIELD
!-------------------------------------------------------------------------------
!
ILUOUT = TLUOUT%NLU
!
!* 1. PREPARE COMPUTATIONS - PACK

WAUTELET Philippe
committed
! ---------------------------
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
!
!
IIB=1+JPHEXT
IIE=SIZE(PRHODREF,1) - JPHEXT
IJB=1+JPHEXT
IJE=SIZE(PRHODREF,2) - JPHEXT
IKB=1+JPVEXT
IKE=SIZE(PRHODREF,3) - JPVEXT
!
ALLOCATE(ZCTMIN(SIZE(XCTMIN)))
ZCTMIN(:) = XCTMIN(:) / PTSTEP
!
! Saturation vapor mixing ratio and radiative tendency
!
ZEPS= XMV / XMD
ZRVSAT(:,:,:) = ZEPS / (PPABST(:,:,:)*EXP(-XALPW+XBETAW/PT(:,:,:)+XGAMW*ALOG(PT(:,:,:))) - 1.0)
ZTDT(:,:,:) = 0.
IF (OACTIT .AND. SIZE(PTM).GT.0) ZTDT(:,:,:) = PTM(:,:,:) * PEXNREF(:,:,:) ! dThRad
!
! find locations where CCN are available
!
ZCONC_TOT(:,:,:) = 0.0
DO JMOD = 1, NMOD_CCN
ZCONC_TOT(:,:,:) = ZCONC_TOT(:,:,:) + PNFS(:,:,:,JMOD) ! sum over the free CCN
ENDDO
!
! optimization by looking for locations where
! the updraft velocity is positive!!!
!
GNUCT(:,:,:) = .FALSE.
!
! NEW : -22°C = limit sup for condensation freezing in Fridlin et al., 2007
IF( OACTIT ) THEN
GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) = (PW_NU(IIB:IIE,IJB:IJE,IKB:IKE)>XWMIN .OR. &
ZTDT(IIB:IIE,IJB:IJE,IKB:IKE)<XTMIN .OR. &
PRVT(IIB:IIE,IJB:IJE,IKB:IKE)>ZRVSAT(IIB:IIE,IJB:IJE,IKB:IKE) ) .AND.&
PRVT(IIB:IIE,IJB:IJE,IKB:IKE).GE.ZRVSAT(IIB:IIE,IJB:IJE,IKB:IKE)&
.AND. PT(IIB:IIE,IJB:IJE,IKB:IKE)>(XTT-22.) &
.AND. ZCONC_TOT(IIB:IIE,IJB:IJE,IKB:IKE)>ZCTMIN(2)
ELSE
GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) = (PW_NU(IIB:IIE,IJB:IJE,IKB:IKE)>XWMIN .OR. &
PRVT(IIB:IIE,IJB:IJE,IKB:IKE)>ZRVSAT(IIB:IIE,IJB:IJE,IKB:IKE) ) .AND.&
PRVT(IIB:IIE,IJB:IJE,IKB:IKE).GE.ZRVSAT(IIB:IIE,IJB:IJE,IKB:IKE)&
.AND. PT(IIB:IIE,IJB:IJE,IKB:IKE)>(XTT-22.) &
.AND. ZCONC_TOT(IIB:IIE,IJB:IJE,IKB:IKE)>ZCTMIN(2)
END IF
INUCT = COUNTJV( GNUCT(:,:,:),I1(:),I2(:),I3(:))
!
IF( INUCT >= 1 ) THEN
!
ALLOCATE(ZNFS(INUCT,NMOD_CCN))
ALLOCATE(ZNAS(INUCT,NMOD_CCN))
ALLOCATE(ZTMP(INUCT,NMOD_CCN))
ALLOCATE(ZRCS(INUCT))
ALLOCATE(ZCCS(INUCT))
ALLOCATE(ZZT(INUCT))
ALLOCATE(ZZTDT(INUCT))
ALLOCATE(ZSW(INUCT))
ALLOCATE(ZZW1(INUCT))
ALLOCATE(ZZW2(INUCT))
ALLOCATE(ZZW3(INUCT))
ALLOCATE(ZZW4(INUCT))
ALLOCATE(ZZW5(INUCT))
ALLOCATE(ZZW6(INUCT))
ALLOCATE(ZCHEN_MULTI(INUCT,NMOD_CCN))
ALLOCATE(ZVEC1(INUCT))
ALLOCATE(IVEC1(INUCT))
ALLOCATE(ZRHODREF(INUCT))
ALLOCATE(ZEXNREF(INUCT))
ALLOCATE(ZPABST(INUCT))
ALLOCATE(ZAERO(INUCT,SIZE(PAERO,4)))
ALLOCATE(ZSMAX(INUCT))
ALLOCATE(ZSOLORG(INUCT,SIZE(PSOLORG,4)))
ALLOCATE(ZMI(INUCT,SIZE(PMI,4)))
DO JL=1,INUCT
ZRCS(JL) = PRCS(I1(JL),I2(JL),I3(JL))
ZCCS(JL) = PCCS(I1(JL),I2(JL),I3(JL))
ZZT(JL) = PT(I1(JL),I2(JL),I3(JL))
ZZW1(JL) = ZRVSAT(I1(JL),I2(JL),I3(JL))
ZZW2(JL) = PW_NU(I1(JL),I2(JL),I3(JL))
ZZTDT(JL) = ZTDT(I1(JL),I2(JL),I3(JL))
ZSW(JL) = PRVT(I1(JL),I2(JL),I3(JL))/ZRVSAT(I1(JL),I2(JL),I3(JL)) - 1.
ZRHODREF(JL) = PRHODREF(I1(JL),I2(JL),I3(JL))
ZEXNREF(JL) = PEXNREF(I1(JL),I2(JL),I3(JL))
ZPABST(JL) = PPABST(I1(JL),I2(JL),I3(JL))
IF ((LORILAM).OR.(LDUST).OR.(LSALT)) THEN
ZAERO(JL,:) = PAERO(I1(JL),I2(JL),I3(JL),:)
ELSE
ZAERO(JL,:) = 0.
END IF
IF (LORILAM) THEN
ZSOLORG(JL,:) = PSOLORG(I1(JL),I2(JL),I3(JL),:)
ZMI(JL,:) = PMI(I1(JL),I2(JL),I3(JL),:)
ELSE
ZSOLORG(JL,:) = 0.
ZMI(JL,:) = 0.
END IF
DO JMOD = 1,NMOD_CCN
ZNFS(JL,JMOD) = PNFS(I1(JL),I2(JL),I3(JL),JMOD)
ZNAS(JL,JMOD) = PNAS(I1(JL),I2(JL),I3(JL),JMOD)
ZCHEN_MULTI(JL,JMOD) = (ZNFS(JL,JMOD)+ZNAS(JL,JMOD))*PTSTEP*ZRHODREF(JL) &
/ XLIMIT_FACTOR(JMOD)
ENDDO
ENDDO
!
ZZW1(:) = 1.0/ZEPS + 1.0/ZZW1(:) &
+ (((XLVTT+(XCPV-XCL)*(ZZT(:)-XTT))/ZZT(:))**2)/(XCPD*XRV) ! Psi2
!
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
IF ((HACTCCN == 'ABRK').AND.((LORILAM).OR.(LDUST).OR.(LSALT))) THEN !P.Tulet
!
ZZW1(:) = 0.
ZZW3(:) = 0.
ZSMAX(:) = 0.
ALLOCATE(ZMCN(INUCT))
ZMCN(:) = 0. !masse activée (non utilisée!!)
!ZZW2 veetical activation velocity
CALL CH_AER_ACTIVATION(ZAERO, ZZT, ZZW2, ZZTDT, ZRHODREF, ZPABST,&
ZTMP(:,1), ZMCN, ZSOLORG, ZMI, ZSMAX)
ZZW1(:) = MAX(ZTMP(:,1)/PTSTEP - ZNAS(:,1), 0.0 )
PNAS(:,:,:,1) = PNAS(:,:,:,1) + &
UNPACK( ZZW1(:), MASK=GNUCT(:,:,:), FIELD=0.0 )
!
ZW(:,:,:) = UNPACK( ZZW1(:),MASK=GNUCT(:,:,:),FIELD=0.0 )
!* prepare to update the cloud water concentration
ZZW6(:) = ZZW1(:)
DEALLOCATE(ZMCN)
!
ELSE
!
!-------------------------------------------------------------------------------
!
!
!* 2. compute the constant term (ZZW3) relative to smax

WAUTELET Philippe
committed
! ----------------------------------------------------
!
! Remark : in LIMA's nucleation parameterization, Smax=0.01 for a supersaturation of 1% !
!
!
ZVEC1(:) = MAX( 1.0001, MIN( REAL(NAHEN)-0.0001, XAHENINTP1 * ZZT(:) + XAHENINTP2 ) )
IVEC1(:) = INT( ZVEC1(:) )
ZVEC1(:) = ZVEC1(:) - REAL( IVEC1(:) )
! ALLOCATE(ZSMAX(INUCT))
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
!
!
IF (OACTIT) THEN ! including a cooling rate
!
! Compute the tabulation of function of ZZW3 :
!
! (Psi1*w+Psi3*DT/Dt)**1.5
! ZZW3 = XAHENG*(Psi1*w + Psi3*DT/Dt)**1.5 = ------------------------
! 2*pi*rho_l*G**(3/2)
!
!
ZZW4(:)=XPSI1( IVEC1(:)+1)*ZZW2(:)+XPSI3(IVEC1(:)+1)*ZZTDT(:)
ZZW5(:)=XPSI1( IVEC1(:) )*ZZW2(:)+XPSI3(IVEC1(:) )*ZZTDT(:)
WHERE (ZZW4(:) < 0. .OR. ZZW5(:) < 0.)
ZZW4(:) = 0.
ZZW5(:) = 0.
END WHERE
ZZW3(:) = XAHENG( IVEC1(:)+1)*(ZZW4(:)**1.5)* ZVEC1(:) &
- XAHENG( IVEC1(:) )*(ZZW5(:)**1.5)*(ZVEC1(:) - 1.0)
! Cste*((Psi1*w+Psi3*dT/dt)/(G))**1.5
ZZW6(:) = XAHENG2( IVEC1(:)+1)*(ZZW4(:)**0.5)* ZVEC1(:) &
- XAHENG2( IVEC1(:) )*(ZZW5(:)**0.5)*(ZVEC1(:) - 1.0)
!
!
ELSE ! OACTIT , for clouds
!
!
! Compute the tabulation of function of ZZW3 :
!
! (Psi1 * w)**1.5
! ZZW3 = XAHENG * (Psi1 * w)**1.5 = -------------------------
! 2 pi rho_l * G**(3/2)
!
!
ZZW2(:)=MAX(ZZW2(:),0.)
ZZW3(:)=XAHENG(IVEC1(:)+1)*((XPSI1(IVEC1(:)+1)*ZZW2(:))**1.5)* ZVEC1(:) &
-XAHENG(IVEC1(:) )*((XPSI1(IVEC1(:) )*ZZW2(:))**1.5)*(ZVEC1(:)-1.0)
!
ZZW6(:)=XAHENG2(IVEC1(:)+1)*((XPSI1(IVEC1(:)+1)*ZZW2(:))**0.5)* ZVEC1(:) &
-XAHENG2(IVEC1(:) )*((XPSI1(IVEC1(:) )*ZZW2(:))**0.5)*(ZVEC1(:)-1.0)
!
END IF ! OACTIT
!
!
! (Psi1*w+Psi3*DT/Dt)**1.5 rho_air
! ZZW3 = ------------------------ * -------
! 2*pi*rho_l*G**(3/2) Psi2
!
ZZW5(:) = 1.
ZZW3(:) = (ZZW3(:)/ZZW1(:))*ZRHODREF(:) ! R.H.S. of Eq 9 of CPB 98 but
! for multiple aerosol modes
WHERE (ZRCS(:) > XRTMIN(2) .AND. ZCCS(:) > XCTMIN(2))
ZZW6(:) = ZZW6(:) * ZRHODREF(:) * ZCCS(:) * PTSTEP / (XLBC*ZCCS(:)/ZRCS(:))**XLBEXC
ELSEWHERE
ZZW6(:)=0.
END WHERE
WHERE (ZZW3(:) == 0. .AND. .NOT.(ZSW>0.))
ZZW5(:) = -1.
END WHERE
!
!-------------------------------------------------------------------------------
!
!
!* 3. Compute the maximum of supersaturation

WAUTELET Philippe
committed
! -----------------------------------------
!
!
! estimate S_max for the CPB98 parameterization with SEVERAL aerosols mode
! Reminder : Smax=0.01 for a 1% supersaturation
!
! Interval bounds to tabulate sursaturation Smax
! Check with values used for tabulation in ini_lima_warm.f90
ZS1 = 1.0E-5 ! corresponds to 0.001% supersaturation
ZS2 = 5.0E-2 ! corresponds to 5.0% supersaturation
ZXACC = 1.0E-10 ! Accuracy needed for the search in [NO UNITS]
!
ZSMAX(:) = ZRIDDR(ZS1,ZS2,ZXACC,ZZW3(:),ZZW6(:),INUCT) ! ZSMAX(:) is in [NO UNITS]
ZSMAX(:) = MIN(MAX(ZSMAX(:), ZSW(:)),ZS2)
!
!
!-------------------------------------------------------------------------------
!
!
!* 4. Compute the nucleus source

WAUTELET Philippe
committed
! -----------------------------
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
!
!
! Again : Smax=0.01 for a 1% supersaturation
! Modified values for Beta and C (see in init_aerosol_properties) account for that
!
WHERE (ZZW5(:) > 0. .AND. ZSMAX(:) > 0.)
ZVEC1(:) = MAX( 1.0001, MIN( REAL(NHYP)-0.0001, XHYPINTP1*LOG(ZSMAX(:))+XHYPINTP2 ) )
IVEC1(:) = INT( ZVEC1(:) )
ZVEC1(:) = ZVEC1(:) - REAL( IVEC1(:) )
END WHERE
ZZW6(:) = 0. ! initialize the change of cloud droplet concentration
!
ZTMP(:,:)=0.0
!
! Compute the concentration of activable aerosols for each mode
! based on the max of supersaturation ( -> ZTMP )
!
DO JMOD = 1, NMOD_CCN ! iteration on mode number
ZZW1(:) = 0.
ZZW2(:) = 0.
ZZW3(:) = 0.
!
WHERE( ZZW5(:) > 0. .AND. ZSMAX(:)>0.0 )
ZZW2(:) = XHYPF12( IVEC1(:)+1,JMOD )* ZVEC1(:) & ! hypergeo function
- XHYPF12( IVEC1(:) ,JMOD )*(ZVEC1(:) - 1.0) ! XHYPF12 is tabulated
!
ZTMP(:,JMOD) = ZCHEN_MULTI(:,JMOD)/ZRHODREF(:)*ZSMAX(:)**XKHEN_MULTI(JMOD)*ZZW2(:)/PTSTEP
ENDWHERE
ENDDO
!
! Compute the concentration of aerosols activated at this time step
! as the difference between ZTMP and the aerosols already activated at t-dt (ZZW1)
!
DO JMOD = 1, NMOD_CCN ! iteration on mode number
ZZW1(:) = 0.
ZZW2(:) = 0.
ZZW3(:) = 0.
!
WHERE( SUM(ZTMP(:,:),DIM=2)*PTSTEP .GT. 0.01E6/ZRHODREF(:) )
ZZW1(:) = MIN( ZNFS(:,JMOD),MAX( ZTMP(:,JMOD)- ZNAS(:,JMOD) , 0.0 ) )
ENDWHERE
!
!* update the concentration of activated CCN = Na
!
PNAS(:,:,:,JMOD) = PNAS(:,:,:,JMOD) + UNPACK( ZZW1(:), MASK=GNUCT(:,:,:), FIELD=0.0 )
!
!* update the concentration of free CCN = Nf
!
PNFS(:,:,:,JMOD) = PNFS(:,:,:,JMOD) - UNPACK( ZZW1(:), MASK=GNUCT(:,:,:), FIELD=0.0 )
!
!* prepare to update the cloud water concentration
!
ZZW6(:) = ZZW6(:) + ZZW1(:)
ENDDO
!
END IF ! CH_AER_ACTIVATION
! Update PRVS, PRCS, PCCS, and PTHS
!
ZZW1(:)=0.
WHERE (ZZW5(:)>0.0 .AND. ZSMAX(:)>0.0) ! ZZW1 is computed with ZSMAX [NO UNIT]
ZZW1(:) = MIN(XCSTDCRIT*ZZW6(:)/(((ZZT(:)*ZSMAX(:))**3)*ZRHODREF(:)),1.E-5)
END WHERE
ZW(:,:,:) = MIN( UNPACK( ZZW1(:),MASK=GNUCT(:,:,:),FIELD=0.0 ),PRVS(:,:,:) )
!
PRVS(:,:,:) = PRVS(:,:,:) - ZW(:,:,:)
PRCS(:,:,:) = PRCS(:,:,:) + ZW(:,:,:)
ZW(:,:,:) = ZW(:,:,:) * (XLVTT+(XCPV-XCL)*(PT(:,:,:)-XTT))/ &
(PEXNREF(:,:,:)*(XCPD+XCPV*PRVT(:,:,:)+XCL*(PRCT(:,:,:)+PRRT(:,:,:))))
PTHS(:,:,:) = PTHS(:,:,:) + ZW(:,:,:)
!
ZW(:,:,:) = PCCS(:,:,:)
PCCS(:,:,:) = UNPACK( ZZW6(:)+ZCCS(:),MASK=GNUCT(:,:,:),FIELD=ZW(:,:,:) )
!
ZW(:,:,:) = UNPACK( 100.0*ZSMAX(:),MASK=GNUCT(:,:,:),FIELD=0.0 )
ZW2(:,:,:) = UNPACK( ZZW6(:),MASK=GNUCT(:,:,:),FIELD=0.0 )
!
!
!-------------------------------------------------------------------------------
!
!
!* 5. Cleaning

WAUTELET Philippe
committed
! -----------
!
!
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC1)
DEALLOCATE(ZNFS)
DEALLOCATE(ZNAS)
DEALLOCATE(ZCCS)
DEALLOCATE(ZRCS)
DEALLOCATE(ZZT)
DEALLOCATE(ZZW1)
DEALLOCATE(ZZW2)
DEALLOCATE(ZZW3)
DEALLOCATE(ZZW4)
DEALLOCATE(ZZW5)
DEALLOCATE(ZZW6)
DEALLOCATE(ZZTDT)
DEALLOCATE(ZSW)
DEALLOCATE(ZRHODREF)
DEALLOCATE(ZCHEN_MULTI)
DEALLOCATE(ZEXNREF)
DEALLOCATE(ZPABST)
DEALLOCATE(ZAERO)
DEALLOCATE(ZSMAX)
DEALLOCATE(ZSOLORG)
DEALLOCATE(ZMI)
!
END IF ! INUCT
!
!++cb++
DEALLOCATE(ZCTMIN)
!--cb--
IF ( tpfile%lopened ) THEN
IF ( INUCT == 0 ) THEN
ZW (:,:,:) = 0.
ZW2(:,:,:) = 0.
END IF
TZFIELD = TFIELDMETADATA( &
CMNHNAME = 'SMAX', &
CSTDNAME = '', &
CLONGNAME = 'SMAX', &
CUNITS = '', &
CDIR = 'XY', &
CCOMMENT = 'X_Y_Z_SMAX', &
NGRID = 1, &
NTYPE = TYPEREAL, &
NDIMS = 3, &
LTIMEDEP = .TRUE. )
CALL IO_Field_write(TPFILE,TZFIELD,ZW)
!
TZFIELD = TFIELDMETADATA( &
CMNHNAME = 'NACT', &
CSTDNAME = '', &
CLONGNAME = 'NACT', &
CUNITS = 'kg-1', &
CDIR = 'XY', &
CCOMMENT = 'X_Y_Z_NACT', &
NGRID = 1, &
NTYPE = TYPEREAL, &
NDIMS = 3, &
LTIMEDEP = .TRUE. )
CALL IO_Field_write(TPFILE,TZFIELD,ZW2)
END IF
!
!
!-------------------------------------------------------------------------------
!
!
!* 6. Functions used to compute the maximum of supersaturation

WAUTELET Philippe
committed
! -----------------------------------------------------------
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
!
!
CONTAINS
!------------------------------------------------------------------------------
!
FUNCTION ZRIDDR(PX1,PX2INIT,PXACC,PZZW3,PZZW6,NPTS) RESULT(PZRIDDR)
!
!
!!**** *ZRIDDR* - iterative algorithm to find root of a function
!!
!!
!! PURPOSE
!! -------
!! The purpose of this function is to find the root of a given function
!! the arguments are the brackets bounds (the interval where to find the root)
!! the accuracy needed and the input parameters of the given function.
!! Using Ridders' method, return the root of a function known to lie between
!! PX1 and PX2. The root, returned as PZRIDDR, will be refined to an approximate
!! accuracy PXACC.
!!
!!** METHOD
!! ------
!! Ridders' method
!!
!! EXTERNAL
!! --------
!! FUNCSMAX
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
!! REFERENCE
!! ---------
!! NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING
!! (ISBN 0-521-43064-X)
!! Copyright (C) 1986-1992 by Cambridge University Press.
!! Programs Copyright (C) 1986-1992 by Numerical Recipes Software.
!!
!! AUTHOR
!! ------
!! Frederick Chosson *CERFACS*
!!
!! MODIFICATIONS
!! -------------
!! Original 12/07/07
!! S.BERTHET 2008 vectorization
!------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
!
!
use mode_msg
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments and result
!
INTEGER, INTENT(IN) :: NPTS
REAL, DIMENSION(:), INTENT(IN) :: PZZW3
REAL, DIMENSION(:), INTENT(IN) :: PZZW6
REAL, INTENT(IN) :: PX1, PX2INIT, PXACC
REAL, DIMENSION(:), ALLOCATABLE :: PZRIDDR
!
!* 0.2 declarations of local variables
!
!
INTEGER, PARAMETER :: MAXIT=60
REAL, PARAMETER :: UNUSED=0.0 !-1.11e30
REAL, DIMENSION(:), ALLOCATABLE :: fh,fl, fm,fnew
REAL :: s,xh,xl,xm,xnew
REAL :: PX2
INTEGER :: j, JL
!
ALLOCATE( fh(NPTS))
ALLOCATE( fl(NPTS))
ALLOCATE( fm(NPTS))
ALLOCATE(fnew(NPTS))
ALLOCATE(PZRIDDR(NPTS))
!
PZRIDDR(:)= UNUSED
PX2 = PX2INIT
fl(:) = FUNCSMAX(PX1,PZZW3(:),PZZW6(:),NPTS)
fh(:) = FUNCSMAX(PX2,PZZW3(:),PZZW6(:),NPTS)
!
DO JL = 1, NPTS
PX2 = PX2INIT
100 if ((fl(JL) > 0.0 .and. fh(JL) < 0.0) .or. (fl(JL) < 0.0 .and. fh(JL) > 0.0)) then
xl = PX1
xh = PX2
do j=1,MAXIT
xm = 0.5*(xl+xh)
fm(JL) = SINGL_FUNCSMAX(xm,PZZW3(JL),PZZW6(JL),JL)
s = sqrt(fm(JL)**2-fl(JL)*fh(JL))
if (s == 0.0) then
GO TO 101
endif
xnew = xm+(xm-xl)*(sign(1.0,fl(JL)-fh(JL))*fm(JL)/s)
if (abs(xnew - PZRIDDR(JL)) <= PXACC) then
GO TO 101
endif
PZRIDDR(JL) = xnew
fnew(JL) = SINGL_FUNCSMAX(PZRIDDR(JL),PZZW3(JL),PZZW6(JL),JL)
if (fnew(JL) == 0.0) then
GO TO 101
endif
if (sign(fm(JL),fnew(JL)) /= fm(JL)) then
xl =xm
fl(JL)=fm(JL)
xh =PZRIDDR(JL)
fh(JL)=fnew(JL)
else if (sign(fl(JL),fnew(JL)) /= fl(JL)) then
xh =PZRIDDR(JL)
fh(JL)=fnew(JL)
else if (sign(fh(JL),fnew(JL)) /= fh(JL)) then
xl =PZRIDDR(JL)
fl(JL)=fnew(JL)
else if (PX2 .lt. 0.05) then
PX2 = PX2 + 1.0E-2
! PRINT*, 'PX2 ALWAYS too small, we put a greater one : PX2 =',PX2
fh(JL) = SINGL_FUNCSMAX(PX2,PZZW3(JL),PZZW6(JL),JL)
go to 100
end if
if (abs(xh-xl) <= PXACC) then
GO TO 101
endif
!!SB
!!$ if (j == MAXIT .and. (abs(xh-xl) > PXACC) ) then
!!$ PZRIDDR(JL)=0.0
!!$ go to 101
!!$ endif
!!SB
end do
call Print_msg( NVERB_FATAL, 'GEN', 'ZRIDDR', 'exceeded maximum iterations' )
else if (fl(JL) == 0.0) then
PZRIDDR(JL)=PX1
else if (fh(JL) == 0.0) then
PZRIDDR(JL)=PX2
else if (PX2 .lt. 0.05) then
PX2 = PX2 + 1.0E-2
! PRINT*, 'PX2 too small, we put a greater one : PX2 =',PX2
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
fh(JL) = SINGL_FUNCSMAX(PX2,PZZW3(JL),PZZW6(JL),JL)
go to 100
else
!!$ print*, 'PZRIDDR: root must be bracketed'
!!$ print*,'npts ',NPTS,'jl',JL
!!$ print*, 'PX1,PX2,fl,fh',PX1,PX2,fl(JL),fh(JL)
!!$ print*, 'PX2 = 30 % of supersaturation, there is no solution for Smax'
!!$ print*, 'try to put greater PX2 (upper bound for Smax research)'
!!$ STOP
PZRIDDR(JL)=0.0
go to 101
end if
101 ENDDO
!
DEALLOCATE( fh)
DEALLOCATE( fl)
DEALLOCATE( fm)
DEALLOCATE(fnew)
!
END FUNCTION ZRIDDR
!
!------------------------------------------------------------------------------
!
FUNCTION FUNCSMAX(PPZSMAX,PPZZW3,PPZZW6,NPTS) RESULT(PFUNCSMAX)
!
!
!!**** *FUNCSMAX* - function describing SMAX function that you want to find the root
!!
!!
!! PURPOSE
!! -------
!! This function describe the equilibrium between Smax and two aerosol mode
!! acting as CCN. This function is derive from eq. (9) of CPB98 but for two
!! aerosols mode described by their respective parameters C, k, Mu, Beta.
!! the arguments are the supersaturation in "no unit" and the r.h.s. of this eq.
!! and the ratio of concentration of injected aerosols on maximum concentration
!! of injected aerosols ever.
!!** METHOD
!! ------
!! This function is called by zriddr.f90
!!
!! EXTERNAL
!! --------
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAM_LIMA_WARM
!! XHYPF32
!!
!! XHYPINTP1
!! XHYPINTP2
!!
!! Module MODD_PARAM_C2R2
!! XKHEN_MULTI()
!! NMOD_CCN
!!
!! REFERENCE
!! ---------
!! Cohard, J.M., J.P.Pinty, K.Suhre, 2000:"On the parameterization of activation
!! spectra from cloud condensation nuclei microphysical properties",
!! J. Geophys. Res., Vol.105, N0.D9, pp. 11753-11766
!!
!! AUTHOR
!! ------
!! Frederick Chosson *CERFACS*
!!
!! MODIFICATIONS
!! -------------
!! Original 12/07/07
!! S.Berthet 19/03/08 Extension a une population multimodale d aerosols
!
!------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments and result
!
INTEGER, INTENT(IN) :: NPTS
REAL, INTENT(IN) :: PPZSMAX ! supersaturation is already in no units
REAL, DIMENSION(:), INTENT(IN) :: PPZZW3 !
REAL, DIMENSION(:), INTENT(IN) :: PPZZW6 !
REAL, DIMENSION(:), ALLOCATABLE :: PFUNCSMAX !
!
!* 0.2 declarations of local variables
!
REAL :: ZHYPF
!
REAL :: PZVEC1
INTEGER :: PIVEC1
!
ALLOCATE(PFUNCSMAX(NPTS))
!
PFUNCSMAX(:) = 0.
PZVEC1 = MAX( ( 1.0 + 10.0 * XMNH_EPSILON ) ,MIN( REAL(NHYP)*( 1.0 - 10.0 * XMNH_EPSILON ) , &
XHYPINTP1*LOG(PPZSMAX)+XHYPINTP2 ) )
PIVEC1 = INT( PZVEC1 )
PZVEC1 = PZVEC1 - REAL( PIVEC1 )
DO JMOD = 1, NMOD_CCN
ZHYPF = 0. ! XHYPF32 is tabulated with ZSMAX in [NO UNITS]
ZHYPF = XHYPF32( PIVEC1+1,JMOD ) * PZVEC1 &
- XHYPF32( PIVEC1 ,JMOD ) *(PZVEC1 - 1.0)
! sum of s**(ki+2) * F32 * Ci * ki * beta(ki/2,3/2)
PFUNCSMAX(:) = PFUNCSMAX(:) + (PPZSMAX)**(XKHEN_MULTI(JMOD) + 2) &
* ZHYPF* XKHEN_MULTI(JMOD) * ZCHEN_MULTI(:,JMOD) &
* GAMMA_X0D( XKHEN_MULTI(JMOD)/2.0)*GAMMA_X0D(3.0/2.0) &
/ GAMMA_X0D((XKHEN_MULTI(JMOD)+3.0)/2.0)
ENDDO
! function l.h.s. minus r.h.s. of eq. (9) of CPB98 but for NMOD_CCN aerosol mode
PFUNCSMAX(:) = PFUNCSMAX(:) + PPZZW6(:)*PPZSMAX - PPZZW3(:)
!
END FUNCTION FUNCSMAX
!
!------------------------------------------------------------------------------
!
FUNCTION SINGL_FUNCSMAX(PPZSMAX,PPZZW3,PPZZW6,KINDEX) RESULT(PSINGL_FUNCSMAX)
!
!
!!**** *SINGL_FUNCSMAX* - same function as FUNCSMAX
!!
!!
!! PURPOSE
!! -------
! As for FUNCSMAX but for a scalar
!!
!!** METHOD
!! ------
!! This function is called by zriddr.f90
!!
!------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments and result
!
INTEGER, INTENT(IN) :: KINDEX
REAL, INTENT(IN) :: PPZSMAX ! supersaturation is "no unit"
REAL, INTENT(IN) :: PPZZW3 !
REAL, INTENT(IN) :: PPZZW6 !
REAL :: PSINGL_FUNCSMAX !
!
!* 0.2 declarations of local variables
!
REAL :: ZHYPF
!
REAL :: PZVEC1
INTEGER :: PIVEC1
!
PSINGL_FUNCSMAX = 0.
PZVEC1 = MAX( 1.0001,MIN( REAL(NHYP)-0.0001, &
XHYPINTP1*LOG(PPZSMAX)+XHYPINTP2 ) )
PIVEC1 = INT( PZVEC1 )
PZVEC1 = PZVEC1 - REAL( PIVEC1 )
DO JMOD = 1, NMOD_CCN
ZHYPF = 0. ! XHYPF32 is tabulated with ZSMAX in [NO UNITS]
ZHYPF = XHYPF32( PIVEC1+1,JMOD ) * PZVEC1 &
- XHYPF32( PIVEC1 ,JMOD ) *(PZVEC1 - 1.0)
! sum of s**(ki+2) * F32 * Ci * ki * bêta(ki/2,3/2)
PSINGL_FUNCSMAX = PSINGL_FUNCSMAX + (PPZSMAX)**(XKHEN_MULTI(JMOD) + 2) &
* ZHYPF* XKHEN_MULTI(JMOD) * ZCHEN_MULTI(KINDEX,JMOD) &
* GAMMA_X0D( XKHEN_MULTI(JMOD)/2.0)*GAMMA_X0D(3.0/2.0) &
/ GAMMA_X0D((XKHEN_MULTI(JMOD)+3.0)/2.0)
ENDDO
! function l.h.s. minus r.h.s. of eq. (9) of CPB98 but for NMOD_CCN aerosol mode
PSINGL_FUNCSMAX = PSINGL_FUNCSMAX + PPZZW6*PPZSMAX - PPZZW3
!
END FUNCTION SINGL_FUNCSMAX
!
!-----------------------------------------------------------------------------
!
END SUBROUTINE LIMA_WARM_NUCL