Newer
Older
!SFX_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!SFX_LIC This is part of the SURFEX software governed by the CeCILL-C licence
!SFX_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!SFX_LIC for details. version 1.
! ###############################################################################
SUBROUTINE COUPLING_TEB_n (DTCO, DST, SLT, TOP, SPAOP, SB, G, CHT, NT, TPN, TIR, BOP, NB, TD, AT, &
GDM, GRM, HM, HPROGRAM, HCOUPLING, PTSTEP, KYEAR, KMONTH, &
KDAY, PTIME, KI, KSV, KSW, KLEV, PTSUN, PZENITH, PAZIM, &
PZREF, PUREF, PZS, PU, PV, PQA, PTA, PRHOA, PSV, PCO2, HSV, &
PRAIN, PSN, PLW, PDIR_SW, PSCA_SW, PSW_BANDS, PPS, PPA, &
PTKE, PSFTQ, PSFTQ_SURF, PSFTQ_WALL, PSFTQ_ROOF, PSFTH, &
PSFTH_SURF, PSFTH_WALL, PSFTH_ROOF, PCD_ROOF, PSFTS, PSFCO2,&
PSFU, PSFV, PTRAD, PDIR_ALB, PSCA_ALB, PEMIS, PTSURF, PZ0, &
PZ0H, PQSURF, PPEW_A_COEF, PPEW_B_COEF, PPET_A_COEF, &
PPEQ_A_COEF, PPET_B_COEF, PPEQ_B_COEF, HTEST )
! ###############################################################################
!
!!**** *COUPLING_TEB_n * - Driver for TEB
!!
!! PURPOSE
!! -------
!
!!** METHOD
!! ------
!!
!! REFERENCE
!! ---------
!!
!!
!! AUTHOR
!! ------
!! V. Masson
!!
!! MODIFICATIONS
!! -------------
!! Original 01/2004
!! 10/2005 (G.Pigeon) transfer of domestic heating
!! S. Riette 06/2009 Initialisation of XT, XQ, XU and XTKE on canopy levels
!! S. Riette 01/2010 Use of interpol_sbl to compute 10m wind diagnostic
!! G. Pigeon 09/2012 CCH_BEM, ROUGH_WALL, ROUGH_ROOF for building conv. coef
!! G. Pigeon 10/2012 XF_WIN_WIN as arg. of TEB_GARDEN
!! B. Decharme 09/2012 New wind implicitation
!! J. Escobar 09/2012 KI not allowed without-interface , replace by KI
!! V. Masson 08/2013 adds solar panels & occupation calendar
!! B. Decharme 04/2013 new coupling variables
!! M. Goret 02/2017 add heating fractions and CO2 conversion factors as arg. of TEB_GARDEN
!! M. Goret 03/2017 add traffic flux modulation
!! A. Lemonsu 06/2017 utci calculations with urban trees
!! M. Goret 04/2017 suppress PEFF_HEAT as arg. of TEB_GARDEN
!! M. Goret 07/2017 move CO2 flux diagnostics from DGT to DGMT
!! M. Goret 07/2017 add heating energy consumption by source
!! M. Goret 07/2017 add anthropogenic flux diagnostics
!! M. Goret 09/2017 add diagnostic of heat storage link to snow
!! M. Goret 10/2017 add hot water
!! R. Schoetter 2017 Verification of energy conservation
!! V. Masson 04.2020 completes energy check for high vegetation IR exchanges
!!---------------------------------------------------------------
!
USE MODD_DATA_COVER_n, ONLY : DATA_COVER_t
USE MODD_DST_n, ONLY : DST_t
USE MODD_SLT_n, ONLY : SLT_t
!
USE MODD_CH_TEB_n, ONLY : CH_TEB_t
USE MODD_CANOPY_n, ONLY: CANOPY_t
USE MODD_SFX_GRID_n, ONLY : GRID_t
USE MODD_TEB_OPTION_n, ONLY : TEB_OPTIONS_t
USE MODD_SPARTACUS_OPTION_n, ONLY : SPARTACUS_OPTIONS_t
USE MODD_TEB_PANEL_n, ONLY : TEB_PANEL_t
USE MODD_TEB_IRRIG_n, ONLY : TEB_IRRIG_t
USE MODD_TEB_n, ONLY : TEB_NP_t
USE MODD_SURFEX_n, ONLY : TEB_DIAG_t
USE MODD_BEM_OPTION_n, ONLY : BEM_OPTIONS_t
USE MODD_BEM_n, ONLY : BEM_NP_t
USE MODD_DATA_TEB_n, ONLY : DATA_TEB_t
!
USE MODD_CHECK_TEB, ONLY : CHECK_TEB_t
USE MODD_SURFEX_n, ONLY : TEB_GARDEN_MODEL_t
USE MODD_SURFEX_n, ONLY : TEB_GREENROOF_MODEL_t
USE MODD_SURFEX_n, ONLY : TEB_HYDRO_MODEL_t
!
USE MODD_REPROD_OPER, ONLY : CIMPLICIT_WIND
USE MODD_CSTS, ONLY : XRD, XCPD, XP00, XLVTT, XSURF_EPSILON, &
XPI, XKARMAN, XG, XTT
USE MODD_SURF_PAR, ONLY : XUNDEF
USE MODD_DST_SURF
USE MODD_SLT_SURF
!
USE MODD_SURF_ATM_TURB_n, ONLY : SURF_ATM_TURB_t
!
USE MODE_DSLT_SURF
USE MODE_THERMOS
USE MODE_SBLS
!
USE MODI_ABOR1_SFX
USE MODI_ALLOC_CHECK_TEB
USE MODI_AVERAGE_RAD
USE MODI_CANOPY_EVOL
USE MODI_CANOPY_GRID_UPDATE
USE MODI_CH_AER_DEP
USE MODI_CH_DEP_TOWN
USE MODI_CHECK_TEB
USE MODI_CUMUL_DIAG_TEB_n
USE MODI_DIAG_INLINE_TEB_n
USE MODI_DEALLOC_CHECK_TEB
USE MODI_INTERPOL_SBL
USE MODI_SM10
USE MODI_TOWN_ENERGY_BALANCE
USE MODI_TRAFFIC_FLUX_MODULATION
!
USE YOMHOOK, ONLY : LHOOK, DR_HOOK
USE PARKIND1, ONLY : JPRB
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
!
!
TYPE(DATA_COVER_t), INTENT(INOUT) :: DTCO
TYPE(DST_t), INTENT(INOUT) :: DST
TYPE(SLT_t), INTENT(INOUT) :: SLT
!
TYPE(CH_TEB_t), INTENT(INOUT) :: CHT
TYPE(CANOPY_t), INTENT(INOUT) :: SB
TYPE(GRID_t), INTENT(INOUT) :: G
TYPE(TEB_OPTIONS_t), INTENT(INOUT) :: TOP
TYPE(SPARTACUS_OPTIONS_t), INTENT(INOUT) :: SPAOP
TYPE(TEB_PANEL_t), INTENT(INOUT) :: TPN
TYPE(TEB_IRRIG_t), INTENT(INOUT) :: TIR
TYPE(TEB_NP_t), INTENT(INOUT) :: NT
!
TYPE(TEB_DIAG_t), INTENT(INOUT) :: TD
!
TYPE(SURF_ATM_TURB_t), INTENT(IN) :: AT ! atmospheric turbulence parameters
!
TYPE(BEM_OPTIONS_t), INTENT(INOUT) :: BOP
TYPE(BEM_NP_t), INTENT(INOUT) :: NB
!
TYPE(TEB_GARDEN_MODEL_t), INTENT(INOUT) :: GDM
TYPE(TEB_GREENROOF_MODEL_t), INTENT(INOUT) :: GRM
TYPE(TEB_HYDRO_MODEL_t), INTENT(INOUT) :: HM
CHARACTER(LEN=6), INTENT(IN) :: HPROGRAM ! program calling surf. schemes
CHARACTER(LEN=1), INTENT(IN) :: HCOUPLING ! type of coupling
! 'E' : explicit
! 'I' : implicit
INTEGER, INTENT(IN) :: KYEAR ! current year (UTC)
INTEGER, INTENT(IN) :: KMONTH ! current month (UTC)
INTEGER, INTENT(IN) :: KDAY ! current day (UTC)
REAL, INTENT(IN) :: PTIME ! current time since midnight (UTC, s)
INTEGER, INTENT(IN) :: KI ! number of points
INTEGER, INTENT(IN) :: KSV ! number of scalars
INTEGER, INTENT(IN) :: KSW ! number of short-wave spectral bands
INTEGER, INTENT(IN) :: KLEV ! number of atmospheric levels to couple
REAL, DIMENSION(KI), INTENT(IN) :: PTSUN ! solar time (s from midnight)
REAL, INTENT(IN) :: PTSTEP ! atmospheric time-step (s)
REAL, DIMENSION(KI,KLEV), INTENT(IN) :: PZREF ! height of T,q forcing (m)
REAL, DIMENSION(KI,KLEV), INTENT(IN) :: PUREF ! height of wind forcing (m)
REAL, DIMENSION(KI,KLEV), INTENT(IN) :: PTA ! air temperature forcing (K)
REAL, DIMENSION(KI,KLEV), INTENT(IN) :: PQA ! air humidity forcing (kg/m3)
REAL, DIMENSION(KI,KLEV), INTENT(IN) :: PRHOA ! air density (kg/m3)
REAL, DIMENSION(KI,KSV),INTENT(IN) :: PSV ! scalar variables
! ! chemistry: first char. in HSV: '#' (molecule/m3)
! !
CHARACTER(LEN=6), DIMENSION(KSV),INTENT(IN):: HSV ! name of all scalar variables
REAL, DIMENSION(KI,KLEV), INTENT(IN) :: PU ! zonal wind (m/s)
REAL, DIMENSION(KI,KLEV), INTENT(IN) :: PV ! meridian wind (m/s)
REAL, DIMENSION(KI,KSW),INTENT(IN) :: PDIR_SW ! direct solar radiation (on horizontal surf.)
! ! (W/m2)
REAL, DIMENSION(KI,KSW),INTENT(IN) :: PSCA_SW ! diffuse solar radiation (on horizontal surf.)
! ! (W/m2)
REAL, DIMENSION(KSW),INTENT(IN) :: PSW_BANDS ! mean wavelength of each shortwave band (m)
REAL, DIMENSION(KI), INTENT(IN) :: PZENITH ! zenithal angle (radian from the vertical)
REAL, DIMENSION(KI), INTENT(IN) :: PAZIM ! azimuthal angle (radian from North, clockwise)
REAL, DIMENSION(KI), INTENT(IN) :: PLW ! longwave radiation (on horizontal surf.)
! ! (W/m2)
REAL, DIMENSION(KI), INTENT(IN) :: PPS ! pressure at atmospheric model surface (Pa)
REAL, DIMENSION(KI,KLEV), INTENT(IN) :: PPA ! pressure at forcing level (Pa)
REAL, DIMENSION(KI,KLEV), INTENT(IN) :: PTKE ! Turbulent kinetic energy at forcing level (m2/s2)
REAL, DIMENSION(KI), INTENT(IN) :: PZS ! atmospheric model orography (m)
REAL, DIMENSION(KI), INTENT(IN) :: PCO2 ! CO2 concentration in the air (kg/m3)
REAL, DIMENSION(KI), INTENT(INOUT) :: PSN ! snow precipitation (kg/m2/s)
REAL, DIMENSION(KI), INTENT(INOUT) :: PRAIN ! liquid precipitation (kg/m2/s)
!
REAL, DIMENSION(KI), INTENT(OUT) :: PSFTH ! flux of heat (W/m2)
REAL, DIMENSION(KI), INTENT(OUT) :: PSFTH_SURF
REAL, DIMENSION(KI), INTENT(OUT) :: PSFTH_WALL
REAL, DIMENSION(KI), INTENT(OUT) :: PSFTH_ROOF
REAL, DIMENSION(KI), INTENT(OUT) :: PSFTQ ! flux of water vapor (kg/m2/s)
REAL, DIMENSION(KI), INTENT(OUT) :: PSFTQ_SURF
REAL, DIMENSION(KI), INTENT(OUT) :: PSFTQ_WALL
REAL, DIMENSION(KI), INTENT(OUT) :: PSFTQ_ROOF
REAL, DIMENSION(KI), INTENT(OUT) :: PSFU ! zonal momentum flux (Pa)
REAL, DIMENSION(KI), INTENT(OUT) :: PSFV ! meridian momentum flux (Pa)
REAL, DIMENSION(KI), INTENT(OUT) :: PCD_ROOF ! Drag coefficient for roofs multiplied by roof density (-)
REAL, DIMENSION(KI), INTENT(OUT) :: PSFCO2 ! flux of CO2 (m/s*kg_CO2/kg_air)
REAL, DIMENSION(KI,KSV),INTENT(OUT):: PSFTS ! flux of scalar var. (kg/m2/s)
!
REAL, DIMENSION(KI), INTENT(OUT) :: PTRAD ! radiative temperature (K)
REAL, DIMENSION(KI,KSW),INTENT(OUT):: PDIR_ALB! direct albedo for each spectral band (-)
REAL, DIMENSION(KI,KSW),INTENT(OUT):: PSCA_ALB! diffuse albedo for each spectral band (-)
REAL, DIMENSION(KI), INTENT(OUT) :: PEMIS ! emissivity (-)
!
REAL, DIMENSION(KI), INTENT(OUT) :: PTSURF ! surface effective temperature (K)
REAL, DIMENSION(KI), INTENT(OUT) :: PZ0 ! roughness length for momentum (m)
REAL, DIMENSION(KI), INTENT(OUT) :: PZ0H ! roughness length for heat (m)
REAL, DIMENSION(KI), INTENT(OUT) :: PQSURF ! specific humidity at surface (kg/kg)
!
REAL, DIMENSION(KI), INTENT(IN) :: PPEW_A_COEF! implicit coefficients
REAL, DIMENSION(KI), INTENT(IN) :: PPEW_B_COEF! needed if HCOUPLING='I'
REAL, DIMENSION(KI), INTENT(IN) :: PPET_A_COEF
REAL, DIMENSION(KI), INTENT(IN) :: PPEQ_A_COEF
REAL, DIMENSION(KI), INTENT(IN) :: PPET_B_COEF
REAL, DIMENSION(KI), INTENT(IN) :: PPEQ_B_COEF
CHARACTER(LEN=2), INTENT(IN) :: HTEST ! must be equal to 'OK'
!
!* 0.2 declarations of local variables
!
INTEGER :: JSWB ! loop counter on shortwave spectral bands
REAL, DIMENSION(KI) :: ZQA ! specific humidity (kg/kg)
REAL, DIMENSION(KI) :: ZEXNA ! Exner function at forcing level
REAL, DIMENSION(KI) :: ZEXNS ! Exner function at surface level
REAL, DIMENSION(KI,KLEV) :: ZWIND ! wind
!
! Ouput Diagnostics:
!
REAL, DIMENSION(KI) :: ZU_CANYON ! wind in canyon
REAL, DIMENSION(KI) :: ZT_CANYON ! temperature in canyon
REAL, DIMENSION(KI) :: ZQ_CANYON ! specific humidity in canyon
REAL, DIMENSION(KI) :: ZT_CAN ! temperature in canyon (evolving in TEB)
REAL, DIMENSION(KI) :: ZQ_CAN ! specific humidity in canyon (evolving in TEB)
REAL, DIMENSION(KI) :: ZTA_HVEG ! temperature in canyon at tree level
REAL, DIMENSION(KI) :: ZQA_HVEG ! specific humidity in canyon at tree level
REAL, DIMENSION(KI) :: ZTS_HVEG ! temperature of high vegetation
REAL, DIMENSION(KI) :: ZPEW_A_COEF ! implicit coefficients
REAL, DIMENSION(KI) :: ZPEW_B_COEF ! needed if HCOUPLING='I'
!
REAL, DIMENSION(KI) :: ZT_LOWCAN ! temperature at lowest canyon level (K)
REAL, DIMENSION(KI) :: ZQ_LOWCAN ! humidity at lowest canyon level (kg/kg)
REAL, DIMENSION(KI) :: ZU_LOWCAN ! wind speed at lowest canyon level (m/s)
REAL, DIMENSION(KI) :: ZZ_LOWCAN ! height of lowest canyon level (m)
!
REAL, DIMENSION(KI) :: ZPEW_A_COEF_LOWCAN ! implicit coefficients for wind coupling
REAL, DIMENSION(KI) :: ZPEW_B_COEF_LOWCAN ! between first canopy level and road
!
REAL, DIMENSION(KI) :: ZTA ! temperature at canyon level just above roof (K)
REAL, DIMENSION(KI) :: ZPA ! pressure at canyon level just above roof (K)
REAL, DIMENSION(KI) :: ZUA ! wind at canyon level just above roof (m/s)
REAL, DIMENSION(KI) :: ZUREF ! height of canyon level just above roof (m)
REAL, DIMENSION(KI) :: ZZREF ! height of canyon level just above roof (m)
!
REAL, DIMENSION(KI) :: ZDIR_SW ! total direct SW
REAL, DIMENSION(KI) :: ZSCA_SW ! total diffuse SW
REAL, DIMENSION(KI) :: ZAVG_SCA_SW
REAL, DIMENSION(KI) :: ZAVG_DIR_SW
REAL, DIMENSION(KI) :: ZAVG_DIR_SW_ROAD
REAL, DIMENSION(KI) :: ZAVG_E_WL
REAL, DIMENSION(KI,BOP%NBEMCOMP) :: ZAVG_TI_BLD
REAL, DIMENSION(KI,BOP%NBEMCOMP) :: ZAVG_QI_BLD
REAL, DIMENSION(KI) :: ZRN_GRND ! net radiation on ground built surf
REAL, DIMENSION(KI) :: ZH_GRND ! sensible heat flux on ground built surf
REAL, DIMENSION(KI) :: ZLE_GRND ! latent heat flux on ground built surf
REAL, DIMENSION(KI) :: ZGFLX_GRND ! storage flux in ground built surf
REAL, DIMENSION(KI) :: ZUW_GRND ! momentum flux for ground built surf
REAL, DIMENSION(KI) :: ZDUWDU_GRND !
REAL, DIMENSION(KI) :: ZEMIT_LW_HVEG
REAL, DIMENSION(KI) :: ZAVG_UW_GRND
REAL, DIMENSION(KI) :: ZAVG_DUWDU_GRND
REAL, DIMENSION(:,:), ALLOCATABLE :: ZAVG_DH_HVEG
REAL, DIMENSION(:,:), ALLOCATABLE :: ZAVG_DE_HVEG
REAL, DIMENSION(KI) :: ZAVG_AC_GRND
REAL, DIMENSION(KI) :: ZAVG_AC_GRND_WAT
REAL, DIMENSION(KI) :: ZSCA_SW_SKY ! diff solar rad from the sky received by people (incl attenuation by trees)
REAL, DIMENSION(KI) :: ZLW_RAD_SKY ! IR rad from the sky received by people (incl attenuation by trees)
!
REAL, DIMENSION(KI) :: ZRESA_TOWN ! aerodynamical resistance
REAL, DIMENSION(KI) :: ZAC_GRND ! ground built surf aerodynamical conductance
REAL, DIMENSION(KI) :: ZAC_GRND_WAT ! ground built surf water aerodynamical conductance
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
!
REAL, DIMENSION(KI) :: ZLEW_RF ! latent heat flux on snowfree roof
REAL, DIMENSION(KI) :: ZRNSN_RF ! net radiation over snow
REAL, DIMENSION(KI) :: ZHSN_RF ! sensible heat flux over snow
REAL, DIMENSION(KI) :: ZLESN_RF ! latent heat flux over snow
REAL, DIMENSION(KI) :: ZGSN_RF ! flux under the snow
REAL, DIMENSION(KI) :: ZMELT_RF ! snow melt
REAL, DIMENSION(KI) :: ZUW_RF ! momentum flux for roofs
REAL, DIMENSION(KI) :: ZDUWDU_RF !
REAL, DIMENSION(KI) :: ZAVG_UW_RF
REAL, DIMENSION(KI) :: ZAVG_DUWDU_RF
REAL, DIMENSION(KI) :: ZAVG_H_RF
REAL, DIMENSION(KI) :: ZAVG_E_RF
!
REAL, DIMENSION(KI) :: ZLEW_RD ! latent heat flux on snowfree road
REAL, DIMENSION(KI) :: ZRNSN_RD ! net radiation over snow
REAL, DIMENSION(KI) :: ZHSN_RD ! sensible heat flux over snow
REAL, DIMENSION(KI) :: ZLESN_RD ! latent heat flux over snow
REAL, DIMENSION(KI) :: ZGSN_RD ! flux under the snow
REAL, DIMENSION(KI) :: ZMELT_RD ! snow melt
REAL, DIMENSION(KI) :: ZAC_RD ! road aerodynamical conductance
REAL, DIMENSION(KI) :: ZAC_RD_WAT ! road water aerodynamical conductance
!
REAL, DIMENSION(KI) :: ZAC_GD ! green area aerodynamical conductance
REAL, DIMENSION(KI) :: ZAC_GD_WAT! green area water aerodynamical conductance
!
REAL, DIMENSION(KI) :: ZAC_GRF ! green roof aerodynamical conductance
REAL, DIMENSION(KI) :: ZAC_GRF_WAT! green roof water aerodynamical conductance
!
REAL, DIMENSION(KI) :: ZTRAD ! radiative temperature for current patch
REAL, DIMENSION(KI) :: ZEMIS ! emissivity for current patch
REAL, DIMENSION(KI,TOP%NTEB_PATCH) :: ZTRAD_PATCH ! radiative temperature for each patch
REAL, DIMENSION(KI,TOP%NTEB_PATCH) :: ZEMIS_PATCH ! emissivity for each patch
!
REAL, DIMENSION(:,:), ALLOCATABLE :: ZLAD_CAN ! vertical profile of Leaf Area Density on canopy grid
REAL, DIMENSION(:,:), ALLOCATABLE :: ZDH_HVEG ! sensible heat flux from trees discretized on caopy grid
REAL, DIMENSION(:,:), ALLOCATABLE :: ZDLE_HVEG! latent heat flux from trees discretized on caopy grid
!
REAL, DIMENSION(KI) :: ZDIR_ALB ! direct albedo of town
REAL, DIMENSION(KI) :: ZSCA_ALB ! diffuse albedo of town
REAL, DIMENSION(KI,KSW,TOP%NTEB_PATCH) :: ZDIR_ALB_PATCH ! direct albedo per wavelength and patch
REAL, DIMENSION(KI,KSW,TOP%NTEB_PATCH) :: ZSCA_ALB_PATCH ! diffuse albedo per wavelength and patch
!
REAL, DIMENSION(KI) :: ZRI ! Richardson number
REAL, DIMENSION(KI) :: ZCD ! drag coefficient
REAL, DIMENSION(KI) :: ZCDN ! neutral drag coefficient
REAL, DIMENSION(KI) :: ZCH ! heat drag
REAL, DIMENSION(KI) :: ZRN ! net radiation over town
REAL, DIMENSION(KI) :: ZH ! sensible heat flux over town
REAL, DIMENSION(KI) :: ZH_TOWN_SURF ! sensible heat flux over town, surface level
REAL, DIMENSION(KI) :: ZH_TOWN_WALL ! sensible heat flux over town, wall level
REAL, DIMENSION(KI) :: ZH_TOWN_ROOF ! sensible heat flux over town, roof level
REAL, DIMENSION(KI) :: ZLE ! latent heat flux over town
REAL, DIMENSION(KI) :: ZGFLX ! flux through the ground
REAL, DIMENSION(KI) :: ZQF ! anthropogenic flux over town
REAL, DIMENSION(KI) :: ZEVAP ! evaporation (km/m2/s)
REAL, DIMENSION(KI) :: ZEVAP_TOWN_SURF ! evaporation flux, surface level (kg/m2/s)
REAL, DIMENSION(KI) :: ZEVAP_TOWN_WALL ! evaporation flux, wall level (kg/m2/s)
REAL, DIMENSION(KI) :: ZEVAP_TOWN_ROOF ! evaporation flux, roof level (kg/m2/s)
REAL, DIMENSION(KI) :: ZAVG_T_CANYON ! temperature in canyon for town
REAL, DIMENSION(KI) :: ZAVG_Q_CANYON ! specific humidity in canyon for town
REAL, DIMENSION(KI) :: ZAVG_CD ! aggregated drag coefficient
REAL, DIMENSION(KI) :: ZAVG_CDN ! aggregated neutral drag coefficient
REAL, DIMENSION(KI) :: ZAVG_RI ! aggregated Richardson number
REAL, DIMENSION(KI) :: ZAVG_CH ! aggregated Heat transfer coefficient
!
! new local variables after BEM
REAL, DIMENSION(KI) :: ZUSTAR ! friction velocity
REAL, DIMENSION(KI) :: ZSFU ! momentum flux for patch (U direction)
REAL, DIMENSION(KI) :: ZSFV ! momentum flux for patch (V direction)
REAL, DIMENSION(KI) :: ZH_TRAFFIC ! anthropogenic sensible
REAL, DIMENSION(KI) :: ZLE_TRAFFIC ! anthropogenic latent
REAL, DIMENSION(KI) :: ZTRAF_MODULATION ! modulation of traffic CO2 flux as a function of month, day and hour
REAL, DIMENSION(KI) :: ZPOP_MODULATION ! modulation of CO2 flux due to metabolism as a function of month, day and hour
REAL, DIMENSION(KI) :: ZREF_SW_HVEG ! total solar rad reflected from high veg
REAL, DIMENSION(KI) :: ZAVG_Z0_TOWN
REAL, DIMENSION(KI) :: ZAVG_RESA_TOWN
REAL, DIMENSION(KI) :: ZAVG_USTAR ! town avegared Ustar
REAL, DIMENSION(KI) :: ZAVG_BLD ! town averaged building fraction
REAL, DIMENSION(KI) :: ZAVG_BLD_HEIGHT ! town averaged building height
REAL, DIMENSION(KI) :: ZAVG_WL_O_HOR ! town averaged Wall/hor ratio
REAL, DIMENSION(KI) :: ZAVG_CAN_HW_RATIO ! town averaged road aspect ratio
REAL, DIMENSION(KI) :: ZAVG_TAU_SR
REAL, DIMENSION(KI) :: ZAVG_H
REAL, DIMENSION(KI) :: ZAVG_LE
REAL, DIMENSION(KI) :: ZAVG_RN
REAL, DIMENSION(KI) :: ZAVG_GFLX
REAL, DIMENSION(KI) :: ZAVG_QF
REAL, DIMENSION(KI) :: ZAVG_REF_SW_GRND
REAL, DIMENSION(KI) :: ZAVG_REF_SW_HVEG
REAL, DIMENSION(KI) :: ZSCA_SW_GROUND_DOWN
REAL, DIMENSION(KI) :: ZSCA_SW_GROUND_UP
REAL, DIMENSION(KI) :: ZSCA_SW_GROUND_HOR
REAL, DIMENSION(KI) :: ZLW_GROUND_DOWN
REAL, DIMENSION(KI) :: ZLW_GROUND_HOR
REAL, DIMENSION(KI) :: ZAVG_SCA_SW_GROUND_DOWN
REAL, DIMENSION(KI) :: ZAVG_SCA_SW_GROUND_UP
REAL, DIMENSION(KI) :: ZAVG_SCA_SW_GROUND_HOR
REAL, DIMENSION(KI) :: ZAVG_LW_GROUND_DOWN
REAL, DIMENSION(KI) :: ZAVG_LW_GROUND_HOR
REAL, DIMENSION(KI) :: ZAVG_EMIT_LW_FAC
REAL, DIMENSION(KI) :: ZAVG_EMIT_LW_GRND
REAL, DIMENSION(KI) :: ZAVG_EMIT_LW_HVEG
REAL, DIMENSION(KI) :: ZAVG_LW_RAD_SKY
REAL, DIMENSION(KI) :: ZAVG_SCA_SW_SKY
REAL, DIMENSION(KI,BOP%NBEMCOMP) :: ZAVG_T_RAD_IND
REAL, DIMENSION(KI) :: ZAVG_URBTREE
REAL, DIMENSION(:,:), ALLOCATABLE :: ZAVG_LAD_CAN
REAL, DIMENSION(KI) :: ZAVG_ROAD_SHADE
REAL, DIMENSION(KI) :: ZU_UTCI ! wind speed for the UTCI calculation (m/s)
REAL, DIMENSION(KI) :: ZT_UTCI ! temperature for the UTCI calculation (m/s)
REAL, DIMENSION(KI) :: ZQ_UTCI ! specific humidity for the UTCI calculation (m/s)
REAL, DIMENSION(KI) :: ZALFAU ! V+(1) = alfa u'w'(1) + beta
REAL, DIMENSION(KI) :: ZBETAU ! V+(1) = alfa u'w'(1) + beta
REAL, DIMENSION(KI) :: ZALFAT ! Th+(1) = alfa w'th'(1) + beta
REAL, DIMENSION(KI) :: ZBETAT ! Th+(1) = alfa w'th'(1) + beta
REAL, DIMENSION(KI) :: ZALFAQ ! Q+(1) = alfa w'q'(1) + beta
REAL, DIMENSION(KI) :: ZBETAQ ! Q+(1) = alfa w'q'(1) + beta
REAL, DIMENSION(KI) :: ZWAKE ! reduction of average wind speed
! ! in canyon due to direction average.
REAL, DIMENSION(KI) :: ZSFLUX_U ! Surface flux u'w' (m2/s2)
REAL, DIMENSION(KI) :: ZSFLUX_T ! Surface flux w'T' (mK/s)
REAL, DIMENSION(KI) :: ZSFLUX_Q ! Surface flux w'q' (kgm2/s)
REAL, DIMENSION(KI,SB%NLVL) :: ZFORC_U ! tendency due to drag force for wind
REAL, DIMENSION(KI,SB%NLVL) :: ZDFORC_UDU! formal derivative of
! ! tendency due to drag force for wind
REAL, DIMENSION(KI,SB%NLVL) :: ZFORC_E ! tendency due to drag force for TKE
REAL, DIMENSION(KI,SB%NLVL) :: ZDFORC_EDE! formal derivative of
! ! tendency due to drag force for TKE
REAL, DIMENSION(KI,SB%NLVL) :: ZFORC_T ! tendency due to drag force for Temp
REAL, DIMENSION(KI,SB%NLVL) :: ZDFORC_TDT! formal derivative of
! ! tendency due to drag force for Temp
REAL, DIMENSION(KI,SB%NLVL) :: ZFORC_Q ! tendency due to drag force for hum
REAL, DIMENSION(KI,SB%NLVL) :: ZDFORC_QDQ! formal derivative of
! ! tendency due to drag force for hum.
REAL, DIMENSION(KI) :: ZLMO ! Monin-Obukhov length at canopy height (m)
REAL, DIMENSION(KI,SB%NLVL) :: ZL ! Mixing length generic profile at mid levels
REAL, DIMENSION(KI) :: ZAVG_USTAR_ROOF
REAL, DIMENSION(KI) :: ZNET_UP_DOWN
!
REAL :: ZCONVERTFACM0_SLT, ZCONVERTFACM0_DST
REAL :: ZCONVERTFACM3_SLT, ZCONVERTFACM3_DST
REAL :: ZCONVERTFACM6_SLT, ZCONVERTFACM6_DST
!
INTEGER :: JI
INTEGER :: JLAYER
INTEGER :: JCOMP
INTEGER :: JJ
INTEGER :: ICHECK
REAL :: ZWEIGHT
TYPE(CHECK_TEB_t) :: CT
!
! number of TEB patches
!
INTEGER :: JP, IBEG, IEND ! loop counter
INTEGER :: ILUOUT ! Unit number
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
!
!-------------------------------------------------------------------------------------
! Preliminaries:
!-------------------------------------------------------------------------------------
IF (LHOOK) CALL DR_HOOK('COUPLING_TEB_N',0,ZHOOK_HANDLE)
CALL GET_LUOUT(HPROGRAM,ILUOUT)
!
IF (HTEST/='OK') THEN
CALL ABOR1_SFX('COUPLING_TEBN: FATAL ERROR DURING ARGUMENT TRANSFER')
END IF
!
! Set very low values of snow and rain rate to 0.0
!
WHERE(PSN(:).LT.1.0e-9) PSN(:)=0.0
WHERE(PRAIN(:).LT.1.0e-9) PRAIN(:)=0.0
!
!-------------------------------------------------------------------------------------
!
CT%LCHECK_TEB = TOP%LCHECK_TEB
CT%XCHECK_PROCESS = TOP%XEPS_BDGT_FAC
CT%XCHECK_ALL = TOP%XEPS_BDGT_GLOB
!
IF (CT%LCHECK_TEB) CALL ALLOC_CHECK_TEB(CT, KI, BOP%NBEMCOMP)
!
! scalar fluxes
!
PSFTS(:,:) = 0.
!
! broadband radiative fluxes
!
ZDIR_SW(:) = 0.
ZSCA_SW(:) = 0.
!
DO JSWB=1,KSW
!add directionnal contrib from scattered radiation
!
ZDIR_SW(:) = ZDIR_SW(:) + PDIR_SW(:,JSWB)
ZSCA_SW(:) = ZSCA_SW(:) + PSCA_SW(:,JSWB)
!
ENDDO
!
! specific humidity (conversion from kg/m3 to kg/kg)
!
ZQA(:) = PQA(:,1) / PRHOA(:,1)
! wind speed
ZWIND(:,:) = SQRT(PU(:,:)**2+PV(:,:)**2)
!
! method of wind coupling
!
IF (HCOUPLING=='I') THEN
ZPEW_A_COEF = PPEW_A_COEF
ZPEW_B_COEF = PPEW_B_COEF
ELSE
ZPEW_A_COEF = 0.
ZPEW_B_COEF = ZWIND(:,1)
END IF
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Time evolution
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
DO JP=1,TOP%NTEB_PATCH
CALL TRAFFIC_FLUX_MODULATION (TOP, PTSUN, &
NT%AL(JP)%XDELTA_LEGAL_TIME,NT%AL(JP)%NDELTA_LEGAL_TIME, &
NT%AL(JP)%XTIME_OF_CHANGE, NT%AL(JP)%LTIME_OF_CHANGE, &
G%XLON, HPROGRAM,ZTRAF_MODULATION,ZPOP_MODULATION)
!
ZH_TRAFFIC(:) = NT%AL(JP)%XH_TRAFFIC * ZTRAF_MODULATION
ZLE_TRAFFIC(:) = NT%AL(JP)%XLE_TRAFFIC * ZTRAF_MODULATION
!
END DO
!,' (K)'
TOP%TTIME%TIME = TOP%TTIME%TIME + PTSTEP
CALL ADD_FORECAST_TO_DATE_SURF(TOP%TTIME%TDATE%YEAR, TOP%TTIME%TDATE%MONTH,&
TOP%TTIME%TDATE%DAY, TOP%TTIME%TIME)
!
!--------------------------------------------------------------------------------------
! Canyon forcing for TEB
!--------------------------------------------------------------------------------------
!-------------------------------------------------------------------------------------
! Town averaged quantities to force canopy atmospheric layers
!-------------------------------------------------------------------------------------
!
DO JP=1,TOP%NTEB_PATCH
CALL ADD_PATCH_CONTRIB(JP,ZAVG_BLD, NT%AL(JP)%XBLD )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_BLD_HEIGHT, NT%AL(JP)%XBLD_HEIGHT )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_WL_O_HOR, NT%AL(JP)%XWALL_O_HOR )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_CAN_HW_RATIO,NT%AL(JP)%XCAN_HW_RATIO)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_Z0_TOWN ,NT%AL(JP)%XZ0_TOWN )
! Allocate local canopy variables
!
ALLOCATE(ZAVG_DH_HVEG(KI,SB%NLVL))
ALLOCATE(ZAVG_DE_HVEG(KI,SB%NLVL))
ALLOCATE(ZLAD_CAN(KI,SB%NLVL))
ALLOCATE(ZDH_HVEG(KI,SB%NLVL))
ALLOCATE(ZDLE_HVEG(KI,SB%NLVL))
ALLOCATE(ZAVG_LAD_CAN(KI,SB%NLVL))
!
!
!
!-------------------------------------------------------------------------------------
! Updates canopy vertical grid as a function of forcing height
! and coupling (single level or multi-level)
!-------------------------------------------------------------------------------------
!
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
IF (TOP%LATM_CANOPY) THEN
!
! Check whether lowest forcing level not too low
! compared to roughness lengths assumed in the TEB routines
!
IF ((MINVAL(PZREF).LT.0.1).OR.(MINVAL(PUREF).LT.0.1)) THEN
CALL ABOR1_SFX("COUPLING_TEBN: Too low value for reference height")
ENDIF
!
! The number of canopy levels is set to the number of levels from the atmospheric model
!
SB%NLVL = KLEV
!
! On first time step: change size of TEB canopy variables
! to match with atmospheric model grid.
!
IF (SIZE(SB%XZ,2).NE.KLEV) THEN
!
DEALLOCATE(SB%XZ)
DEALLOCATE(SB%XZF)
DEALLOCATE(SB%XDZ)
DEALLOCATE(SB%XT)
DEALLOCATE(SB%XQ)
DEALLOCATE(SB%XP)
DEALLOCATE(SB%XU)
DEALLOCATE(SB%XTKE)
DEALLOCATE(SB%XLMO)
DEALLOCATE(SB%XLM)
DEALLOCATE(SB%XLEPS)
DEALLOCATE(SB%XU_MEAN)
DEALLOCATE(SB%XT_MEAN)
DEALLOCATE(SB%XQ_MEAN)
DEALLOCATE(SB%XRH_MEAN)
DEALLOCATE(SB%XP_MEAN)
!
ALLOCATE(SB%XZ(KI,KLEV))
ALLOCATE(SB%XZF(KI,KLEV))
ALLOCATE(SB%XDZ(KI,KLEV))
ALLOCATE(SB%XT(KI,KLEV))
ALLOCATE(SB%XQ(KI,KLEV))
ALLOCATE(SB%XP(KI,KLEV))
ALLOCATE(SB%XU(KI,KLEV))
ALLOCATE(SB%XTKE(KI,KLEV))
ALLOCATE(SB%XLMO(KI,KLEV))
ALLOCATE(SB%XLM(KI,KLEV))
ALLOCATE(SB%XLEPS(KI,KLEV))
ALLOCATE(SB%XU_MEAN(KI,KLEV))
ALLOCATE(SB%XT_MEAN(KI,KLEV))
ALLOCATE(SB%XQ_MEAN(KI,KLEV))
ALLOCATE(SB%XRH_MEAN(KI,KLEV))
ALLOCATE(SB%XP_MEAN(KI,KLEV))
!
DEALLOCATE(ZAVG_DH_HVEG)
DEALLOCATE(ZAVG_DE_HVEG)
DEALLOCATE(ZLAD_CAN)
DEALLOCATE(ZDH_HVEG)
DEALLOCATE(ZDLE_HVEG)
DEALLOCATE(ZAVG_LAD_CAN)
!
ALLOCATE(ZAVG_DH_HVEG(KI,KLEV))
ALLOCATE(ZAVG_DE_HVEG(KI,KLEV))
ALLOCATE(ZLAD_CAN(KI,KLEV))
ALLOCATE(ZDH_HVEG(KI,KLEV))
ALLOCATE(ZDLE_HVEG(KI,KLEV))
ALLOCATE(ZAVG_LAD_CAN(KI,KLEV))
!
! The variables not used with this option are initialised with the undefined value
!
SB%XLMO(:,:) = XUNDEF
SB%XLM(:,:) = XUNDEF
SB%XLEPS(:,:) = XUNDEF
!
ENDIF
!
! The height of the middle of the canopy levels equals the
! scalar level heights from the atmospheric model
!
SB%XZ(:,:) = PZREF(:,:)
!
! The height of the bottom and top of the canopy levels
!
SB%XZF(:,:) = XUNDEF
SB%XZF(:,1) = 0.
!
DO JLAYER=2,KLEV
SB%XZF(:,JLAYER) = 2.*SB%XZ(:,JLAYER-1) - SB%XZF(:,JLAYER-1)
ENDDO
!
! Calculate the layer depths (variable located at full levels)
!
SB%XDZ(:,:) = -XUNDEF
DO JLAYER=1,SB%NLVL-1
SB%XDZ(:,JLAYER) = SB%XZF(:,JLAYER+1) - SB%XZF(:,JLAYER)
ENDDO
!
! The prognostic canopy variables are set equal to the atmospheric variables
!
SB%XT(:,:) = PTA(:,:)
SB%XQ(:,:) = PQA(:,:)
SB%XP(:,:) = PPA(:,:)
SB%XU(:,:) = ZWIND(:,:)
SB%XTKE(:,:) = PTKE(:,:)
!
! For the variables close to the surface, the first atmospheric level is taken
!
ZZ_LOWCAN(:) = PZREF(:,1)
ZU_LOWCAN(:) = ZWIND(:,1)
ZT_LOWCAN(:) = PTA(:,1)
ZQ_LOWCAN(:) = PQA(:,1)/PRHOA(:,1)
ZPEW_A_COEF_LOWCAN(:) = 0.0
ZPEW_B_COEF_LOWCAN(:) = ZU_LOWCAN(:)
!
! For the variables above the roof, the corresponding
! atmospheric values are assigned.
! However, the level must be at least 0.5 m higher than the roof, since
! in urban drag a roof roughness length of 0.15 m is hardcoded
! Otherwise the next higher level is taken.
!
DO JJ=1,KI
!
ICHECK=0
!
DO JLAYER=1,(SB%NLVL-1)
!
IF ( (SB%XZ(JJ,JLAYER ).LE.ZAVG_BLD_HEIGHT(JJ)) .AND. &
(SB%XZ(JJ,JLAYER+1).GT.ZAVG_BLD_HEIGHT(JJ)) ) THEN
!
ICHECK=ICHECK+1
!
IF ( (SB%XZ(JJ,JLAYER+1) - ZAVG_BLD_HEIGHT(JJ) ) .GT. 0.5 ) THEN
!
ZUREF(JJ) = SB%XZ(JJ,JLAYER+1) - ZAVG_BLD_HEIGHT(JJ)
ZZREF(JJ) = SB%XZ(JJ,JLAYER+1) - ZAVG_BLD_HEIGHT(JJ)
ZTA(JJ) = SB%XT(JJ,JLAYER+1)
ZQA(JJ) = SB%XQ(JJ,JLAYER+1)/PRHOA(JJ,JLAYER+1)
ZPA(JJ) = SB%XP(JJ,JLAYER+1)
ZUA(JJ) = SB%XU(JJ,JLAYER+1)
!
ELSE
!
ZUREF(JJ) = SB%XZ(JJ,JLAYER+2) - ZAVG_BLD_HEIGHT(JJ)
ZZREF(JJ) = SB%XZ(JJ,JLAYER+2) - ZAVG_BLD_HEIGHT(JJ)
ZTA(JJ) = SB%XT(JJ,JLAYER+2)
ZQA(JJ) = SB%XQ(JJ,JLAYER+2)/PRHOA(JJ,JLAYER+2)
ZPA(JJ) = SB%XP(JJ,JLAYER+2)
ZUA(JJ) = SB%XU(JJ,JLAYER+2)
!
ENDIF
!
ENDIF
!
ENDDO
!
IF (ICHECK.NE.1) THEN
CALL ABOR1_SFX("COUPLING_TEBN: Roof level could not be attributed")
ENDIF
!
ENDDO
!
! For the canyon variables, a weighted average over all
! atmospheric levels intersecting the buildings is calculated
! The in-canyon variability of temperature, humidity and wind speed
! is therefore neglected, which leads to uncertainties due to
! the non-linearity of the exchange coeffients.
!
DO JJ=1,KI
!
ICHECK = 0
ZWEIGHT = 0
!
ZU_CANYON(JJ) = 0.0
ZT_CANYON(JJ) = 0.0
ZQ_CANYON(JJ) = 0.0
!
DO JLAYER=1,(SB%NLVL-1)
!
IF ( (SB%XZ(JJ,JLAYER ) .LE. ZAVG_BLD_HEIGHT(JJ)) .AND. &
(SB%XZ(JJ,JLAYER+1) .LT. ZAVG_BLD_HEIGHT(JJ)) ) THEN
!
ZWEIGHT = ZWEIGHT + (SB%XZF(JJ,JLAYER+1)-SB%XZF(JJ,JLAYER))
!
ZU_CANYON(JJ) = ZU_CANYON(JJ) + SB%XU(JJ,JLAYER) * (SB%XZF(JJ,JLAYER+1)-SB%XZF(JJ,JLAYER))
ZT_CANYON(JJ) = ZT_CANYON(JJ) + SB%XT(JJ,JLAYER) * (SB%XZF(JJ,JLAYER+1)-SB%XZF(JJ,JLAYER))
ZQ_CANYON(JJ) = ZQ_CANYON(JJ) + (SB%XQ(JJ,JLAYER) / PRHOA(JJ,JLAYER)) * (SB%XZF(JJ,JLAYER+1)-SB%XZF(JJ,JLAYER))
!
ELSE IF ( (SB%XZ(JJ,JLAYER ) .LE. ZAVG_BLD_HEIGHT(JJ)) .AND. &
(SB%XZ(JJ,JLAYER+1) .GT. ZAVG_BLD_HEIGHT(JJ)) ) THEN
!
ZWEIGHT = ZWEIGHT + (ZAVG_BLD_HEIGHT(JJ)-SB%XZF(JJ,JLAYER))
!
ZU_CANYON(JJ) = ZU_CANYON(JJ) + SB%XU(JJ,JLAYER) * (ZAVG_BLD_HEIGHT(JJ)-SB%XZF(JJ,JLAYER))
ZT_CANYON(JJ) = ZT_CANYON(JJ) + SB%XT(JJ,JLAYER) * (ZAVG_BLD_HEIGHT(JJ)-SB%XZF(JJ,JLAYER))
ZQ_CANYON(JJ) = ZQ_CANYON(JJ) + (SB%XQ(JJ,JLAYER) / PRHOA(JJ,JLAYER)) * (ZAVG_BLD_HEIGHT(JJ)-SB%XZF(JJ,JLAYER))
!
ICHECK=ICHECK+1
!
ENDIF
!
ENDDO
!
IF (ICHECK.NE.1) THEN
CALL ABOR1_SFX ("COUPLING_TEBN: Roof level could not be attributed")
ENDIF
!
IF (ABS(ZWEIGHT-ZAVG_BLD_HEIGHT(JJ)).GT.1.0E-6) THEN
CALL ABOR1_SFX ("COUPLING_TEBN: Wrong weights for canyon levels")
ENDIF
!
ZU_CANYON(JJ) = ZU_CANYON(JJ) / ZWEIGHT
ZT_CANYON(JJ) = ZT_CANYON(JJ) / ZWEIGHT
ZQ_CANYON(JJ) = ZQ_CANYON(JJ) / ZWEIGHT
!
ENDDO
!
ELSE
!
! Make sure this part is not used with multi level forcing
!
IF (KLEV.NE.1) THEN
CALL ABOR1_SFX("COUPLING_TEBN: TEB canopy only available with single level coupling")
ENDIF
!
!* determines where is the forcing level and modifies the upper levels of the canopy grid
!
CALL CANOPY_GRID_UPDATE(KI, ZAVG_BLD_HEIGHT, ZAVG_BLD_HEIGHT+PUREF(:,1), SB)
!
!* Initialisations of T, Q, TKE and wind at first time step
!
IF(ANY(SB%XT(:,:) == XUNDEF)) THEN
DO JLAYER=1,SB%NLVL
SB%XT(:,JLAYER) = PTA(:,1)
SB%XQ(:,JLAYER) = PQA(:,1)
SB%XU(:,JLAYER) = 2./XPI * ZWIND(:,1) &
* LOG( ( 2.* NT%AL(1)%XBLD_HEIGHT(:)/3.) / NT%AL(1)%XZ0_TOWN(:)) &
/ LOG( (PUREF(:,1)+ 2.* NT%AL(1)%XBLD_HEIGHT(:)/3.) / NT%AL(1)%XZ0_TOWN(:))
!
!* default forcing above roof: forcing level
ZUREF(:) = PUREF(:,1)
ZZREF(:) = PZREF(:,1)
ZUA(:) = SB%XU(:,SB%NLVL)
ZTA(:) = SB%XT(:,SB%NLVL)
ZQA(:) = SB%XQ(:,SB%NLVL)/PRHOA(:,1)
ZPA(:) = SB%XP(:,SB%NLVL)
!* for the time being, only one value is kept for wall in-canyon forcing, in the middle of the canyon
ZU_CANYON(:) = ZUA(:)
ZT_CANYON(:) = ZTA(:)
ZQ_CANYON(:) = ZQA(:)
DO JLAYER=1,SB%NLVL-1
DO JI=1,KI
!* finds middle canyon layer
IF (SB%XZ(JI,JLAYER)<ZAVG_BLD_HEIGHT(JI)/2. .AND. SB%XZ(JI,JLAYER+1)>=ZAVG_BLD_HEIGHT(JI)/2.) THEN
ZCOEF(JI) = (ZAVG_BLD_HEIGHT(JI)/2.-SB%XZ(JI,JLAYER))/(SB%XZ(JI,JLAYER+1)-SB%XZ(JI,JLAYER))
ZU_CANYON(JI) = SB%XU(JI,JLAYER) + ZCOEF(JI) * (SB%XU(JI,JLAYER+1)-SB%XU(JI,JLAYER))
ZT_CANYON(JI) = SB%XT(JI,JLAYER) + ZCOEF(JI) * (SB%XT(JI,JLAYER+1)-SB%XT(JI,JLAYER))
ZQ_CANYON(JI) =(SB%XQ(JI,JLAYER) + ZCOEF(JI) * (SB%XQ(JI,JLAYER+1)-SB%XQ(JI,JLAYER)))/PRHOA(JI,1)
END IF
!* finds layer just above roof (at least 1m above roof)
IF (SB%XZ(JI,JLAYER)<ZAVG_BLD_HEIGHT(JI)+1. .AND. SB%XZ(JI,JLAYER+1)>=ZAVG_BLD_HEIGHT(JI)+1.) THEN
ZUREF(JI) = SB%XZ(JI,JLAYER+1) - ZAVG_BLD_HEIGHT(JI)
ZZREF(JI) = SB%XZ(JI,JLAYER+1) - ZAVG_BLD_HEIGHT(JI)
ZTA (JI) = SB%XT(JI,JLAYER+1)
ZQA (JI) = SB%XQ(JI,JLAYER+1)/PRHOA(JI,1)
ZUA (JI) = MAX(SB%XU(JI,JLAYER+1) - 2.*SQRT(SB%XTKE(JI,JLAYER+1)) , SB%XU(JI,JLAYER+1)/3.)
ZPA (JI) = SB%XP(JI,JLAYER+1)
ZLMO (JI) = SB%XLMO(JI,JLAYER+1)
!
ZU_LOWCAN=SB%XU(:,1)
ZT_LOWCAN=SB%XT(:,1)
ZQ_LOWCAN=SB%XQ(:,1) / PRHOA(:,1)
WHERE(ZPA==XUNDEF) ZPA = PPA(:,1) ! security for first time step
!
!-------------------------------------------------------------------------------------
! determine the vertical profile for mixing and dissipative lengths (at full levels)
!-------------------------------------------------------------------------------------
!
IF (TOP%CURB_LM.EQ.'SM10') THEN
!
! Computation of the urban mixing length following Santiago and Martilli (2010)
!
CALL SM10(SB%XZ, ZAVG_BLD_HEIGHT, ZAVG_BLD, ZL)
!
ELSE IF (TOP%CURB_LM.EQ.'LMEZ') THEN
!
! The urban mixing length equals to the height above ground
!
ZL(:,:) = SB%XZ(:,:)
!
ELSE
CALL ABOR1_SFX("COUPLING_TEBN: No rule for computation of urban mixing length")
ENDIF
!
!-------------------------------------------------------------------------------------
! computes coefficients for implicitation
!-------------------------------------------------------------------------------------
!
ZAVG_UW_GRND(:) = 0.
ZAVG_DUWDU_GRND(:) = 0.
ZAVG_UW_RF(:) = 0.
ZAVG_DUWDU_RF(:) = 0.
ZAVG_H_WL(:) = 0.
ZAVG_H_RF(:) = 0.
ZAVG_E_WL(:) = 0.
ZAVG_DH_HVEG(:,:) = 0.
ZAVG_DE_HVEG(:,:) = 0.
ZAVG_URBTREE(:) = 0.
ZAVG_LAD_CAN(:,:) = 0.
ZAVG_AC_GRND(:) = 0.
ZAVG_AC_GRND_WAT(:)= 0.
ZSFLUX_U(:) = 0.
ZSFLUX_T(:) = 0.
ZSFLUX_Q(:) = 0.
!
DO JLAYER=1,SB%NLVL-1
!* Monin-Obuhkov theory not used inside the urban canopy
! => neutral mixing if layer is below : (roof level +1 meter)
WHERE (SB%XZ(:,JLAYER)<=ZAVG_BLD_HEIGHT(:)+1.) SB%XLMO(:,JLAYER) = XUNDEF
!
!* computes tendencies on wind and Tke due to canopy
CALL TEB_CANOPY(KI,SB, ZAVG_BLD,ZAVG_BLD_HEIGHT,ZAVG_WL_O_HOR, PPA(:,1), PRHOA(:,1), &
ZAVG_DUWDU_GRND, ZAVG_UW_RF, ZAVG_DUWDU_RF, ZAVG_H_WL, ZAVG_E_WL, &
ZAVG_H_RF, ZAVG_E_RF, ZAVG_DH_HVEG, ZAVG_DE_HVEG, &
ZAVG_AC_GRND,ZAVG_AC_GRND_WAT, &
ZAVG_URBTREE,ZAVG_LAD_CAN, ZFORC_U, &
ZDFORC_UDU, ZFORC_E, ZDFORC_EDE, ZFORC_T, ZDFORC_TDT, ZFORC_Q, &
ZDFORC_QDQ )
!
!* computes coefficients for implicitation
CALL CANOPY_EVOL(SB, KI, PTSTEP, 1, ZL, ZWIND(:,1), PTA(:,1), PQA(:,1), PPA(:,1), PRHOA(:,1), &
ZSFLUX_U, ZSFLUX_T, ZSFLUX_Q, ZFORC_U, ZDFORC_UDU, &
ZFORC_E, ZDFORC_EDE, ZFORC_T, ZDFORC_TDT, ZFORC_Q, &
ZDFORC_QDQ, SB%XLM, SB%XLEPS, ZAVG_USTAR, ZALFAU, &
ZBETAU, ZALFAT, ZBETAT, ZALFAQ, ZBETAQ)
!
ZPEW_A_COEF_LOWCAN = - ZALFAU / PRHOA(:,1)
ZPEW_B_COEF_LOWCAN = ZBETAU
!
ENDIF ! Related to multi-level coupling (LATM_CANOPY)
!
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!* skimming flow for h/w>1 (maximum effect of direction on wind in the canyon);
!* isolated flow for h/w<0.5 (wind is the same in large streets for all dir.)
!* wake flow between.
!
ZWAKE(JI)= 1. + (2./XPI-1.) * 2. * (ZAVG_CAN_HW_RATIO(JI)-0.5)
ZWAKE(JI)= MAX(MIN(ZWAKE(JI),1.),2./XPI)
!
!* Estimation of canyon wind speed from wind just above roof level
! (at 1.33h). Wind at 1.33h is estimated using the log law.
!
IF (ZAVG_BLD_HEIGHT(JI) .GT. 0.) THEN
ZU_CANYON(JI) = ZWAKE(JI) * EXP(-ZAVG_CAN_HW_RATIO(JI)/4.) * ZWIND(JI,1) &
* LOG( ( 2.* ZAVG_BLD_HEIGHT(JI)/3.) / ZAVG_Z0_TOWN(JI)) &
/ LOG( (PUREF(JI,1)+ 2.* ZAVG_BLD_HEIGHT(JI)/3.) / ZAVG_Z0_TOWN(JI))
ZZ_LOWCAN(JI) = ZAVG_BLD_HEIGHT(JI) / 2.
ELSE
ZU_CANYON(JI) = ZWIND(JI,1)
ZZ_LOWCAN(JI) = PZREF(JI,1)
ENDIF
END DO
!
!* Without SBL scheme, canyon air is assumed at mid height
!
! Check for negative humidity
!
IF (MINVAL(NT%AL(1)%XQ_CANYON).LT.-XSURF_EPSILON) THEN
CALL GET_LUOUT(HPROGRAM,ILUOUT)
WRITE(ILUOUT,*) "NT%AL(1)%Q_CANYON : ",NT%AL(1)%XQ_CANYON
CALL FLUSH(ILUOUT)
CALL ABOR1_SFX("Negative humidity in canyon")
ENDIF
!
!* Without SBL scheme, canyon air is assumed at mid height
ZU_LOWCAN = ZU_CANYON
ZT_LOWCAN = NT%AL(1)%XT_CANYON
ZQ_LOWCAN = NT%AL(1)%XQ_CANYON
ZT_CANYON = NT%AL(1)%XT_CANYON
ZQ_CANYON = NT%AL(1)%XQ_CANYON
ZUREF = PUREF(:,1)
ZZREF = PZREF(:,1)
ZTA = PTA(:,1)
ZUA = ZWIND(:,1)
ZPA = PPA(:,1)
ZPEW_A_COEF_LOWCAN = 0.
ZPEW_B_COEF_LOWCAN = ZU_CANYON
END IF
!
! Exner functions
!
ZEXNS(:) = (PPS(:)/XP00)**(XRD/XCPD)
ZEXNA(:) = (ZPA(:)/XP00)**(XRD/XCPD)
!
!--------------------------------------------------------------------------------------
! Over Urban surfaces/towns:
!--------------------------------------------------------------------------------------
!
!--------------------------------------------------------------------------------------
! LOOP on TEB PATCHES
!--------------------------------------------------------------------------------------
DO JP = 1,TOP%NTEB_PATCH
!
ZT_CAN = ZT_CANYON
ZQ_CAN = ZQ_CANYON
!
IF (TOP%LCANOPY) THEN
NT%AL(JP)%XT_CANYON(:) = ZT_CANYON(:)
NT%AL(JP)%XQ_CANYON(:) = ZQ_CANYON(:)
END IF
!
ZLESN_RF(:) = 0.
ZLESN_RD(:) = 0.
TD%NDMT%AL(JP)%XG_GREENROOF_ROOF(:) = 0.
!
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
! Compute Air temperature at tree level inside the canyon
!
IF (TOP%LGARDEN .AND. TOP%CURBTREE/='NONE') THEN
! air temperature
IF (TOP%LCANOPY) THEN
DO JI=1,SIZE(GDM%PHV%XH_LAI_MAX)
DO JLAYER=1,SB%NLVL-1
!* finds middle of tree crown
IF (SB%XZ(JI,JLAYER) < GDM%PHV%XH_LAI_MAX(JI) .AND. &
SB%XZ(JI,JLAYER+1)>=GDM%PHV%XH_LAI_MAX(JI)) THEN
ZCOEF(JI) = (GDM%PHV%XH_LAI_MAX(JI)-SB%XZ(JI,JLAYER))/ (SB%XZ(JI,JLAYER+1)-SB%XZ(JI,JLAYER))
ZTA_HVEG(JI) = SB%XT(JI,JLAYER) + ZCOEF(JI)*(SB%XT(JI,JLAYER+1)-SB%XT(JI,JLAYER))
ZQA_HVEG(JI) = SB%XQ(JI,JLAYER) + ZCOEF(JI)*(SB%XQ(JI,JLAYER+1)-SB%XQ(JI,JLAYER))
ENDIF
ENDDO
ENDDO
ELSE
ZTA_HVEG = ZT_CAN
ZQA_HVEG = ZQ_CAN
ENDIF
! tree leaves temperature
ZTS_HVEG(:) = GDM%NPEHV%AL(JP)%XTV(:)
ELSE
ZTA_HVEG = XUNDEF
ZQA_HVEG = XUNDEF
ZTS_HVEG(:) = XUNDEF
ENDIF
!
! Storage of soil water depths in urban soils
!
IF (TOP%LURBHYDRO .AND. CT%LCHECK_TEB) THEN
CT%XWATER_ROAD (:)=0.0
CT%XWATER_BLD (:)=0.0
CT%XWATER_GARDEN(:)=0.0
DO JLAYER=1,SIZE(NT%AL(JP)%XT_ROAD,2)
CT%XWATER_ROAD(:) = CT%XWATER_ROAD(:) + NT%AL(JP)%XROAD(:) * &
NT%AL(JP)%XD_ROAD(:,JLAYER) * HM%NTH%AL(JP)%XWG_ROAD(:,JLAYER)
CT%XWATER_BLD (:) = CT%XWATER_BLD (:) + NT%AL(JP)%XBLD (:) * &
NT%AL(JP)%XD_ROAD(:,JLAYER) * HM%NTH%AL(JP)%XWG_BLD (:,JLAYER)
CT%XWATER_GARDEN(:) = CT%XWATER_GARDEN(:) + NT%AL(JP)%XGARDEN(:) * &
NT%AL(JP)%XD_ROAD(:,JLAYER) * GDM%NPE%AL(JP)%XWG(:,JLAYER)
ENDDO
ENDIF
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Call the physical routines of TEB (including gardens and greenroofs)
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
IF (MINVAL(ZQ_CAN).LT.-XSURF_EPSILON) THEN
CALL ABOR1_SFX("COUPLING_TEBN: Negative humidity in canyon")
ENDIF
!
CALL TOWN_ENERGY_BALANCE(DTCO, G, TOP, SPAOP, NT%AL(JP), BOP, NB%AL(JP), TPN, TIR, TD%NDMT%AL(JP), GDM, GRM, &
HM, SB, CT, JP, HPROGRAM, CIMPLICIT_WIND, PTSUN, ZT_CAN, ZQ_CAN, ZU_CANYON, ZT_LOWCAN, &
ZQ_LOWCAN, ZU_LOWCAN, ZZ_LOWCAN, ZTA_HVEG, ZQA_HVEG, &
ZPEW_A_COEF, ZPEW_B_COEF, ZPEW_A_COEF_LOWCAN, &
ZPEW_B_COEF_LOWCAN, AT, PPS, NB%AL(JP)%XPSOLD, ZPA, ZEXNS, ZEXNA, ZTA, ZQA, PRHOA(:,1), &
PCO2, PLW, PDIR_SW, PSCA_SW, PSW_BANDS, KSW, PZENITH, PAZIM, PRAIN, PSN, ZZREF, &
ZUREF, ZUA, ZH_TRAFFIC, ZLE_TRAFFIC, PTSTEP, ZLEW_RF, ZLEW_RD, ZRNSN_RF, ZHSN_RF, &
ZLESN_RF, ZGSN_RF, ZMELT_RF, ZRNSN_RD, ZHSN_RD, ZLESN_RD, ZGSN_RD, ZMELT_RD, ZRN_GRND, &
ZH_GRND, ZLE_GRND, ZGFLX_GRND, ZRN, ZH, ZH_TOWN_SURF, ZH_TOWN_WALL, ZH_TOWN_ROOF, ZLE, &
ZGFLX, ZQF, ZEVAP, ZEVAP_TOWN_SURF, ZEVAP_TOWN_WALL,ZEVAP_TOWN_ROOF, ZUW_GRND, ZUW_RF, &
ZDUWDU_GRND, ZDUWDU_RF, ZUSTAR, ZCD, ZCDN, ZCH, ZRI, ZTRAD, ZEMIS, ZDIR_ALB, ZSCA_ALB, &
ZRESA_TOWN, ZAC_RD, ZAC_GD, ZAC_GRF, ZAC_RD_WAT, ZAC_GD_WAT, ZAC_GRF_WAT, KDAY, &
ZEMIT_LW_HVEG, TD%NDMT%AL(JP)%XREF_SW_GRND, TD%NDMT%AL(JP)%XREF_SW_FAC, ZREF_SW_HVEG, &
PTIME, TD%NDMT%AL(JP)%XDN_ROOF,TD%NDMT%AL(JP)%XDN_ROAD, ZTS_HVEG, &
TD%NDMT%AL(JP)%XTS_GD, TD%NDMT%AL(JP)%XTS_GR, ZLAD_CAN, ZTRAF_MODULATION, &
ZPOP_MODULATION, ZDH_HVEG, ZDLE_HVEG, ZSCA_SW_SKY, ZLW_RAD_SKY, &
ZSCA_SW_GROUND_DOWN, ZSCA_SW_GROUND_UP, ZSCA_SW_GROUND_HOR, ZLW_GROUND_DOWN, &
ZLW_GROUND_HOR, "OK" )
!
TD%NDMT%AL(JP)%XU_LOWCAN=ZU_LOWCAN
!
IF (TOP%CBEM=='BEM') THEN
!
! The internal heat release as well as the heating and cooling
! energy demand are converted from W/m²(bld) to W/m²(urb).
!
TD%NDMT%AL(JP)%XQINOUT(:) = NT%AL(JP)%XBLD(:) * TD%NDMT%AL(JP)%XQINOUT(:)
TD%NDMT%AL(JP)%XQINOUTSEN(:) = NT%AL(JP)%XBLD(:) * TD%NDMT%AL(JP)%XQINOUTSEN(:)
TD%NDMT%AL(JP)%XQINOUTLAT(:) = NT%AL(JP)%XBLD(:) * TD%NDMT%AL(JP)%XQINOUTLAT(:)
!
TD%NDMT%AL(JP)%XHVAC_COOL(:) = NT%AL(JP)%XBLD(:) * TD%NDMT%AL(JP)%XHVAC_COOL(:)
TD%NDMT%AL(JP)%XHVAC_HEAT(:) = NT%AL(JP)%XBLD(:) * TD%NDMT%AL(JP)%XHVAC_HEAT(:)
!
TD%NDMT%AL(JP)%XHVAC_HEAT_ELEC = NT%AL(JP)%XBLD(:) * TD%NDMT%AL(JP)%XHVAC_HEAT_ELEC
TD%NDMT%AL(JP)%XHVAC_HEAT_GAS = NT%AL(JP)%XBLD(:) * TD%NDMT%AL(JP)%XHVAC_HEAT_GAS
TD%NDMT%AL(JP)%XHVAC_HEAT_FUEL = NT%AL(JP)%XBLD(:) * TD%NDMT%AL(JP)%XHVAC_HEAT_FUEL
TD%NDMT%AL(JP)%XHVAC_HEAT_OTHER = NT%AL(JP)%XBLD(:) * TD%NDMT%AL(JP)%XHVAC_HEAT_OTHER
!
DO JCOMP=1,BOP%NBEMCOMP
TD%NDMT%AL(JP)%XCOMP_QINOUT (:,JCOMP) = NT%AL(JP)%XBLD(:) * TD%NDMT%AL(JP)%XCOMP_QINOUT(:,JCOMP)
TD%NDMT%AL(JP)%XCOMP_HVAC_COOL(:,JCOMP) = NT%AL(JP)%XBLD(:) * TD%NDMT%AL(JP)%XCOMP_HVAC_COOL(:,JCOMP)
TD%NDMT%AL(JP)%XCOMP_HVAC_HEAT(:,JCOMP) = NT%AL(JP)%XBLD(:) * TD%NDMT%AL(JP)%XCOMP_HVAC_HEAT(:,JCOMP)
ENDDO
!
ENDIF
!
CALL ADD_PATCH_CONTRIB(JP,ZAVG_T_CANYON,ZT_CAN)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_Q_CANYON,ZQ_CAN)
!
! Momentum fluxes
!
ZSFU = 0.
ZSFV = 0.
DO JJ=1,SIZE(PU,1)
IF (ZWIND(JJ,1)>0.) THEN
ZCOEF(JJ) = - PRHOA(JJ,1) * ZUSTAR(JJ)**2 / ZWIND(JJ,1)
ZSFU(JJ) = ZCOEF(JJ) * PU(JJ,1)
ZSFV(JJ) = ZCOEF(JJ) * PV(JJ,1)
ENDIF
ENDDO
CALL ADD_PATCH_CONTRIB(JP,PSFU,ZSFU)
CALL ADD_PATCH_CONTRIB(JP,PSFV,ZSFV)
!
ENDIF
!
IF (CT%LCHECK_TEB) THEN
CT%XH = ZH
CT%XLE= ZLE
CT%XRN=ZRN
END IF
!-------------------------------------------------------------------------------------
! Outputs:
!-------------------------------------------------------------------------------------
!
! Grid box average fluxes/properties: Arguments and standard diagnostics
!
CALL ADD_PATCH_CONTRIB(JP,PSFTH,ZH)
CALL ADD_PATCH_CONTRIB(JP,PSFTH_SURF,ZH_TOWN_SURF)
CALL ADD_PATCH_CONTRIB(JP,PSFTH_WALL,ZH_TOWN_WALL)
CALL ADD_PATCH_CONTRIB(JP,PSFTH_ROOF,ZH_TOWN_ROOF)
!
CALL ADD_PATCH_CONTRIB(JP,PSFTQ,ZEVAP)
CALL ADD_PATCH_CONTRIB(JP,PSFTQ_SURF,ZEVAP_TOWN_SURF)
CALL ADD_PATCH_CONTRIB(JP,PSFTQ_WALL,ZEVAP_TOWN_WALL)
CALL ADD_PATCH_CONTRIB(JP,PSFTQ_ROOF,ZEVAP_TOWN_ROOF)
CALL ADD_PATCH_CONTRIB(JP,PSFCO2,TD%NDMT%AL(JP)%XSFCO2)
!
! Albedo for each wavelength and patch
!
DO JSWB=1,SIZE(PSW_BANDS)
DO JJ=1,SIZE(ZDIR_ALB)
ZDIR_ALB_PATCH(JJ,JSWB,JP) = ZDIR_ALB(JJ)
ZSCA_ALB_PATCH(JJ,JSWB,JP) = ZSCA_ALB(JJ)
ENDDO
END DO
!
! emissivity and radiative temperature
!
ZEMIS_PATCH(:,JP) = ZEMIS
ZTRAD_PATCH(:,JP) = ZTRAD
!
! computes some aggregated diagnostics
!
CALL ADD_PATCH_CONTRIB(JP,ZAVG_CD ,ZCD )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_CDN,ZCDN)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_RI ,ZRI )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_CH ,ZCH )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_RN ,ZRN )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_H ,ZH )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_LE ,ZLE )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_GFLX ,ZGFLX )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_QF ,ZQF )
!
!* warning: aerodynamical resistance does not yet take into account gardens
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
CALL ADD_PATCH_CONTRIB(JP,ZAVG_RESA_TOWN,1./ZRESA_TOWN)
IF (JP==TOP%NTEB_PATCH) ZAVG_RESA_TOWN = 1./ZAVG_RESA_TOWN
!
!
! Use the modulated fields of traffic and industry releases for the output
!
TD%NDMT%AL(JP)%XH_TRAFFIC_OUT(:) = ZH_TRAFFIC(:)
TD%NDMT%AL(JP)%XLE_TRAFFIC_OUT(:) = ZLE_TRAFFIC(:)
TD%NDMT%AL(JP)%XH_INDUSTRY_OUT (:) = NT%AL(JP)%XH_INDUSTRY(:)
TD%NDMT%AL(JP)%XLE_INDUSTRY_OUT(:) = NT%AL(JP)%XLE_INDUSTRY(:)
!
!
! ###############################################################
! ###############################################################
! Verification of energy conservation
! ###############################################################
! ###############################################################
!
IF (CT%LCHECK_TEB) CALL CHECK_TEB (TOP, BOP, NT, NB, TD, TPN, TIR, GDM, GRM, HM, CT, &
HPROGRAM, KI, JP, PTSTEP, PTSUN, PRAIN, PSN )
!
!
! Check for realistic temperatures
!
IF (ANY(NT%AL(JP)%XT_ROOF .GT. XTT+100.) .OR. ANY(NT%AL(JP)%XT_WALL_A .GT. XTT+100. ) &
.OR. ANY(NT%AL(JP)%XT_ROAD .GT. XTT+100. )) THEN
CALL GET_LUOUT(HPROGRAM,ILUOUT)
WRITE(ILUOUT,*) '--------------------------------------------------------'
WRITE(ILUOUT,*) ' coupling_tebn : date and time (UTC) = ', KYEAR, KMONTH, KDAY, PTIME
DO JLAYER=1,SIZE(NT%AL(JP)%XT_ROOF,2)
WRITE(ILUOUT,*) " coupling_tebn : NT%AL(JP)%XT_ROOF (:,",JLAYER,") = ", NT%AL(JP)%XT_ROOF(:,JLAYER)
END DO
WRITE(ILUOUT,*) ' '
DO JLAYER=1,SIZE(NT%AL(JP)%XT_ROAD,2)
WRITE(ILUOUT,*) " coupling_tebn : NT%AL(JP)%XT_ROAD (:,",JLAYER,") = ", NT%AL(JP)%XT_ROAD(:,JLAYER)
END DO
WRITE(ILUOUT,*) ' '
DO JLAYER=1,SIZE(NT%AL(JP)%XT_WALL_A,2)
WRITE(ILUOUT,*) " coupling_tebn : NT%AL(JP)%XT_WALL_A(:,",JLAYER,") = ", NT%AL(JP)%XT_WALL_A(:,JLAYER)
END DO
CALL FLUSH(ILUOUT)
CALL ABOR1_SFX("Irrealistic temperature reached for Roof, Road or Wall.")
ENDIF
!
!-------------------------------------------------------------------------------------
! Diagnostics on each patch
!-------------------------------------------------------------------------------------
!
IF (TD%MTO%LSURF_MISC_BUDGET) THEN
!
! cumulated diagnostics
! ---------------------
!
CALL CUMUL_DIAG_TEB_n(TD%NDMTC%AL(JP), TD%NDMT%AL(JP), &
GDM%VD%ND%AL(JP), GDM%VD%NDC%AL(JP), GDM%VD%NDEC%AL(JP), GDM%VD%NDE%AL(JP), &
GRM%VD%ND%AL(JP), GRM%VD%NDC%AL(JP), GRM%VD%NDEC%AL(JP), GRM%VD%NDE%AL(JP), TOP, PTSTEP, PRAIN, PSN)
IF (TOP%LURBHYDRO) THEN
CALL BUDGET_HYDRO_n(TD%NDMTC%AL(JP), TD%NDMT%AL(JP), &
GDM%VD%NDC%AL(JP), GDM%VD%NDEC%AL(JP), GDM%VD%NDE%AL(JP), GRM%VD%NDC%AL(JP), GRM%VD%NDEC%AL(JP), &
NT%AL(JP), GDM%P, GDM%NPE%AL(JP), HM%NTH%AL(JP), TOP)
ENDIF
ENDIF
!
!-------------------------------------------------------------------------------------
! Computes averaged parameters necessary for UTCI
!-------------------------------------------------------------------------------------
!
IF (TD%O%N2M >0 .AND. TD%DU%LUTCI) THEN
CALL ADD_PATCH_CONTRIB(JP,ZAVG_REF_SW_GRND ,TD%NDMT%AL(JP)%XREF_SW_GRND )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_REF_SW_FAC ,TD%NDMT%AL(JP)%XREF_SW_FAC )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_REF_SW_HVEG ,ZREF_SW_HVEG )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_SCA_SW ,ZSCA_SW )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_DIR_SW ,ZDIR_SW )
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
CALL ADD_PATCH_CONTRIB(JP,ZAVG_SCA_SW_GROUND_DOWN, ZSCA_SW_GROUND_DOWN)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_SCA_SW_GROUND_UP , ZSCA_SW_GROUND_UP)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_SCA_SW_GROUND_HOR , ZSCA_SW_GROUND_HOR)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_LW_GROUND_DOWN, ZLW_GROUND_DOWN)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_LW_GROUND_HOR , ZLW_GROUND_HOR)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_DIR_SW_ROAD ,TD%NDMT%AL(JP)%XDIR_SW_ROAD )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_EMIT_LW_FAC ,TD%NDMT%AL(JP)%XEMIT_LW_FAC )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_EMIT_LW_GRND,TD%NDMT%AL(JP)%XEMIT_LW_GRND)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_EMIT_LW_HVEG,ZEMIT_LW_HVEG)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_SCA_SW_SKY ,ZSCA_SW_SKY )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_LW_RAD_SKY ,ZLW_RAD_SKY )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_ROAD_SHADE ,TD%NDMT%AL(JP)%XROAD_SHADE )
!
IF (TOP%LGARDEN .AND. TOP%CURBTREE/='NONE') THEN
CALL ADD_PATCH_CONTRIB(JP,ZAVG_TAU_SR ,NT%AL(JP)%XTAU_SR)
ELSE
ZAVG_TAU_SR(:) = 1.
ENDIF
!
DO JCOMP=1,BOP%NBEMCOMP
CALL ADD_PATCH_CONTRIB(JP, ZAVG_T_RAD_IND(:,JCOMP), TD%NDMT%AL(JP)%XT_RAD_IND(:,JCOMP) )
CALL ADD_PATCH_CONTRIB(JP, ZAVG_TI_BLD(:,JCOMP) , NB%AL(JP)%XTI_BLD(:,JCOMP) )
CALL ADD_PATCH_CONTRIB(JP, ZAVG_QI_BLD(:,JCOMP) , NB%AL(JP)%XQI_BLD(:,JCOMP) )
ENDDO
!
ENDIF
!
!-------------------------------------------------------------------------------------
! Use of the canopy version of TEB
!-------------------------------------------------------------------------------------
!
IF (TOP%LCANOPY) THEN
!
!-------------------------------------------------------------------------------------
! Town averaged quantities to force canopy atmospheric layers
!-------------------------------------------------------------------------------------
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
!
CALL ADD_PATCH_CONTRIB(JP,ZAVG_DUWDU_GRND ,ZDUWDU_GRND )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_UW_RF ,ZUW_RF)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_DUWDU_RF ,ZDUWDU_RF)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_H_WL ,0.5*(TD%NDMT%AL(JP)%XH_WALL_A+TD%NDMT%AL(JP)%XH_WALL_B))
CALL ADD_PATCH_CONTRIB(JP,ZAVG_E_WL ,(0.5*(TD%NDMT%AL(JP)%XLE_WALL_A + TD%NDMT%AL(JP)%XLE_WALL_B))/XLVTT)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_H_RF ,(TD%NDMT%AL(JP)%XH_ROOF+NT%AL(JP)%XH_INDUSTRY))
CALL ADD_PATCH_CONTRIB(JP,ZAVG_E_RF ,(TD%NDMT%AL(JP)%XLE_ROOF+NT%AL(JP)%XLE_INDUSTRY)/XLVTT)
IF (TOP%LGARDEN .AND. TOP%CURBTREE/='NONE') THEN
CALL ADD_PATCH_CONTRIB(JP,ZAVG_URBTREE,NT%AL(JP)%XURBTREE )
! Average of turbulent fluxes and LAD profile on TEB patchs and CANOPY layers
!
DO JLAYER=1,SB%NLVL
CALL ADD_PATCH_CONTRIB(JP,ZAVG_DH_HVEG(:,JLAYER),ZDH_HVEG (:,JLAYER))
CALL ADD_PATCH_CONTRIB(JP,ZAVG_DE_HVEG(:,JLAYER),ZDLE_HVEG(:,JLAYER)/XLVTT)
CALL ADD_PATCH_CONTRIB(JP,ZAVG_LAD_CAN(:,JLAYER),ZLAD_CAN(:,JLAYER))
ENDDO
ELSE
ZAVG_URBTREE(:) = 0.
ZAVG_DH_HVEG(:,:) = 0.
ZAVG_DE_HVEG(:,:) = 0.
ZAVG_LAD_CAN(:,:) = 0.
ENDIF
!
!-------------------------------------------------------------------------------------
! Computes the impact of canopy and surfaces on air
!-------------------------------------------------------------------------------------
!
ZAC_GRND (:) = (NT%AL(JP)%XROAD(:)*ZAC_RD (:) + &
NT%AL(JP)%XGARDEN(:)*ZAC_GD (:)) / (NT%AL(JP)%XROAD(:)+NT%AL(JP)%XGARDEN(:))
ZAC_GRND_WAT(:) = (NT%AL(JP)%XROAD(:)*ZAC_RD_WAT(:) + &
NT%AL(JP)%XGARDEN(:)*ZAC_GD_WAT(:)) / (NT%AL(JP)%XROAD(:)+NT%AL(JP)%XGARDEN(:))
CALL ADD_PATCH_CONTRIB(JP,ZAVG_AC_GRND ,ZAC_GRND )
CALL ADD_PATCH_CONTRIB(JP,ZAVG_AC_GRND_WAT ,ZAC_GRND_WAT)
CALL ADD_PATCH_CONTRIB(JP,ZSFLUX_U ,ZUW_GRND * (1.-NT%AL(JP)%XBLD))
CALL ADD_PATCH_CONTRIB(JP,ZSFLUX_T ,ZH_GRND * (1.-NT%AL(JP)%XBLD)/XCPD/PRHOA(:,1))
CALL ADD_PATCH_CONTRIB(JP,ZSFLUX_Q ,ZLE_GRND * (1.-NT%AL(JP)%XBLD)/XLVTT)
!
END IF
!
!-------------------------------------------------------------------------------------
! end of loop on TEB patches
END DO
!-------------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------------
!* Evolution of canopy air if canopy option is active
!-------------------------------------------------------------------------------------
!
!
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
!
IF (.NOT.TOP%LATM_CANOPY) THEN
!
!-------------------------------------------------------------------------------------
!* Impact of TEB fluxes on the air
!-------------------------------------------------------------------------------------
!
CALL TEB_CANOPY(KI, SB, ZAVG_BLD, ZAVG_BLD_HEIGHT, ZAVG_WL_O_HOR, PPA(:,1), PRHOA(:,1), &
ZAVG_DUWDU_GRND, ZAVG_UW_RF, ZAVG_DUWDU_RF, ZAVG_H_WL, &
ZAVG_E_WL, ZAVG_H_RF, ZAVG_E_RF, ZAVG_DH_HVEG, ZAVG_DE_HVEG, &
ZAVG_AC_GRND,ZAVG_AC_GRND_WAT, ZAVG_URBTREE, ZAVG_LAD_CAN, ZFORC_U, &
ZDFORC_UDU, ZFORC_E, ZDFORC_EDE, ZFORC_T, ZDFORC_TDT, ZFORC_Q, &
ZDFORC_QDQ )
!
!-------------------------------------------------------------------------------------
!* Evolution of canopy air due to these impacts
!-------------------------------------------------------------------------------------
!
CALL CANOPY_EVOL(SB, KI, PTSTEP, 2, ZL, ZWIND(:,1), PTA(:,1), PQA(:,1), PPA(:,1), PRHOA(:,1), &
ZSFLUX_U, ZSFLUX_T, ZSFLUX_Q, ZFORC_U, ZDFORC_UDU, &
ZFORC_E, ZDFORC_EDE, ZFORC_T, ZDFORC_TDT, ZFORC_Q, &
ZDFORC_QDQ, SB%XLM, SB%XLEPS, ZAVG_USTAR, ZALFAU, &
ZBETAU, ZALFAT, ZBETAT, ZALFAQ, ZBETAQ )
!
! Robert:
! Since not all calculations related to the canopy are implicit it is possible
! that unrealistic (even negative) values of humidity in the canopy occur.
! For this reason, a pragmatic correction is implemented here in the case
! where the absolute humidity of the canopy deviates strongly from the
! absolute humidity of the forcing.
! In the long term all computations related to the canopy should be implicited.
!
DO JLAYER=1,SB%NLVL
!
WHERE ( SB%XQ(:,JLAYER).LT.(0.3*PQA(:,1)) )
SB%XQ(:,JLAYER) = 0.3 * PQA(:,1)
ELSEWHERE ( SB%XQ(:,JLAYER).GT.(3.0*PQA(:,1)) )
SB%XQ(:,JLAYER) = 3.0 * PQA(:,1)
END WHERE
!
ENDDO
!
!-------------------------------------------------------------------------------------
! Momentum fluxes in the case canopy is active
!-------------------------------------------------------------------------------------
!
ENDIF
!
PSFU=0.
PSFV=0.
ZAVG_Z0_TOWN(:) = MIN(ZAVG_Z0_TOWN(:),PUREF(:,1)*0.5)
ZAVG_CDN=(XKARMAN/LOG(PUREF(:,1)/ZAVG_Z0_TOWN(:)))**2
ZAVG_CD = ZAVG_CDN
ZAVG_RI = 0.
!
PCD_ROOF(:) = 0.0
IF (TOP%LATM_CANOPY) THEN
!
ZAVG_USTAR(:) = SQRT(ABS(ZSFLUX_U))
ZAVG_USTAR_ROOF(:) = SQRT(ABS(ZAVG_UW_RF))
!
DO JJ=1,KI
IF (ZUA(JJ)>0.) THEN
PCD_ROOF(JJ) = ZAVG_BLD(JJ)*ZAVG_USTAR_ROOF(JJ)**2 / ZUA(JJ)**2
ENDIF
ENDDO
!
ENDIF
!
DO JJ=1,SIZE(PU,1)
IF (ZWIND(JJ,1)>0.) THEN
ZCOEF(JJ) = - PRHOA(JJ,1) * ZAVG_USTAR(JJ)**2 / ZWIND(JJ,1)
PSFU(JJ) = ZCOEF(JJ) * PU(JJ,1)
PSFV(JJ) = ZCOEF(JJ) * PV(JJ,1)
ZAVG_CD(JJ) = ZAVG_USTAR(JJ)**2 / ZWIND(JJ,1)**2
ZAVG_RI(JJ) = -XG/PTA(JJ,1)*ZSFLUX_T(JJ)/ZAVG_USTAR(JJ)**4
ENDIF
ENDDO
!
!-------------------------------------------------------------------------------------
!* Update of canyon parameters at the end of the time step for the consistance of diagnostics
!-------------------------------------------------------------------------------------
!
IF (.NOT.TOP%LATM_CANOPY) THEN
!
DO JLAYER=1,SB%NLVL-1
DO JI=1,KI
!* finds middle canyon layer
IF (SB%XZ(JI,JLAYER)<ZAVG_BLD_HEIGHT(JI)/2. .AND. &
SB%XZ(JI,JLAYER+1)>=ZAVG_BLD_HEIGHT(JI)/2.) THEN
ZCOEF(JI) = (ZAVG_BLD_HEIGHT(JI)/2.-SB%XZ(JI,JLAYER))/(SB%XZ(JI,JLAYER+1)-SB%XZ(JI,JLAYER))
ZU_CANYON(JI) = SB%XU(JI,JLAYER) + ZCOEF(JI) * (SB%XU(JI,JLAYER+1)-SB%XU(JI,JLAYER))
ZT_CANYON(JI) = SB%XT(JI,JLAYER) + ZCOEF(JI) * (SB%XT(JI,JLAYER+1)-SB%XT(JI,JLAYER))
ZQ_CANYON(JI) =(SB%XQ(JI,JLAYER) + ZCOEF(JI) * &
(SB%XQ(JI,JLAYER+1)-SB%XQ(JI,JLAYER)))/PRHOA(JI,1)
END IF
END DO
END DO
ZU_CANYON= MAX(ZU_CANYON,0.2)
!
DO JP=1,TOP%NTEB_PATCH
NT%AL(JP)%XT_CANYON(:) = ZT_CANYON(:)
NT%AL(JP)%XQ_CANYON(:) = ZQ_CANYON(:)
ENDDO
!
ENDIF
!
!-------------------------------------------------------------------------------------
! End of specific case with canopy option
!-------------------------------------------------------------------------------------
!
END IF
!
!-------------------------------------------------------------------------------------
! Outputs:
!-------------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------------
!Radiative properties should be at time t+1 (see by the atmosphere) in order to close
!the energy budget between surfex and the atmosphere. It is not the case here
!for ALB and EMIS
!-------------------------------------------------------------------------------------
CALL AVERAGE_RAD(TOP%XTEB_PATCH, ZDIR_ALB_PATCH, ZSCA_ALB_PATCH, ZEMIS_PATCH, &
ZTRAD_PATCH, PDIR_ALB, PSCA_ALB, PEMIS, PTRAD )
!
!-------------------------------------------------------------------------------
!Physical properties see by the atmosphere in order to close the energy budget
!between surfex and the atmosphere. All variables should be at t+1 but very
!difficult to do. Maybe it will be done later. However, Ts can be at time t+1
!-------------------------------------------------------------------------------
!
PTSURF (:) = PTRAD (:) ! Should be the surface effective temperature; not radative
PZ0 (:) = ZAVG_Z0_TOWN (:) ! Should account for ISBA (greenroof and garden) Z0
PZ0H (:) = PZ0 (:) / 200. ! Should account for ISBA (greenroof and garden) Z0
PQSURF (:) = NT%AL(1)%XQ_CANYON(:) ! Should account for ISBA (greenroof and garden) Qs
!
!-------------------------------------------------------------------------------------
! Scalar fluxes:
!-------------------------------------------------------------------------------------
!
ZAVG_USTAR (:) = SQRT(SQRT(PSFU**2+PSFV**2))
!
!
IF (CHT%SVT%NBEQ>0) THEN
IBEG = CHT%SVT%NSV_CHSBEG
IEND = CHT%SVT%NSV_CHSEND
IF (CHT%CCH_DRY_DEP == "WES89") THEN
CALL CH_DEP_TOWN(ZAVG_RESA_TOWN, ZAVG_USTAR, PTA(:,1), PTRAD, ZAVG_WL_O_HOR,&
PSV(:,IBEG:IEND), CHT%SVT%CSV(IBEG:IEND), CHT%XDEP(:,1:CHT%SVT%NBEQ) )
!cdir nodep
DO JJ=1,SIZE(PSFTS,1)
PSFTS(JJ,JI) = - PSV(JJ,JI) * CHT%XDEP(JJ,JI-IBEG+1)
IF (CHT%SVT%NAEREQ > 0 ) THEN
IBEG = CHT%SVT%NSV_AERBEG
IEND = CHT%SVT%NSV_AEREND
CALL CH_AER_DEP(PSV(:,IBEG:IEND), PSFTS(:,IBEG:IEND), &
ZAVG_USTAR, ZAVG_RESA_TOWN, PTA(:,1), PRHOA(:,1))
IBEG = CHT%SVT%NSV_CHSBEG
IEND = CHT%SVT%NSV_CHSEND
DO JI=IBEG,IEND
IBEG = CHT%SVT%NSV_AERBEG
IEND = CHT%SVT%NSV_AEREND
IF(IBEG.LT.IEND) THEN
DO JI=IBEG,IEND
PSFTS(:,JI) =0.
ENDDO
ENDIF
ENDIF
! Blindage à enlever lorsque que TEB aura été corrigé
ZUSTAR(:) = MIN(ZUSTAR(:), 10.)
ZRESA_TOWN(:) = MAX(ZRESA_TOWN(:), 10.)
!
IBEG = CHT%SVT%NSV_DSTBEG
IEND = CHT%SVT%NSV_DSTEND
CALL DSLT_DEP(PSV(:,IBEG:IEND), PSFTS(:,IBEG:IEND), ZUSTAR, ZRESA_TOWN, PTA(:,1), PRHOA(:,1), &
DST%XEMISSIG_DST, DST%XEMISRADIUS_DST, JPMODE_DST, XDENSITY_DST, &
XMOLARWEIGHT_DST, ZCONVERTFACM0_DST, ZCONVERTFACM6_DST, &
ZCONVERTFACM3_DST, LVARSIG_DST, LRGFIX_DST, CVERMOD )
PSFTS(:,IBEG:IEND), & !I/O ![kg/m2/sec] In: flux of only mass, out: flux of moments
PRHOA(:,1), & !I [kg/m3] air density
DST%XEMISRADIUS_DST, &!I [um] emitted radius for the modes (max 3)
DST%XEMISSIG_DST, &!I [-] emitted sigma for the different modes (max 3)
NDSTMDE, &
ZCONVERTFACM0_DST, &
ZCONVERTFACM6_DST, &
ZCONVERTFACM3_DST, &
LVARSIG_DST, LRGFIX_DST )
ENDIF
!
IBEG = CHT%SVT%NSV_SLTBEG
IEND = CHT%SVT%NSV_SLTEND
!
CALL DSLT_DEP(PSV(:,IBEG:IEND), PSFTS(:,IBEG:IEND), ZUSTAR, ZRESA_TOWN, PTA(:,1), PRHOA(:,1), &
SLT%XEMISSIG_SLT, SLT%XEMISRADIUS_SLT, JPMODE_SLT, XDENSITY_SLT, &
XMOLARWEIGHT_SLT, ZCONVERTFACM0_SLT, ZCONVERTFACM6_SLT, &
ZCONVERTFACM3_SLT, LVARSIG_SLT, LRGFIX_SLT, CVERMOD )
CALL MASSFLUX2MOMENTFLUX( &
PSFTS(:,IBEG:IEND), & !I/O ![kg/m2/sec] In: flux of only mass, out: flux of moments
PRHOA(:,1), & !I [kg/m3] air density
SLT%XEMISRADIUS_SLT, &!I [um] emitted radius for the modes (max 3)
SLT%XEMISSIG_SLT, &!I [-] emitted sigma for the different modes (max 3)
NSLTMDE, &
ZCONVERTFACM0_SLT, &
ZCONVERTFACM6_SLT, &
ZCONVERTFACM3_SLT, &
LVARSIG_SLT, LRGFIX_SLT )
ENDIF
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Inline diagnostics
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
CALL DIAG_INLINE_TEB_n(TD%O, TD%D, SB, NT%AL(1), TOP%LCANOPY, PTA(:,1), PTRAD, ZQA, &
PPA(:,1), PPS, PRHOA(:,1), PU(:,1), PV(:,1), ZWIND(:,1), PZREF(:,1), PUREF(:,1), &
ZAVG_CD, ZAVG_CDN, ZAVG_RI, ZAVG_CH, ZAVG_Z0_TOWN, PTRAD, PEMIS, PDIR_ALB, &
PSCA_ALB, PLW, PDIR_SW, PSCA_SW, PSFTH, PSFTQ, PSFU, PSFV, PSFCO2, ZAVG_RN, &
ZAVG_H, ZAVG_LE, ZAVG_GFLX, ZAVG_QF )
!
!-------------------------------------------------------------------------------------
! Stores Canyon air and humidity if historical option of TEB is active
!-------------------------------------------------------------------------------------
!
IF (.NOT. TOP%LCANOPY) THEN
DO JP=1,TOP%NTEB_PATCH
NT%AL(JP)%XT_CANYON(:) = ZAVG_T_CANYON(:)
NT%AL(JP)%XQ_CANYON(:) = ZAVG_Q_CANYON(:)
END DO
END IF
!
!-------------------------------------------------------------------------------------
! Thermal confort index
!-------------------------------------------------------------------------------------
!
IF (TD%DU%LUTCI .AND. TD%O%N2M >0) THEN
!
! Wind speed for UTCI is in 10 m above ground
!
IF (TD%D%XZON10M(JJ)/=XUNDEF) THEN
ZU_UTCI(JJ) = SQRT(TD%D%XZON10M(JJ)**2+TD%D%XMER10M(JJ)**2)
ZU_UTCI(JJ) = ZWIND(JJ,1)
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
!
! Temperature and specific humidity for UTCI is in
! 1 m above ground in the case the SBL scheme is active.
! Otherwise, due to the lack of appropriate diagnostics,
! the canyon average values are taken.
!
IF (TOP%LCANOPY) THEN
!
CALL INTERPOL_SBL(SB%XZ(:,:),SB%XT(:,:),1.0,ZT_UTCI(:))
!
CALL INTERPOL_SBL(SB%XZ(:,:),SB%XQ(:,:),1.0,ZQ_UTCI(:))
ZQ_UTCI(:) = ZQ_UTCI(:) / PRHOA(:,1)
!
ELSE
ZT_UTCI(:) = ZAVG_T_CANYON(:)
ZQ_UTCI(:) = ZAVG_Q_CANYON(:)
ENDIF
!
DO JCOMP=1,BOP%NBEMCOMP
!
CALL UTCI_TEB(NT%AL(1), TD%DU, TOP, JCOMP, HPROGRAM, ZAVG_TI_BLD(:,JCOMP), ZAVG_QI_BLD(:,JCOMP), &
ZU_UTCI, ZT_UTCI, ZQ_UTCI, PPS, ZAVG_REF_SW_GRND, ZAVG_REF_SW_FAC, ZAVG_SCA_SW, &
ZAVG_DIR_SW, PZENITH, ZAVG_EMIT_LW_FAC, ZAVG_EMIT_LW_GRND, ZAVG_EMIT_LW_HVEG, &
ZAVG_SCA_SW_SKY, ZAVG_LW_RAD_SKY, PLW, ZAVG_T_RAD_IND(:,JCOMP), ZAVG_TAU_SR, &
ZAVG_SCA_SW_GROUND_DOWN, ZAVG_SCA_SW_GROUND_UP, ZAVG_SCA_SW_GROUND_HOR, ZAVG_LW_GROUND_DOWN,&
ZAVG_LW_GROUND_HOR, "OK" )
!
CALL UTCIC_STRESS(PTSTEP, TD%DU%XUTCI_IN(:,JCOMP), TD%DU%XUTCIC_IN(:,:,JCOMP) )
!
ENDDO
!
! Aggregated outdoor UTCI and mean radiant temperature according to sun and shade fractions
DO JJ=1,KI
IF (ZAVG_DIR_SW(JJ).GT.0.) THEN
TD%DU%XUTCI_OUTAGG(JJ) = TD%DU%XUTCI_OUTSUN (JJ)*( ZAVG_DIR_SW_ROAD(JJ)/ZAVG_DIR_SW(JJ)) &
+ TD%DU%XUTCI_OUTSHADE(JJ)*(1.-ZAVG_DIR_SW_ROAD(JJ)/ZAVG_DIR_SW(JJ))
TD%DU%XTRAD_AGG (JJ) = TD%DU%XTRAD_SUN (JJ)*( ZAVG_DIR_SW_ROAD(JJ)/ZAVG_DIR_SW(JJ)) &
+ TD%DU%XTRAD_SHADE (JJ)*(1.-ZAVG_DIR_SW_ROAD(JJ)/ZAVG_DIR_SW(JJ))
ELSE
TD%DU%XUTCI_OUTAGG(JJ) = TD%DU%XUTCI_OUTSHADE(JJ)
TD%DU%XTRAD_AGG (JJ) = TD%DU%XTRAD_SHADE (JJ)
ENDIF
ENDDO
!
! Mean UTCI and TRAD
!
TD%DU%NCOUNT_UTCI_STEP = TD%DU%NCOUNT_UTCI_STEP + 1
TD%DU%XUTCI_OUTSUN_MEAN = TD%DU%XUTCI_OUTSUN_MEAN + TD%DU%XUTCI_OUTSUN
TD%DU%XUTCI_OUTSHADE_MEAN = TD%DU%XUTCI_OUTSHADE_MEAN + TD%DU%XUTCI_OUTSHADE
TD%DU%XTRAD_SUN_MEAN = TD%DU%XTRAD_SUN_MEAN + TD%DU%XTRAD_SUN
TD%DU%XTRAD_SHADE_MEAN = TD%DU%XTRAD_SHADE_MEAN + TD%DU%XTRAD_SHADE
!
CALL UTCIC_STRESS(PTSTEP,TD%DU%XUTCI_OUTSUN ,TD%DU%XUTCIC_OUTSUN )
CALL UTCIC_STRESS(PTSTEP,TD%DU%XUTCI_OUTSHADE,TD%DU%XUTCIC_OUTSHADE)
CALL UTCIC_STRESS(PTSTEP,TD%DU%XUTCI_OUTAGG ,TD%DU%XUTCIC_OUTAGG )
!
ELSE IF (TD%DU%LUTCI) THEN
TD%DU%XUTCI_IN (:,:) = XUNDEF
TD%DU%XUTCI_OUTSUN (:) = XUNDEF
TD%DU%XUTCI_OUTSHADE(:) = XUNDEF
TD%DU%XUTCI_OUTAGG (:) = XUNDEF
TD%DU%XUTCI_OUTSUN_MEAN (:) = XUNDEF
TD%DU%XUTCI_OUTSHADE_MEAN(:) = XUNDEF
TD%DU%XTRAD_SUN(:) = XUNDEF
TD%DU%XTRAD_SHADE(:) = XUNDEF
TD%DU%XTRAD_SUN_MEAN(:) = XUNDEF
TD%DU%XTRAD_SHADE_MEAN(:) = XUNDEF
TD%DU%XUTCIC_IN (:,:,:) = XUNDEF
TD%DU%XUTCIC_OUTSUN (:,:) = XUNDEF
TD%DU%XUTCIC_OUTSHADE(:,:) = XUNDEF
TD%DU%XUTCIC_OUTAGG (:,:) = XUNDEF
ENDIF
!
IF (TOP%CBEM.EQ."BEM") THEN
!
DO JP=1,TOP%NTEB_PATCH
!
! Update auxiliairy variable for pressure at previous time step.
!
NB%AL(JP)%XPSOLD(:)=PPS(:)
!
! Determine the switch for shading status
! during vacancy at 7:00 solar time.
!
DO JJ=1,SIZE(NB%AL(JP)%XSHADVACSW,1)
DO JCOMP=1,BOP%NBEMCOMP
IF ( (PTSUN(JJ).GE.7.0*3600.0).AND.(PTSUN(JJ).LT.(7.0*3600.0+PTSTEP) ) ) THEN
IF ((NB%AL(JP)%XTI_BLD(JJ,JCOMP).GT.NB%AL(JP)%XTDESV(JJ)).AND. &
(NB%AL(JP)%XTI_BLD(JJ,JCOMP).GT.NB%AL(JP)%XTHEAT_OCCD(JJ,JCOMP))) THEN
NB%AL(JP)%XSHADVACSW(JJ,JCOMP)=1.0
ELSE
NB%AL(JP)%XSHADVACSW(JJ,JCOMP)=0.0
ENDIF
ENDIF
ENDDO
ENDDO
!
! Determine the switch for ventilation status
! during night at 22:00 solar time.
! This status change might not be reasonable for all building uses
!
DO JJ=1,SIZE(NB%AL(JP)%XVENTNIGSW,1)
DO JCOMP=1,BOP%NBEMCOMP
IF ( (PTSUN(JJ).GE.22.0*3600.0).AND.(PTSUN(JJ).LT.(22.0*3600.0+PTSTEP) ) ) THEN
IF ((NB%AL(JP)%XTI_BLD(JJ,JCOMP).GT.NB%AL(JP)%XTDESV(JJ)).AND. &
(NB%AL(JP)%XTI_BLD(JJ,JCOMP).GT.NB%AL(JP)%XTHEAT_OCCD(JJ,JCOMP))) THEN
NB%AL(JP)%XVENTNIGSW(JJ,JCOMP) = 1.0
ELSE
NB%AL(JP)%XVENTNIGSW(JJ,JCOMP) = 0.0
ENDIF
ENDIF
ENDDO
ENDDO
!
ENDDO
!
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
!
! ###############################################################
! Verification of radiation budget
! FIXME: Commented at the moment.
! ###############################################################
!
!IF (SIZE(TD%D%XSWD)>0) THEN
! DO JJ = 1, SIZE(ZAVG_RN)
! !
! ZNET_UP_DOWN(JJ) = TD%D%XSWD(JJ) - TD%D%XSWU(JJ) + TD%D%XLWD(JJ) - TD%D%XLWU(JJ)
! !
! IF ( ISNAN(ZNET_UP_DOWN(JJ)) .OR. ISNAN(ZAVG_RN(JJ)) ) THEN
! CALL GET_LUOUT(HPROGRAM,ILUOUT)
! WRITE(ILUOUT,*) "ZNET_UP_DOWN(JJ) ",ZNET_UP_DOWN(JJ)
! WRITE(ILUOUT,*) "ZAVG_RN (JJ) ",ZAVG_RN(JJ)
! CALL FLUSH(ILUOUT)
! CALL ABOR1_SFX("CHECK_TEB: NAN in radiation budget diagnostics, check report")
! ENDIF
! !
! IF ( ABS(ZNET_UP_DOWN(JJ)-ZAVG_RN(JJ)).GT. 1.) THEN
! WRITE(ILUOUT,*) " "
! WRITE(ILUOUT,*) "Large incoherence in radiation budget (larger than 1W/m2) "
! WRITE(ILUOUT,*) " "
! WRITE(ILUOUT,*) "TD%D%XSWD(JJ) ",TD%D%XSWD(JJ)
! WRITE(ILUOUT,*) "TD%D%XSWU(JJ) ",TD%D%XSWU(JJ)
! WRITE(ILUOUT,*) "TD%D%XLWD(JJ) ",TD%D%XLWD(JJ)
! WRITE(ILUOUT,*) "TD%D%XLWU(JJ) ",TD%D%XLWU(JJ)
! WRITE(ILUOUT,*) "Diagnostics should be equal from radiative and energy balance point of views:"
! WRITE(ILUOUT,*) "ZNET_UP_DOWN(JJ) ",ZNET_UP_DOWN(JJ)
! WRITE(ILUOUT,*) "ZAVG_RN(JJ) ",ZAVG_RN(JJ)
! WRITE(ILUOUT,*)
! CALL FLUSH(ILUOUT)
! ! CALL ABOR1_SFX("COUPLING_TEBn: Radiation budget is not closed for at least one point, check report")
! EXIT
! ENDIF
! !
! ENDDO
!END IF
!
IF (CT%LCHECK_TEB) CALL DEALLOC_CHECK_TEB(CT)
!
IF (LHOOK) CALL DR_HOOK('COUPLING_TEB_N',1,ZHOOK_HANDLE)
!
!-------------------------------------------------------------------------------------
SUBROUTINE ADD_PATCH_CONTRIB(JP,PAVG,PFIELD)
INTEGER, INTENT(IN) :: JP
REAL, DIMENSION(:), INTENT(INOUT) :: PAVG
REAL, DIMENSION(:), INTENT(IN) :: PFIELD
!
IF (JP==1) PAVG = 0.
PAVG = PAVG + TOP%XTEB_PATCH(:,JP) * PFIELD(:)
!
END SUBROUTINE ADD_PATCH_CONTRIB
!-------------------------------------------------------------------------------------
!
END SUBROUTINE COUPLING_TEB_n