Newer
Older
!MNH_LIC Copyright 1994-2020 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
MODULE MODE_ICE4_FAST_RH
IMPLICIT NONE
CONTAINS
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
SUBROUTINE ICE4_FAST_RH(KPROMA,KSIZE, LDSOFT, PCOMPUTE, PWETG, &
&PRHODREF, PLVFACT, PLSFACT, PPRES, &
&PDV, PKA, PCJ, &
&PLBDAS, PLBDAG, PLBDAR, PLBDAH, &
&PT, PRVT, PRCT, PRRT, PRIT, PRST, PRGT, PRHT, &
&PRCWETH, PRIWETH, PRSWETH, PRGWETH, PRRWETH, &
&PRCDRYH, PRIDRYH, PRSDRYH, PRRDRYH, PRGDRYH, PRDRYHG, PRHMLTR, &
&PRH_TEND, &
&PA_TH, PA_RC, PA_RR, PA_RI, PA_RS, PA_RG, PA_RH)
!!
!!** PURPOSE
!! -------
!! Computes the fast rh process
!!
!! AUTHOR
!! ------
!! S. Riette from the splitting of rain_ice source code (nov. 2014)
!!
!! MODIFICATIONS
!! -------------
!!
!! R. El Khatib 24-Aug-2021 Optimizations
!
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST
USE MODD_RAIN_ICE_PARAM
USE MODD_RAIN_ICE_DESCR
USE MODD_PARAM_ICE, ONLY : LEVLIMIT, LNULLWETH, LWETHPOST, LCONVHG
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
INTEGER, INTENT(IN) :: KPROMA,KSIZE
LOGICAL, INTENT(IN) :: LDSOFT
REAL, DIMENSION(KSIZE), INTENT(IN) :: PCOMPUTE
REAL, DIMENSION(KSIZE), INTENT(IN) :: PWETG ! 1. where graupel grows in wet mode, 0. elsewhere
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRHODREF ! Reference density
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLVFACT
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLSFACT
REAL, DIMENSION(KSIZE), INTENT(IN) :: PPRES ! absolute pressure at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PDV ! Diffusivity of water vapor in the air
REAL, DIMENSION(KSIZE), INTENT(IN) :: PKA ! Thermal conductivity of the air
REAL, DIMENSION(KSIZE), INTENT(IN) :: PCJ ! Function to compute the ventilation coefficient
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLBDAS ! Slope parameter of the aggregate distribution
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLBDAG ! Slope parameter of the graupel distribution
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLBDAR ! Slope parameter of the rain distribution
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLBDAH ! Slope parameter of the hail distribution
REAL, DIMENSION(KSIZE), INTENT(IN) :: PT ! Temperature
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRRT ! Rain m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRIT ! Pristine ice m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRGT ! Graupel m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRHT ! Hail m.r. at t
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRCWETH ! Dry growth of hailstone
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRIWETH ! Dry growth of hailstone
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRSWETH ! Dry growth of hailstone
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRGWETH ! Dry growth of hailstone
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRRWETH ! Dry growth of hailstone
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRCDRYH ! Wet growth of hailstone
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRIDRYH ! Wet growth of hailstone
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRSDRYH ! Wet growth of hailstone
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRRDRYH ! Wet growth of hailstone
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRGDRYH ! Wet growth of hailstone
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRDRYHG ! Conversion of hailstone into graupel
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRHMLTR ! Melting of the hailstones
REAL, DIMENSION(KPROMA, 10), INTENT(INOUT) :: PRH_TEND ! Individual tendencies
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_TH
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RC
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RR
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RI
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RS
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RG
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RH
!
!* 0.2 declaration of local variables
!
LOGICAL, DIMENSION(KSIZE) :: GWET
REAL, DIMENSION(KSIZE) :: ZHAIL, ZWET, ZMASK, ZWETH, ZDRYH
INTEGER :: IHAIL, IGWET
REAL, DIMENSION(KSIZE) :: ZVEC1, ZVEC2, ZVEC3
INTEGER, DIMENSION(KSIZE) :: IVEC1, IVEC2
REAL, DIMENSION(KSIZE) :: ZZW, &
ZRDRYH_INIT, ZRWETH_INIT, &
ZRDRYHG
INTEGER :: JJ, JL
INTEGER :: IRCWETH, IRRWETH, IRIDRYH, IRIWETH, IRSDRYH, IRSWETH, IRGDRYH, IRGWETH, &
& IFREEZ1, IFREEZ2
REAL(KIND=JPRB) :: ZHOOK_HANDLE
!
!-------------------------------------------------------------------------------
IF (LHOOK) CALL DR_HOOK('ICE4_FAST_RH',0,ZHOOK_HANDLE)
!
IRCWETH=1
IRRWETH=2
IRIDRYH=3
IRIWETH=4
IRSDRYH=5
IRSWETH=6
IRGDRYH=7
IRGWETH=8
IFREEZ1=9
IFREEZ2=10
!
!
!
!* 7.2 compute the Wet and Dry growth of hail
!
DO JL=1, KSIZE
ZMASK(JL)=MAX(0., -SIGN(1., XRTMIN(7)-PRHT(JL))) * & ! WHERE(PRHT(:)>XRTMIN(7))
&MAX(0., -SIGN(1., XRTMIN(2)-PRCT(JL))) * & ! WHERE(PRCT(:)>XRTMIN(2))
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRH_TEND(JL, IRCWETH)=ZMASK(JL) * PRH_TEND(JL, IRCWETH)
ENDDO
ELSE
PRH_TEND(:, IRCWETH)=0.
WHERE(ZMASK(1:KSIZE)==1.)
ZZW(1:KSIZE) = PLBDAH(1:KSIZE)**(XCXH-XDH-2.0) * PRHODREF(1:KSIZE)**(-XCEXVT)
PRH_TEND(1:KSIZE, IRCWETH)=XFWETH * PRCT(1:KSIZE) * ZZW(1:KSIZE) ! RCWETH
END WHERE
ENDIF
DO JL=1, KSIZE
ZMASK(JL)=MAX(0., -SIGN(1., XRTMIN(7)-PRHT(JL))) * & ! WHERE(PRHT(:)>XRTMIN(7))
&MAX(0., -SIGN(1., XRTMIN(4)-PRIT(JL))) * & ! WHERE(PRIT(:)>XRTMIN(4))
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRH_TEND(JL, IRIWETH)=ZMASK(JL) * PRH_TEND(JL, IRIWETH)
PRH_TEND(JL, IRIDRYH)=ZMASK(JL) * PRH_TEND(JL, IRIDRYH)
ENDDO
ELSE
PRH_TEND(:, IRIWETH)=0.
PRH_TEND(:, IRIDRYH)=0.
WHERE(ZMASK(1:KSIZE)==1.)
ZZW(1:KSIZE) = PLBDAH(1:KSIZE)**(XCXH-XDH-2.0) * PRHODREF(1:KSIZE)**(-XCEXVT)
PRH_TEND(1:KSIZE, IRIWETH)=XFWETH * PRIT(1:KSIZE) * ZZW(1:KSIZE) ! RIWETH
PRH_TEND(1:KSIZE, IRIDRYH)=PRH_TEND(1:KSIZE, IRIWETH)*(XCOLIH*EXP(XCOLEXIH*(PT(1:KSIZE)-XTT))) ! RIDRYH
END WHERE
ENDIF
!
!* 7.2.1 accretion of aggregates on the hailstones
!
DO JL=1, KSIZE
ZWET(JL) = MAX(0., -SIGN(1., XRTMIN(7)-PRHT(JL))) * & ! WHERE(PRHT(:)>XRTMIN(7))
&MAX(0., -SIGN(1., XRTMIN(5)-PRST(JL))) * & ! WHERE(PRST(:)>XRTMIN(5))
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRH_TEND(JL, IRSWETH)=ZWET(JL) * PRH_TEND(JL, IRSWETH)
PRH_TEND(JL, IRSDRYH)=ZWET(JL) * PRH_TEND(JL, IRSDRYH)
ENDDO
ELSE
PRH_TEND(:, IRSWETH)=0.
PRH_TEND(:, IRSDRYH)=0.
GWET(:)=ZWET(:)==1.
IGWET=COUNT(GWET(:))
IF(IGWET>0)THEN
!
!* 7.2.3 select the (PLBDAH,PLBDAS) couplet
!
ZVEC1(1:IGWET) = PACK( PLBDAH(:),MASK=GWET(:) )
ZVEC2(1:IGWET) = PACK( PLBDAS(:),MASK=GWET(:) )
!
!* 7.2.4 find the next lower indice for the PLBDAG and for the PLBDAS
! in the geometrical set of (Lbda_h,Lbda_s) couplet use to
! tabulate the SWETH-kernel
!
ZVEC1(1:IGWET) = MAX( 1.00001, MIN( FLOAT(NWETLBDAH)-0.00001, &
XWETINTP1H * LOG( ZVEC1(1:IGWET) ) + XWETINTP2H ) )
IVEC1(1:IGWET) = INT( ZVEC1(1:IGWET) )
ZVEC1(1:IGWET) = ZVEC1(1:IGWET) - FLOAT( IVEC1(1:IGWET) )
!
ZVEC2(1:IGWET) = MAX( 1.00001, MIN( FLOAT(NWETLBDAS)-0.00001, &
XWETINTP1S * LOG( ZVEC2(1:IGWET) ) + XWETINTP2S ) )
IVEC2(1:IGWET) = INT( ZVEC2(1:IGWET) )
ZVEC2(1:IGWET) = ZVEC2(1:IGWET) - FLOAT( IVEC2(1:IGWET) )
!
!* 7.2.5 perform the bilinear interpolation of the normalized
! SWETH-kernel
!
DO JJ = 1,IGWET
ZVEC3(JJ) = ( XKER_SWETH(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_SWETH(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_SWETH(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_SWETH(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = UNPACK( VECTOR=ZVEC3(1:IGWET),MASK=GWET,FIELD=0.0 )
!
WHERE(GWET(1:KSIZE))
PRH_TEND(1:KSIZE, IRSWETH)=XFSWETH*ZZW(1:KSIZE) & ! RSWETH
*( PLBDAS(1:KSIZE)**(XCXS-XBS) )*( PLBDAH(1:KSIZE)**XCXH ) &
*( PRHODREF(1:KSIZE)**(-XCEXVT-1.) ) &
*( XLBSWETH1/( PLBDAH(1:KSIZE)**2 ) + &
XLBSWETH2/( PLBDAH(1:KSIZE) * PLBDAS(1:KSIZE) ) + &
XLBSWETH3/( PLBDAS(1:KSIZE)**2) )
PRH_TEND(1:KSIZE, IRSDRYH)=PRH_TEND(1:KSIZE, IRSWETH)*(XCOLSH*EXP(XCOLEXSH*(PT(1:KSIZE)-XTT)))
END WHERE
ENDIF
ENDIF
!
!* 7.2.6 accretion of graupeln on the hailstones
!
DO JL=1, KSIZE
ZWET(JL)=MAX(0., -SIGN(1., XRTMIN(7)-PRHT(JL))) * & ! WHERE(PRHT(:)>XRTMIN(7))
&MAX(0., -SIGN(1., XRTMIN(6)-PRGT(JL))) * & ! WHERE(PRGT(:)>XRTMIN(6))
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRH_TEND(JL, IRGWETH)=ZWET(JL) * PRH_TEND(JL, IRGWETH)
PRH_TEND(JL, IRGDRYH)=ZWET(JL) * PRH_TEND(JL, IRGDRYH)
ENDDO
ELSE
PRH_TEND(:, IRGWETH)=0.
PRH_TEND(:, IRGDRYH)=0.
GWET(:)=ZWET(:)==1.
IGWET=COUNT(GWET(:))
IF(IGWET>0)THEN
!
!* 7.2.8 select the (PLBDAH,PLBDAG) couplet
!
ZVEC1(1:IGWET) = PACK( PLBDAH(:),MASK=GWET(:) )
ZVEC2(1:IGWET) = PACK( PLBDAG(:),MASK=GWET(:) )
!
!* 7.2.9 find the next lower indice for the PLBDAH and for the PLBDAG
! in the geometrical set of (Lbda_h,Lbda_g) couplet use to
! tabulate the GWETH-kernel
!
ZVEC1(1:IGWET) = MAX( 1.00001, MIN( FLOAT(NWETLBDAG)-0.00001, &
XWETINTP1H * LOG( ZVEC1(1:IGWET) ) + XWETINTP2H ) )
IVEC1(1:IGWET) = INT( ZVEC1(1:IGWET) )
ZVEC1(1:IGWET) = ZVEC1(1:IGWET) - FLOAT( IVEC1(1:IGWET) )
!
ZVEC2(1:IGWET) = MAX( 1.00001, MIN( FLOAT(NWETLBDAG)-0.00001, &
XWETINTP1G * LOG( ZVEC2(1:IGWET) ) + XWETINTP2G ) )
IVEC2(1:IGWET) = INT( ZVEC2(1:IGWET) )
ZVEC2(1:IGWET) = ZVEC2(1:IGWET) - FLOAT( IVEC2(1:IGWET) )
!
!* 7.2.10 perform the bilinear interpolation of the normalized
! GWETH-kernel
!
DO JJ = 1,IGWET
ZVEC3(JJ) = ( XKER_GWETH(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_GWETH(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_GWETH(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_GWETH(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = UNPACK( VECTOR=ZVEC3(1:IGWET),MASK=GWET,FIELD=0.0 )
!
WHERE(GWET(1:KSIZE))
PRH_TEND(1:KSIZE, IRGWETH)=XFGWETH*ZZW(1:KSIZE) & ! RGWETH
*( PLBDAG(1:KSIZE)**(XCXG-XBG) )*( PLBDAH(1:KSIZE)**XCXH ) &
*( PRHODREF(1:KSIZE)**(-XCEXVT-1.) ) &
*( XLBGWETH1/( PLBDAH(1:KSIZE)**2 ) + &
XLBGWETH2/( PLBDAH(1:KSIZE) * PLBDAG(1:KSIZE) ) + &
XLBGWETH3/( PLBDAG(1:KSIZE)**2) )
PRH_TEND(1:KSIZE, IRGDRYH)=PRH_TEND(1:KSIZE, IRGWETH)
END WHERE
!When graupel grows in wet mode, graupel is wet (!) and collection efficiency must remain the same
WHERE(GWET(1:KSIZE) .AND. .NOT. PWETG(1:KSIZE)==1.)
PRH_TEND(1:KSIZE, IRGDRYH)=PRH_TEND(1:KSIZE, IRGDRYH)*(XCOLGH*EXP(XCOLEXGH*(PT(1:KSIZE)-XTT)))
END WHERE
END IF
ENDIF
!
!* 7.2.11 accretion of raindrops on the hailstones
!
DO JL=1, KSIZE
ZWET(JL)=MAX(0., -SIGN(1., XRTMIN(7)-PRHT(JL))) * & ! WHERE(PRHT(:)>XRTMIN(7))
&MAX(0., -SIGN(1., XRTMIN(3)-PRRT(JL))) * & ! WHERE(PRRT(:)>XRTMIN(3))
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRH_TEND(JL, IRRWETH)=ZWET(JL) * PRH_TEND(JL, IRRWETH)
ENDDO
ELSE
PRH_TEND(:, IRRWETH)=0.
GWET(:)=ZWET(:)==1.
IGWET=COUNT(GWET(:))
IF(IGWET>0)THEN
!
!* 7.2.12 select the (PLBDAH,PLBDAR) couplet
!
ZVEC1(1:IGWET)=PACK(PLBDAH(:), MASK=GWET(:))
ZVEC2(1:IGWET)=PACK(PLBDAR(:), MASK=GWET(:))
!
!* 7.2.13 find the next lower indice for the PLBDAH and for the PLBDAR
! in the geometrical set of (Lbda_h,Lbda_r) couplet use to
! tabulate the RWETH-kernel
!
ZVEC1(1:IGWET)=MAX(1.00001, MIN( FLOAT(NWETLBDAH)-0.00001, &
XWETINTP1H*LOG(ZVEC1(1:IGWET))+XWETINTP2H))
IVEC1(1:IGWET)=INT(ZVEC1(1:IGWET))
ZVEC1(1:IGWET)=ZVEC1(1:IGWET)-FLOAT(IVEC1(1:IGWET))
!
ZVEC2(1:IGWET)=MAX(1.00001, MIN( FLOAT(NWETLBDAR)-0.00001, &
XWETINTP1R*LOG(ZVEC2(1:IGWET))+XWETINTP2R))
IVEC2(1:IGWET)=INT(ZVEC2(1:IGWET))
ZVEC2(1:IGWET)=ZVEC2(1:IGWET)-FLOAT(IVEC2(1:IGWET))
!
!* 7.2.14 perform the bilinear interpolation of the normalized
! RWETH-kernel
!
DO JJ=1, IGWET
ZVEC3(JJ)= ( XKER_RWETH(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RWETH(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_RWETH(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RWETH(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
*(ZVEC1(JJ) - 1.0)
END DO
ZZW(:)=UNPACK(VECTOR=ZVEC3(1:IGWET), MASK=GWET, FIELD=0.)
!
WHERE(GWET(1:KSIZE))
PRH_TEND(1:KSIZE, IRRWETH) = XFRWETH*ZZW(1:KSIZE) & ! RRWETH
*( PLBDAR(1:KSIZE)**(-4) )*( PLBDAH(1:KSIZE)**XCXH ) &
*( PRHODREF(1:KSIZE)**(-XCEXVT-1.) ) &
*( XLBRWETH1/( PLBDAH(1:KSIZE)**2 ) + &
XLBRWETH2/( PLBDAH(1:KSIZE) * PLBDAR(1:KSIZE) ) + &
XLBRWETH3/( PLBDAR(1:KSIZE)**2) )
END WHERE
ENDIF
ENDIF
!
DO JL=1, KSIZE
ZRDRYH_INIT(JL)=PRH_TEND(JL, IRCWETH)+PRH_TEND(JL, IRIDRYH)+ &
&PRH_TEND(JL, IRSDRYH)+PRH_TEND(JL, IRRWETH)+PRH_TEND(JL, IRGDRYH)
ENDDO
!
!* 7.3 compute the Wet growth of hail
!
DO JL=1, KSIZE
ZHAIL(JL)=MAX(0., -SIGN(1., XRTMIN(7)-PRHT(JL))) * & ! WHERE(PRHT(:)>XRTMIN(7))
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRH_TEND(JL, IFREEZ1)=ZHAIL(JL) * PRH_TEND(JL, IFREEZ1)
PRH_TEND(JL, IFREEZ2)=ZHAIL(JL) * PRH_TEND(JL, IFREEZ2)
ENDDO
ELSE
DO JL=1, KSIZE
PRH_TEND(JL, IFREEZ1)=PRVT(JL)*PPRES(JL)/(XEPSILO+PRVT(JL)) ! Vapor pressure
ENDDO
IF(LEVLIMIT) THEN
WHERE(ZHAIL(1:KSIZE)==1.)
PRH_TEND(1:KSIZE, IFREEZ1)=MIN(PRH_TEND(1:KSIZE, IFREEZ1), EXP(XALPI-XBETAI/PT(1:KSIZE)-XGAMI*ALOG(PT(1:KSIZE)))) ! min(ev, es_i(T))
END WHERE
ENDIF
PRH_TEND(:, IFREEZ2)=0.
WHERE(ZHAIL(1:KSIZE)==1.)
PRH_TEND(1:KSIZE, IFREEZ1)=PKA(1:KSIZE)*(XTT-PT(1:KSIZE)) + &
(PDV(1:KSIZE)*(XLVTT+(XCPV-XCL)*(PT(1:KSIZE)-XTT)) &
*(XESTT-PRH_TEND(1:KSIZE, IFREEZ1))/(XRV*PT(1:KSIZE)) )
PRH_TEND(1:KSIZE, IFREEZ1)=PRH_TEND(1:KSIZE, IFREEZ1)* ( X0DEPH* PLBDAH(1:KSIZE)**XEX0DEPH + &
X1DEPH*PCJ(1:KSIZE)*PLBDAH(1:KSIZE)**XEX1DEPH )/ &
( PRHODREF(1:KSIZE)*(XLMTT-XCL*(XTT-PT(1:KSIZE))) )
PRH_TEND(1:KSIZE, IFREEZ2)=(PRHODREF(1:KSIZE)*(XLMTT+(XCI-XCL)*(XTT-PT(1:KSIZE))) ) / &
( PRHODREF(1:KSIZE)*(XLMTT-XCL*(XTT-PT(1:KSIZE))) )
END WHERE
ENDIF
DO JL=1, KSIZE
!We must agregate, at least, the cold species
ZRWETH_INIT(JL)=ZHAIL(JL) * MAX(PRH_TEND(JL, IRIWETH)+PRH_TEND(JL, IRSWETH)+PRH_TEND(JL, IRGWETH), &
&MAX(0., PRH_TEND(JL, IFREEZ1) + &
&PRH_TEND(JL, IFREEZ2) * ( &
&PRH_TEND(JL, IRIWETH)+PRH_TEND(JL, IRSWETH)+PRH_TEND(JL, IRGWETH) )))
ENDDO
!
!* 7.4 Select Wet or Dry case
!
!Wet case
DO JL=1, KSIZE
ZWETH(JL) = ZHAIL(JL) * &
& MAX(0., SIGN(1., MAX(0., ZRDRYH_INIT(JL)-PRH_TEND(JL, IRIDRYH)-PRH_TEND(JL, IRSDRYH)-PRH_TEND(JL, IRGDRYH)) - &
&MAX(0., ZRWETH_INIT(JL)-PRH_TEND(JL, IRIWETH)-PRH_TEND(JL, IRSWETH)-PRH_TEND(JL, IRGWETH))))
ENDDO
IF(LNULLWETH) THEN
DO JL=1, KSIZE
ZWETH(JL) = ZWETH(JL) * MAX(0., -SIGN(1., -ZRDRYH_INIT(JL))) ! WHERE(ZRDRYH_INIT(:)>0.)
ENDDO
ELSE
DO JL=1, KSIZE
ZWETH(JL) = ZWETH(JL) * MAX(0., -SIGN(1., -ZRWETH_INIT(JL))) ! WHERE(ZRWETH_INIT(:)>0.)
ENDDO
ENDIF
IF(.NOT. LWETHPOST) THEN
DO JL=1, KSIZE
ZWETH(JL) = ZWETH(JL) * MAX(0., -SIGN(1., PT(JL)-XTT)) ! WHERE(PT(:)<XTT)
ENDDO
ENDIF
DO JL=1, KSIZE
ZDRYH(JL) = ZHAIL(JL) * &
& MAX(0., -SIGN(1., PT(JL)-XTT)) * & ! WHERE(PT(:)<XTT)
& MAX(0., -SIGN(1., -ZRDRYH_INIT(JL))) * & !WHERE(ZRDRYH_INIT(:)>0.)
& MAX(0., -SIGN(1., MAX(0., ZRDRYH_INIT(JL)-PRH_TEND(JL, IRIDRYH)-PRH_TEND(JL, IRSDRYH)) - &
&MAX(0., ZRWETH_INIT(JL)-PRH_TEND(JL, IRIWETH)-PRH_TEND(JL, IRSWETH))))
ENDDO
!
ZRDRYHG(:)=0.
IF(LCONVHG)THEN
WHERE(ZDRYH(:)==1.)
ZRDRYHG(:)=ZRDRYH_INIT(:)*ZRWETH_INIT(:)/(ZRDRYH_INIT(:)+ZRWETH_INIT(:))
END WHERE
ENDIF
DO JL=1, KSIZE
PRCWETH(JL) = ZWETH(JL) * PRH_TEND(JL, IRCWETH)
PRIWETH(JL) = ZWETH(JL) * PRH_TEND(JL, IRIWETH)
PRSWETH(JL) = ZWETH(JL) * PRH_TEND(JL, IRSWETH)
PRGWETH(JL) = ZWETH(JL) * PRH_TEND(JL, IRGWETH)
!Collected minus aggregated
PRRWETH(JL) = ZWETH(JL) * (ZRWETH_INIT(JL) - PRH_TEND(JL, IRIWETH) - &
PRH_TEND(JL, IRSWETH) - PRH_TEND(JL, IRGWETH) - &
PRH_TEND(JL, IRCWETH))
PRCDRYH(JL) = ZDRYH(JL) * PRH_TEND(JL, IRCWETH)
PRIDRYH(JL) = ZDRYH(JL) * PRH_TEND(JL, IRIDRYH)
PRSDRYH(JL) = ZDRYH(JL) * PRH_TEND(JL, IRSDRYH)
PRRDRYH(JL) = ZDRYH(JL) * PRH_TEND(JL, IRRWETH)
PRGDRYH(JL) = ZDRYH(JL) * PRH_TEND(JL, IRGDRYH)
PRDRYHG(JL) = ZDRYH(JL) * ZRDRYHG(JL)
PA_RC(JL) = PA_RC(JL) - PRCWETH(JL)
PA_RI(JL) = PA_RI(JL) - PRIWETH(JL)
PA_RS(JL) = PA_RS(JL) - PRSWETH(JL)
PA_RG(JL) = PA_RG(JL) - PRGWETH(JL)
PA_RH(JL) = PA_RH(JL) + PRCWETH(JL)+PRIWETH(JL)+PRSWETH(JL)+PRGWETH(JL)+PRRWETH(JL)
PA_RR(JL) = PA_RR(JL) - PRRWETH(JL)
PA_TH(JL) = PA_TH(JL) + (PRRWETH(JL)+PRCWETH(JL))*(PLSFACT(JL)-PLVFACT(JL))
PA_RC(JL) = PA_RC(JL) - PRCDRYH(JL)
PA_RI(JL) = PA_RI(JL) - PRIDRYH(JL)
PA_RS(JL) = PA_RS(JL) - PRSDRYH(JL)
PA_RR(JL) = PA_RR(JL) - PRRDRYH(JL)
PA_RG(JL) = PA_RG(JL) - PRGDRYH(JL) + PRDRYHG(JL)
PA_RH(JL) = PA_RH(JL) + PRCDRYH(JL)+PRIDRYH(JL)+PRSDRYH(JL)+&
&PRRDRYH(JL)+PRGDRYH(JL) - PRDRYHG(JL)
PA_TH(JL) = PA_TH(JL) + (PRCDRYH(JL)+PRRDRYH(JL))*(PLSFACT(JL)-PLVFACT(JL))
ENDDO
!
!* 7.5 Melting of the hailstones
!
DO JL=1, KSIZE
ZMASK(JL)=MAX(0., -SIGN(1., XRTMIN(7)-PRHT(JL))) * & ! WHERE(PRHT(:)>XRTMIN(7))
&MAX(0., -SIGN(1., XTT-PT(JL))) * & ! WHERE(PT(:)>XTT)
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRHMLTR(JL)=ZMASK(JL)*PRHMLTR(JL)
ENDDO
ELSE
DO JL=1, KSIZE
PRHMLTR(JL) = ZMASK(JL)* PRVT(JL)*PPRES(JL)/(XEPSILO+PRVT(JL)) ! Vapor pressure
ENDDO
IF(LEVLIMIT) THEN
WHERE(ZMASK(:)==1.)
PRHMLTR(:)=MIN(PRHMLTR(:), EXP(XALPW-XBETAW/PT(:)-XGAMW*ALOG(PT(:)))) ! min(ev, es_w(T))
END WHERE
ENDIF
DO JL=1, KSIZE
PRHMLTR(JL) = ZMASK(JL)* (PKA(JL)*(XTT-PT(JL)) + &
( PDV(JL)*(XLVTT + ( XCPV - XCL ) * ( PT(JL) - XTT )) &
*(XESTT-PRHMLTR(JL))/(XRV*PT(JL)) ))
ENDDO
WHERE(ZMASK(1:KSIZE)==1.)
!
! compute RHMLTR
!
PRHMLTR(1:KSIZE) = MAX( 0.0,( -PRHMLTR(1:KSIZE) * &
( X0DEPH* PLBDAH(1:KSIZE)**XEX0DEPH + &
X1DEPH*PCJ(1:KSIZE)*PLBDAH(1:KSIZE)**XEX1DEPH ) - &
( PRH_TEND(1:KSIZE, IRCWETH)+PRH_TEND(1:KSIZE, IRRWETH) )* &
( PRHODREF(1:KSIZE)*XCL*(XTT-PT(1:KSIZE))) ) / &
( PRHODREF(1:KSIZE)*XLMTT ) )
END WHERE
END IF
DO JL=1, KSIZE
PA_RR(JL) = PA_RR(JL) + PRHMLTR(JL)
PA_RH(JL) = PA_RH(JL) - PRHMLTR(JL)
PA_TH(JL) = PA_TH(JL) - PRHMLTR(JL)*(PLSFACT(JL)-PLVFACT(JL))
ENDDO
!
IF (LHOOK) CALL DR_HOOK('ICE4_FAST_RH', 1, ZHOOK_HANDLE)
!
END SUBROUTINE ICE4_FAST_RH
END MODULE MODE_ICE4_FAST_RH