Newer
Older

WAUTELET Philippe
committed
!ORILAM_LIC Copyright 2007-2019 CNRS, Meteo-France and Universite Paul Sabatier
!ORILAM_LIC This is part of the ORILAM software governed by the CeCILL-C licence
!ORILAM_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!ORILAM_LIC for details.

WAUTELET Philippe
committed
!-----------------------------------------------------------------
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
! ################################
MODULE MODI_AER_WET_DEP_KMT_WARM
!! ################################
!!
!
INTERFACE
!!
SUBROUTINE AER_WET_DEP_KMT_WARM(KSPLITR, PTSTEP, PZZ, PRHODREF, &
PRCT, PRRT, &
PRCS, PRRS, PSVT, PTHT, &
PPABST, PRGAER, PEVAP3D, KMODE, &
PDENSITY_AER, PMASSMIN, PSEA, PTOWN, &
PCCT, PCRT )
!
IMPLICIT NONE
INTEGER, INTENT(IN) :: KSPLITR ! Number of small time step
! integration for rain sedimendation
REAL, INTENT(IN) :: PTSTEP ! Time step
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ ! Height (z)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF! Reference [kg/m3] air density
!
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PSVT ! Tracer m.r. at t
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCS ! Cloud water conc derived from source term
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRS ! Rain water conc derifed from source term
REAL, DIMENSION(:,:,:), INTENT(IN) :: PEVAP3D ! Instantaneous 3D Rain Evaporation flux (KG/KG/S)
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT !Potential temp
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! [Pa] pressure
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PRGAER ! Aerosol radius (um)
INTEGER, INTENT(IN) :: KMODE ! Nb aerosols mode
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PDENSITY_AER ! Begin Index for aerosol in cloud
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PMASSMIN ! Aerosol mass minimum value
REAL, DIMENSION(:,:),OPTIONAL, INTENT(IN) :: PSEA ! Sea mask
REAL, DIMENSION(:,:),OPTIONAL, INTENT(IN) :: PTOWN ! Town mask
REAL, DIMENSION(:,:,:),OPTIONAL, INTENT(IN) :: PCCT ! Cloud water concentration
REAL, DIMENSION(:,:,:),OPTIONAL, INTENT(IN) :: PCRT ! Rain water concentration
!
END SUBROUTINE AER_WET_DEP_KMT_WARM
!!
END INTERFACE
END MODULE MODI_AER_WET_DEP_KMT_WARM
! ###############################################################
SUBROUTINE AER_WET_DEP_KMT_WARM (KSPLITR, PTSTEP, PZZ, &
PRHODREF, PRCT, PRRT, &
PRCS, PRRS, PSVT, PTHT, &
PPABST, PRGAER, PEVAP3D, KMODE, &
PDENSITY_AER, PMASSMIN, PSEA, PTOWN, &
PCCT, PCRT )
! ###############################################################
!
!!**** * - compute the explicit microphysical processes involved in the
!!*** * - wet deposition of aerosols species in mixed clouds
!!
!! PURPOSE
!! -------
!!
!! The purpose of this subroutine is to calculate the mass transfer
!! of aerosol species between cloud hydrometeors.
!!
!!
!!
!!** METHOD
!! ------
!! Aerosols mass are dissolved into the cloud water and rain
!! drops, it is subject to transfer through the microphysical processes
!! that affect the parent hydrometeor [Rutledge et al., 1986].
!! Aerosol mass transfer has been computed using scavenging coefficient
!! and brownian nucleation scavenging coefficient (Seinfeld and Pandis,
!! 1998; Tost et al, 2006).
!!
!! The sedimentation rate is computed with a time spliting technique and
!! an upstream scheme, written as a difference of non-advective fluxes.
!!
!! KMODE: Number of aerosol modes (lognormal, bin..)
!! PSVT : 1 => KMODE : dry aerosol mass
!! PSVT : KMODE+1 => 2*KMODE : aerosol mass in cloud
!! PSVT : 2*KMODE+1 => 3*KMODE: aerosol mass in rain
!!
!! EXTERNAL
!! --------
!! None
!!
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_CST
!! XP00 ! Reference pressure
!! XRD,XRV ! Gaz constant for dry air, vapor
!! XMD,XMV ! Molecular weight for dry air, vapor
!! XCPD ! Cpd (dry air)
!!
!! REFERENCE
!! ---------
!!
!! AUTHOR
!! ------
!! P. Tulet & K. Crahan-Kaku * CNRM *
!!
!! Based on rain_ice.f90 and ch_wet_dep_kmt_warm.f90
!! from C. Mari & J.P. Pinty * LA*
!!
!!
!! MODIFICATIONS
!! -------------
!! Original 09/05/07

WAUTELET Philippe
committed
! P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
! P. Wautelet 28/05/2019: move COUNTJV function to tools.f90
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST
USE MODD_RAIN_ICE_PARAM
USE MODD_RAIN_ICE_DESCR
USE MODD_PRECIP_n
USE MODI_AER_VELGRAV
USE MODI_AER_EFFIC
USE MODI_GAMMA
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
INTEGER, INTENT(IN) :: KSPLITR ! Number of small time step
! integration for rain sedimendation
REAL, INTENT(IN) :: PTSTEP ! Time step
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ ! Height (z)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF! Reference [kg/m3] air density
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PSVT ! Tracer m.r. at t
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCS ! Cloud water m.r. from source term
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRS ! Rain water m.r. from source term
REAL, DIMENSION(:,:,:), INTENT(IN) :: PEVAP3D ! Instantaneous 3D Rain Evaporation flux (KG/KG/S)
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT ! Potential temp
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! [Pa] pressure
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PRGAER ! Aerosols radius (um)
INTEGER, INTENT(IN) :: KMODE ! Nb aerosols mode
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PDENSITY_AER ! Begin Index for aerosol in cloud
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PMASSMIN ! Aerosol mass minimum value
REAL, DIMENSION(:,:),OPTIONAL, INTENT(IN) :: PSEA ! Sea mask
REAL, DIMENSION(:,:),OPTIONAL, INTENT(IN) :: PTOWN ! Town mask
REAL, DIMENSION(:,:,:),OPTIONAL, INTENT(IN) :: PCCT ! Cloud water concentration
REAL, DIMENSION(:,:,:),OPTIONAL, INTENT(IN) :: PCRT ! Rain water concentration
!
!* 0.2 Declarations of local variables :
!
INTEGER :: JK ! Vertical loop index for the rain sedimentation
INTEGER :: JN ! Temporal loop index for the rain sedimentation
INTEGER :: JJ ! Loop index for the interpolation
!
REAL :: ZTSPLITR ! Small time step for rain sedimentation
!
REAL, DIMENSION(:,:), ALLOCATABLE :: ZEFC !efficiency factor [unitless]
!
!Declaration of Dust Variables
!
INTEGER :: ICLOUD, IRAIN
! Case number of sedimentation, T>0 (for HEN)
! and r_x>0 locations
LOGICAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) &
:: GRAIN, GCLOUD ! Test where to compute all processes
! Test where to compute the SED/EVAP processes
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) &
:: ZW, ZZW1, ZZW2, ZZW4 ! work array
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) &
:: ZWEVAP ! sedimentation fluxes
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)+1) &
:: ZWSED ! sedimentation fluxes
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) :: ZLBDAR
! Slope parameter of the raindrop distribution
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) &
:: ZZRCT, ZZEVAP, ZMASK
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) &
:: ZRAY, & ! Mean radius
ZNRT, & ! Number of rain droplets
ZLBC , & ! XLBC weighted by sea fraction
ZFSEDC
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2)) :: ZCONC_TMP
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) :: ZCONC
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) :: ZRRS
!
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSVT ! Tracer m.r. concentration
!
REAL, DIMENSION(:,:), ALLOCATABLE :: ZVGG, ZDPG !aerosol velocity [m/s], diffusivity [m2/s]
REAL, DIMENSION(:,:), ALLOCATABLE :: ZRG !Dust R[µm]
REAL, DIMENSION(:,:), ALLOCATABLE :: ZCOR !Cunningham correction factor [unitless]
REAL, DIMENSION(:,:), ALLOCATABLE :: ZMASSMIN ! Aerosol mass minimum value
REAL, DIMENSION(:,:), ALLOCATABLE :: ZDENSITY_AER ! Aerosol density
!
REAL, DIMENSION(:), ALLOCATABLE &
:: ZRHODREF, & ! RHO Dry REFerence
ZTHT, & ! Potential temp
ZPABST, & ! Pressure [Pa]
ZZW, & ! Work array
ZTEMP, & ! Air Temp [K]
ZRC, & ! Cloud radius [m]
ZRCT, & ! Cloud water
ZRR, & ! Rain radius [m]
ZNT, & ! Rain droplets number
ZRRT, & ! Rain water
ZMU,ZMUW, & ! viscosity aerosol, water [Pa s]
ZFLUX, & ! Effective precipitation flux (kg.m-2.s-1)
ZCONC1D, & ! Weighted droplets concentration
ZWLBDC, & ! Slope parameter of the droplet distribution
ZGAMMA ! scavenging coefficient
REAL, DIMENSION(:), ALLOCATABLE :: ZW1 ! Work arrays
REAL, DIMENSION(SIZE(XRTMIN)) :: ZRTMIN
INTEGER :: JL ! and PACK intrinsics
!
INTEGER :: JKAQ, JSV
!
REAL :: A0, A1, A2, A3 ! Constants for computing viscocity
INTEGER :: IKE
!
!-------------------------------------------------------------------------------
!
!* 0. Initialize work array
! ---------------------
!
! Compute Effective cloud radius
ZRAY(:,:,:) = 0.
ZLBC(:,:,:) = 0.
IF (PRESENT(PCCT)) THEN ! case KHKO, C2R2, C3R5 (two moments schemes)
ZRAY(:,:,:) = 3.* PRCT(:,:,:) / (4.*XPI*XRHOLW*PCCT(:,:,:))
ZRAY(:,:,:) = ZRAY(:,:,:)**(1./3.) ! Cloud mean radius in m
ELSE IF (PRESENT(PSEA)) THEN ! Case ICE3, RAVE, KESS, ..
ZLBC(:,:,:) = XLBC(1)
ZFSEDC(:,:,:) = XFSEDC(1)
ZCONC(:,:,:) = XCONC_LAND
ZCONC_TMP(:,:)=PSEA(:,:)*XCONC_SEA+(1.-PSEA(:,:))*XCONC_LAND
DO JK=1,SIZE(PRHODREF,3)
ZLBC(:,:,JK) = PSEA(:,:)*XLBC(2)+(1.-PSEA(:,:))*XLBC(1)
ZFSEDC(:,:,JK) = (PSEA(:,:)*XFSEDC(2)+(1.-PSEA(:,:))*XFSEDC(1))
ZFSEDC(:,:,JK) = MAX(MIN(XFSEDC(1),XFSEDC(2)),ZFSEDC(:,:,JK))
ZCONC(:,:,JK) = (1.-PTOWN(:,:))*ZCONC_TMP(:,:)+PTOWN(:,:)*XCONC_URBAN
ZRAY(:,:,JK) = 0.5*((1.-PSEA(:,:))*GAMMA(XNUC+1.0/XALPHAC)/(GAMMA(XNUC)) + &
PSEA(:,:)*GAMMA(XNUC2+1.0/XALPHAC2)/(GAMMA(XNUC2)))
END DO
ZRAY(:,:,:) = MAX(1.,ZRAY(:,:,:))
ZLBC(:,:,:) = MAX(MIN(XLBC(1),XLBC(2)),ZLBC(:,:,:))
ELSE
ZRAY(:,:,:) = 30. ! default value for cloud radius
END IF
!
ZNRT(:,:,:) = 0.
IF (PRESENT(PCRT)) THEN ! case KHKO, C2R2, C3R5
! Transfert Number of rain droplets
ZNRT(:,:,:) = PCRT(:,:,:)
END IF
!-------------------------------------------------------------------------------
!
!* 1. COMPUTE THE AEROSOL/CLOUD-RAIN MASS TRANSFER
! ----------------------------------------------
CALL AER_WET_MASS_TRANSFER
!-------------------------------------------------------------------------------
!
!* 2. COMPUTE THE SEDIMENTATION (RS) SOURCE
! -------------------------------------
!
CALL AER_WET_DEP_KMT_WARM_SEDIMENT
!
!-------------------------------------------------------------------------------
!!
!!* 3. COMPUTES THE SLOW WARM PROCESS SOURCES
!! --------------------------------------
!!
CALL AER_WET_DEP_KMT_ICE_WARM
!
!-------------------------------------------------------------------------------
!!* 4. COMPUTES EVAPORATION PROCESS
!! ----------------------------
!!
CALL AER_WET_DEP_KMT_EVAP
!
!-------------------------------------------------------------------------------
!
!
CONTAINS
!
!
!-------------------------------------------------------------------------------
!
SUBROUTINE AER_WET_MASS_TRANSFER
!
!* 0. DECLARATIONS
! ------------
!
use mode_tools, only: Countjv
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
IMPLICIT NONE
!
!* 0.2 declaration of local variables
!
!
INTEGER , DIMENSION(SIZE(GCLOUD)) :: I1C,I2C,I3C! Used to replace the COUNT
INTEGER , DIMENSION(SIZE(GRAIN)) :: I1R,I2R,I3R ! Used to replace the COUNT
INTEGER :: JL ! and PACK intrinsics
INTEGER :: JKAQ ! counter for chemistry
!
!
! 1 Mass transfer Aerosol to cloud (Tost et al., 2006)
!
GCLOUD(:,:,:) = .FALSE.
GCLOUD(:,:,:) = PRCS(:,:,:)>XRTMIN(2)
ICLOUD = COUNTJV( GCLOUD(:,:,:),I1C(:),I2C(:),I3C(:))
IF( ICLOUD >= 1 ) THEN
ALLOCATE(ZSVT(ICLOUD,KMODE*3))
ALLOCATE(ZRHODREF(ICLOUD))
ALLOCATE(ZTHT(ICLOUD))
ALLOCATE(ZRC(ICLOUD))
ALLOCATE(ZPABST(ICLOUD))
ALLOCATE(ZRG(ICLOUD,KMODE))
ALLOCATE(ZTEMP(ICLOUD))
ALLOCATE(ZMU(ICLOUD))
ALLOCATE(ZRCT(ICLOUD))
ALLOCATE(ZVGG(ICLOUD,KMODE))
ALLOCATE(ZDPG(ICLOUD,KMODE))
ALLOCATE(ZGAMMA(ICLOUD))
ALLOCATE(ZW1(ICLOUD))
ALLOCATE(ZCOR(ICLOUD,KMODE))
ALLOCATE(ZMASSMIN(ICLOUD,KMODE))
ALLOCATE(ZWLBDC(ICLOUD))
ALLOCATE(ZCONC1D(ICLOUD))
ALLOCATE(ZDENSITY_AER(ICLOUD,KMODE))
ZSVT(:,:) = 0.
DO JL=1,ICLOUD
DO JKAQ = 1, KMODE
ZRG(JL,JKAQ) = PRGAER(I1C(JL),I2C(JL),I3C(JL),JKAQ)
ENDDO
DO JKAQ = 1, KMODE*3
ZSVT(JL,JKAQ) = PSVT(I1C(JL),I2C(JL),I3C(JL),JKAQ)
END DO
!
ZTHT(JL) = PTHT(I1C(JL),I2C(JL),I3C(JL))
ZRC(JL) = ZRAY(I1C(JL),I2C(JL),I3C(JL))
ZPABST(JL) = PPABST(I1C(JL),I2C(JL),I3C(JL))
ZRCT(JL) = PRCS(I1C(JL),I2C(JL),I3C(JL))
ZRHODREF(JL) = PRHODREF(I1C(JL),I2C(JL),I3C(JL))
ZMASSMIN(JL,:) = PMASSMIN(I1C(JL),I2C(JL),I3C(JL),:)
ZWLBDC(JL) = ZLBC(I1C(JL),I2C(JL),I3C(JL))
ZCONC1D(JL) = ZCONC(I1C(JL),I2C(JL),I3C(JL))
ZDENSITY_AER(JL,:) = PDENSITY_AER(I1C(JL),I2C(JL),I3C(JL),:)
END DO
IF (ANY(ZWLBDC(:)/=0.)) THEN ! case one moments
! On calcule Rc a partir de M(3) car c'est le seul moment indt de alpha et nu
! Rho_air * Rc / (Pi/6 * Rho_eau * Nc) = M(3) = 1/ (Lambda**3 * rapport des
! gamma)
ZWLBDC(:) = ZWLBDC(:) * ZCONC1D(:) / (ZRHODREF(:) * ZRCT(:))
ZWLBDC(:) = ZWLBDC(:)**XLBEXC
ZRC(:) = ZRC(:) / ZWLBDC(:)
END IF
!
! initialize temperature
ZTEMP(:)=ZTHT(:)*(ZPABST(:)/XP00)**(XRD/XCPD)
! compute diffusion and gravitation velocity
CALL AER_VELGRAV(ZRG(:,:), ZPABST(:), &
KMODE, ZMU(:), ZVGG(:,:), &
ZDPG(:,:),ZTEMP(:),ZCOR(:,:), &
ZDENSITY_AER(:,:))
DO JKAQ = 1, KMODE
! Browninan nucleation scavenging (Pruppacher and Klett, 2000, p723)
ZGAMMA(:) = 1.35 * ZRCT(:)*ZRHODREF(:)*1.E-3 * ZDPG(:,JKAQ) /&
(ZRC(:)*ZRC(:))
ZW1(:) = ZSVT(:,JKAQ) * EXP(-ZGAMMA(:) * PTSTEP)
ZW1(:) = MAX(ZW1(:), ZMASSMIN(:,JKAQ))
ZW1(:) = MIN(ZW1(:),ZSVT(:,JKAQ))
! Aerosol mass in cloud
ZSVT(:,KMODE+JKAQ) = ZSVT(:,KMODE+JKAQ) + ZSVT(:,JKAQ) - ZW1(:)
! New aerosol mass
ZSVT(:,JKAQ) = ZW1(:)
! Return in 3D
PSVT(:,:,:,JKAQ) = &
UNPACK(ZSVT(:,JKAQ),MASK=GCLOUD(:,:,:),FIELD=PSVT(:,:,:,JKAQ))
PSVT(:,:,:,KMODE+JKAQ) = &
UNPACK(ZSVT(:,KMODE+JKAQ),MASK=GCLOUD(:,:,:),FIELD=PSVT(:,:,:,KMODE+JKAQ))
ENDDO
DEALLOCATE(ZSVT)
DEALLOCATE(ZRHODREF)
DEALLOCATE(ZTHT)
DEALLOCATE(ZRC)
DEALLOCATE(ZPABST)
DEALLOCATE(ZRG)
DEALLOCATE(ZTEMP)
DEALLOCATE(ZMU)
DEALLOCATE(ZRCT)
DEALLOCATE(ZVGG)
DEALLOCATE(ZDPG)
DEALLOCATE(ZGAMMA)
DEALLOCATE(ZW1)
DEALLOCATE(ZCOR)
DEALLOCATE(ZMASSMIN)
DEALLOCATE(ZWLBDC)
DEALLOCATE(ZCONC1D)
DEALLOCATE(ZDENSITY_AER)
END IF
!
! 2 Mass transfer Aerosol to Rain (Seinfeld and Pandis, 1998, Tost et al., 2006)
!
GRAIN(:,:,:) = .FALSE.
GRAIN(:,:,:) = PRRS(:,:,:)>XRTMIN(3)
IRAIN = COUNTJV( GRAIN(:,:,:),I1R(:),I2R(:),I3R(:))
IF( IRAIN >= 1 ) THEN
!
ALLOCATE(ZRRT(IRAIN))
ALLOCATE(ZSVT(IRAIN,3*KMODE))
ALLOCATE(ZRHODREF(IRAIN))
ALLOCATE(ZTHT(IRAIN))
ALLOCATE(ZRR(IRAIN))
ALLOCATE(ZNT(IRAIN))
ALLOCATE(ZPABST(IRAIN))
ALLOCATE(ZRG(IRAIN,KMODE))
ALLOCATE(ZCOR(IRAIN,KMODE))
ALLOCATE(ZTEMP(IRAIN))
ALLOCATE(ZMU(IRAIN))
ALLOCATE(ZVGG(IRAIN,KMODE))
ALLOCATE(ZDPG(IRAIN,KMODE))
ALLOCATE(ZMUW(IRAIN))
ALLOCATE(ZEFC(IRAIN,KMODE))
ALLOCATE(ZW1(IRAIN))
ALLOCATE(ZFLUX(IRAIN))
ALLOCATE(ZGAMMA(IRAIN))
ALLOCATE(ZMASSMIN(IRAIN,KMODE))
ALLOCATE(ZDENSITY_AER(IRAIN,KMODE))
ZSVT(:,:) = 0.
DO JL=1,IRAIN
DO JKAQ = 1, KMODE
ZRG(JL,JKAQ) = PRGAER(I1R(JL),I2R(JL),I3R(JL),JKAQ )
ZSVT(JL,JKAQ) = PSVT(I1R(JL),I2R(JL),I3R(JL),JKAQ)
ZSVT(JL,KMODE*2+JKAQ) = PSVT(I1R(JL),I2R(JL),I3R(JL),KMODE*2+JKAQ)
END DO
!
ZTHT(JL) = PTHT(I1R(JL),I2R(JL),I3R(JL))
ZPABST(JL) = PPABST(I1R(JL),I2R(JL),I3R(JL))
ZRRT(JL) = PRRS(I1R(JL),I2R(JL),I3R(JL))
ZRHODREF(JL) = PRHODREF(I1R(JL),I2R(JL),I3R(JL))
ZMASSMIN(JL,:) = PMASSMIN(I1R(JL),I2R(JL),I3R(JL),:)
ZNT(JL) = ZNRT(I1R(JL),I2R(JL),I3R(JL))
ZDENSITY_AER(JL,:) = PDENSITY_AER(I1R(JL),I2R(JL),I3R(JL),:)
ENDDO
!
CALL AER_WET_DEP_KMT_EFFIC
! Compute scavenging coefficient
ZFLUX(:) = 0.
ZRRT(:) = MAX(ZRRT(:), 0.)
! Effective precipitation flux (kg.m-2.s-1)
ZFLUX(:) = XFSEDR * ZRRT(:)**(XEXSEDR ) &
* ZRHODREF(:)**(XEXSEDR-XCEXVT)
ZFLUX(:) = MAX(ZFLUX(:), 0.)
IF (ALL(ZNT(:) == 0.)) THEN ! case one moments
!Number concentration NT=No/lbda p. 415 Jacobson
!4/3 *pi *r³*NT*rho_eau(kg/m3) =rho(lwc)=rho(air)* qc(kg/kg)
ZNT (:) = XCCR/(XLBR*( ZRHODREF(:)* ZRRT(:) )**XLBEXR)
END IF
ZRR(:) = (ZRRT(:)*ZRHODREF(:)/(XRHOLW*ZNT(:)*4./3.*XPI))**(1./3.)
DO JKAQ = 1, KMODE
! Tost et al, 2006
ZGAMMA(:) = 0.75 * ZEFC(:,JKAQ) * ZFLUX(:) / (ZRR(:)*1E3)
ZW1(:) = ZSVT(:,JKAQ) * EXP(-ZGAMMA(:) * PTSTEP)
ZW1(:) = MAX(ZW1(:), ZMASSMIN(:,JKAQ))
ZW1(:) = MIN(ZW1(:),ZSVT(:,JKAQ))
! Aerosol mass in rain
ZSVT(:,KMODE*2+JKAQ) = ZSVT(:,KMODE*2+JKAQ) + ZSVT(:,JKAQ) - ZW1(:)
! New aerosol mass
ZSVT(:,JKAQ) = ZW1(:)
! Return to 3D
PSVT(:,:,:,JKAQ) = &
UNPACK(ZSVT(:,JKAQ),MASK=GRAIN(:,:,:),FIELD=PSVT(:,:,:,JKAQ))
PSVT(:,:,:,KMODE*2+JKAQ) = &
UNPACK(ZSVT(:,KMODE*2+JKAQ),MASK=GRAIN(:,:,:),FIELD=PSVT(:,:,:,KMODE*2+JKAQ))
ENDDO
DEALLOCATE(ZRRT)
DEALLOCATE(ZSVT)
DEALLOCATE(ZRHODREF)
DEALLOCATE(ZTHT)
DEALLOCATE(ZRR)
DEALLOCATE(ZNT)
DEALLOCATE(ZPABST)
DEALLOCATE(ZRG)
DEALLOCATE(ZCOR)
DEALLOCATE(ZTEMP)
DEALLOCATE(ZMU)
DEALLOCATE(ZVGG)
DEALLOCATE(ZDPG)
DEALLOCATE(ZMUW)
DEALLOCATE(ZEFC)
DEALLOCATE(ZW1)
DEALLOCATE(ZFLUX)
DEALLOCATE(ZGAMMA)
DEALLOCATE(ZMASSMIN)
DEALLOCATE(ZDENSITY_AER)
END IF
END SUBROUTINE AER_WET_MASS_TRANSFER
!
SUBROUTINE AER_WET_DEP_KMT_WARM_SEDIMENT
!
!* Sedimentation of aerosol in rain droplets
!
!* 0. DECLARATIONS
! ------------
!
IMPLICIT NONE
!
!* declaration of local variables
!
!
INTEGER :: JL ! and PACK intrinsics
INTEGER :: JKAQ ! counter for acquous aerosols
!
!-------------------------------------------------------------------------------
!
!* Time splitting initialization

WAUTELET Philippe
committed
ZTSPLITR = PTSTEP / REAL(KSPLITR)
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
!
ZW(:,:,:)=0.
ZRRS(:,:,:) = MAX(PRRS(:,:,:), 0.)
IKE = SIZE(PRCS,3)
DO JK = 1 , SIZE(PZZ,3)-1
ZW(:,:,JK) =ZTSPLITR/(( PZZ(:,:,JK+1)-PZZ(:,:,JK) ))
END DO
WHERE (ZRRS(:,:,:)<=XRTMIN(3))
ZW(:,:,:)=0.
END WHERE
!
ZWSED(:,:,IKE+1) = 0.
! Flux mass aerosol in rain droplets =
! Flux mass rain water * Mass aerosol in rain / Mass rain water
DO JKAQ = 1,KMODE
DO JN = 1 , KSPLITR
ZWSED(:,:,1:IKE) = XFSEDR &
* (ZRRS(:,:,:))**(XEXSEDR-1.) &
* PRHODREF(:,:,:)**(XEXSEDR-XCEXVT) &
* PSVT(:,:,:,KMODE*2+JKAQ)
DO JK = 1, IKE
PSVT(:,:,JK,KMODE*2+JKAQ)= PSVT(:,:,JK,KMODE*2+JKAQ) + &
ZW(:,:,JK)*(ZWSED(:,:,JK+1)-ZWSED(:,:,JK))
! Aerosol mass in rain droplets need to be positive
PSVT(:,:,JK,KMODE*2+JKAQ)= MAX(PSVT(:,:,JK,KMODE*2+JKAQ), 0.)
END DO
END DO
END DO
!
END SUBROUTINE AER_WET_DEP_KMT_WARM_SEDIMENT
!
!-------------------------------------------------------------------------------
!
SUBROUTINE AER_WET_DEP_KMT_ICE_WARM
!
!* 0. DECLARATIONS
!
IMPLICIT NONE
!-------------------------------------------------------------------------------
!
!* 1. compute the autoconversion of r_c for r_r production: RCAUTR
!
ZZW4(:,:,:)=0.0
! to be sure no division by zero in case of ZZRCT = 0.
ZZRCT(:,:,:) = PRCT(:,:,:)
ZZRCT(:,:,:) = MAX(ZZRCT(:,:,:), XRTMIN(2)/2.)
WHERE( (ZZRCT(:,:,:)>XRTMIN(2)) .AND. (PRCS(:,:,:)>0.0 ) )
ZZW4(:,:,:) = MIN( PRCS(:,:,:),XTIMAUTC* &
MAX((ZZRCT(:,:,:)-XCRIAUTC/ PRHODREF(:,:,:)),0.0))
END WHERE
DO JKAQ = 1,KMODE
ZZW2(:,:,:) =0.0
ZZW2(:,:,:)=ZZW4(:,:,:) * PSVT(:,:,:,KMODE+JKAQ)/ZZRCT(:,:,:) * PTSTEP
ZZW2(:,:,:) = MAX(MIN( ZZW2(:,:,:), PSVT(:,:,:,KMODE+JKAQ)),0.0)
! For rain - Increase the aerosol conc in rain
PSVT(:,:,:,KMODE*2+JKAQ) = &
PSVT(:,:,:,KMODE*2+JKAQ) + ZZW2(:,:,:)
! For Cloud Decrease the aerosol conc in cloud
PSVT(:,:,:,KMODE+JKAQ) = &
PSVT(:,:,:,KMODE+JKAQ) - ZZW2(:,:,:)
ENDDO
!
!* 2. compute the accretion of r_c for r_r production: RCACCR
!
ZZW4(:,:,:)=0.0
ZLBDAR(:,:,:)=0.0
WHERE ( (ZZRCT(:,:,:)>XRTMIN(2)) .AND. (PRRT(:,:,:)>XRTMIN(3)) &
.AND. (PRCS(:,:,:)> 0.0 ) )
ZLBDAR(:,:,:) = XLBR*( PRHODREF(:,:,:)* PRRT(:,:,:) )**XLBEXR
ZZW4(:,:,:) = MIN( PRCS(:,:,:),XFCACCR * ZZRCT(:,:,:) &
* ZLBDAR(:,:,:)**XEXCACCR &
* PRHODREF(:,:,:)**(-XCEXVT) )
END WHERE
!
DO JKAQ = 1,KMODE
ZZW2(:,:,:)=0.0
ZZW2(:,:,:)=ZZW4(:,:,:) * PSVT(:,:,:,KMODE+JKAQ)/ZZRCT(:,:,:) * PTSTEP
ZZW2(:,:,:) = MAX(MIN(ZZW2(:,:,:),PSVT(:,:,:,KMODE+JKAQ)), 0.0)
!* 3. compute the new acquous aerosol mass
!
! For rain - Increase the aerosol conc in rain
PSVT(:,:,:,KMODE*2+JKAQ) = PSVT(:,:,:,KMODE*2+JKAQ) + ZZW2(:,:,:)
! For Cloud Decrease the aerosol conc in cloud
PSVT(:,:,:,KMODE+JKAQ) = PSVT(:,:,:,KMODE+JKAQ) - ZZW2(:,:,:)
ENDDO
END SUBROUTINE AER_WET_DEP_KMT_ICE_WARM
!---------------------------------------------------------------------------------------
SUBROUTINE AER_WET_DEP_KMT_EVAP
!
!* COMPUTES THE EVAPORATION OF CLOUD-RAIN FOR THE
!* RE-RELEASE OF AER INTO THE ENVIRONMENT
! --------------------------------------
!
!
!* 0. DECLARATIONS
! ------------
!
IMPLICIT NONE
!* declaration of local variables
!
INTEGER :: JKAQ ! counter for aerosols
!* 1. compute the evaporation of r_r: RREVAV
!When partial reevaporation of precip takes place, the fraction of
!tracer precipitating form above is reevaporated is equal to
!half of the evaporation rate of water
!
! Rain water evaporated during PTSTEP in kg/kg
ZZEVAP(:,:,:) = PEVAP3D(:,:,:) * PTSTEP
! Fraction of rain water evaporated
! at this stage (bulk), we consider that the flux of evaporated aerosol
! is a ratio of the evaporated rain water.
! It will interested to calculate with a two moment scheme (C2R2 or C3R5)
! the complete evaporation of rain droplet to use it for the compuation
! of the evaporated aerosol flux.
ZWEVAP(:,:,:)=0.0
WHERE( PRRT(:,:,:) .GT. XRTMIN(3) )
ZWEVAP(:,:,:) = ZZEVAP(:,:,:)/(PRRT(:,:,:))
END WHERE
ZWEVAP(:,:,:)=MIN(ZWEVAP(:,:,:),1.0)
ZWEVAP(:,:,:)=MAX(ZWEVAP(:,:,:),0.0)
!* 2. compute the mask of r_c evaporation : all cloud is evaporated
! no partial cloud evaporation at this stage
ZMASK(:,:,:) = 0.
WHERE( PRCS(:,:,:) .LT. XRTMIN(2) )
ZMASK(:,:,:) = 1.
END WHERE
!
!
DO JKAQ = 1,KMODE
ZZW1(:,:,:) = ZMASK(:,:,:)*PSVT(:,:,:,KMODE+JKAQ)
ZZW2(:,:,:) = ZWEVAP(:,:,:)*PSVT(:,:,:,KMODE*2+JKAQ)
! 3. New dry aerosol mass
!
PSVT(:,:,:,JKAQ) = PSVT(:,:,:,JKAQ) + ZZW2(:,:,:) + ZZW1(:,:,:)
! 4. New cloud aerosol mass
!
PSVT(:,:,:,KMODE+JKAQ) = PSVT(:,:,:,KMODE+JKAQ) - ZZW1(:,:,:)
! 5. New rain aerosol mass
!
PSVT(:,:,:,KMODE*2+JKAQ) = PSVT(:,:,:,KMODE*2+JKAQ) - ZZW2(:,:,:)
END DO
!
!
END SUBROUTINE AER_WET_DEP_KMT_EVAP
!---------------------------------------------------------------------------------------
SUBROUTINE AER_WET_DEP_KMT_EFFIC
!
!* COMPUTES THE EFFICIENCY FACTOR
! ------------------------------
!
!
!* 0. DECLARATIONS
! ------------
!
IMPLICIT NONE
!
!
!* 1. COMPUTES THE EFFICIENCY FACTOR
! --------------------------------------
!
!* 1.1 compute gravitational velocities
!
!initialize
ZTEMP(:)=ZTHT(:)*(ZPABST(:)/XP00)**(XRD/XCPD)
ZTEMP(:)=MAX(ZTEMP(:),1.e-12)
CALL AER_VELGRAV(ZRG(:,:), ZPABST(:), KMODE, &
ZMU(:), ZVGG(:,:), &
ZDPG(:,:),ZTEMP(:), &
ZCOR(:,:), ZDENSITY_AER(:,:))
! Above gives mu (ZMU), v(aerosol)(PVGG, m/s), diffusion (ZDPG, m2/s)
!
!* 1.2 Compute Water Viscocity in kg/m/s Prup. & Klett, p.95
!
!
A0=1.76
A1=-5.5721e-2
A2=-1.3943e-3
A3=-4.3015e-5
ZMUW(:)=A0*EXP(A1*(ZTEMP(:)-273.15) &
+A2*(ZTEMP(:)-273.15) + A3*(ZTEMP(:)-273.15))*1.e-3
A1=-3.5254e-2
A2=4.7163e-4
A3=-6.0667e-6
WHERE (ZTEMP(:)>273.15)
ZMUW(:)=A0*EXP(A1*(ZTEMP(:)-273.15) &
+A2*(ZTEMP(:)-273.15) + A3*(ZTEMP(:)-273.15))*1.e-3
END WHERE
ZMUW(:)=MAX(ZMUW(:),1.e-12)
!
!* 1.3 compute efficiency factor
!
! This gives aerosol collection efficiency by calculating Reynolds number
! schmidt number, stokes number, etc
CALL AER_EFFIC(ZRG(:,:), ZVGG(:,:), & !aerosol radius/velocity
ZRHODREF(:), & !Air density
ZMUW(:), ZMU(:), & !mu water/air
ZDPG(:,:), ZEFC(:,:), & !diffusivity, efficiency
ZRRT(:), KMODE, & !Rain water, nb aerosols modes
ZTEMP(:),ZCOR(:,:), & ! Temperature, Cunnimgham coeff
ZDENSITY_AER(:,:)) ! aerosol density
!
END SUBROUTINE AER_WET_DEP_KMT_EFFIC
!
!-------------------------------------------------------------------------------
!
END SUBROUTINE AER_WET_DEP_KMT_WARM