Newer
Older

WAUTELET Philippe
committed
!MNH_LIC Copyright 1994-2019 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence

WAUTELET Philippe
committed
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
! ###################
MODULE MODI_AEROOPT_GET
! ###################
INTERFACE
SUBROUTINE AEROOPT_GET( &
PSVTA & !I [moments/molec_{air}] Transported moments of aerosol
,PZZ & !I [m] height of layers
,PRHODREFA & !I [kg/m3] density of air
,PPIZA_WVL & !O [-] single scattering albedo of aerosol layer for all SW wavelengths
,PCGA_WVL & !O [-] assymetry factor for aerosol layer for all SW wavelengths
,PTAUREL_WVL & !O [-] opt.depth/opt.depth(550) for aerosol layer for all SW wvl
,PTAU550 & !O [-] opt.depth at 550nm for all aerosol layer
,KSWB &
,PIR & !I [nbr] number of shortwave bands
,PII & !I [nbr] number of shortwave bands!I [nbr] number of shortwave bands
)
!INPUT
REAL, DIMENSION(:,:,:,:),INTENT(IN) :: PSVTA !I [moments/molec_{air}] transported moments aerosol
REAL, DIMENSION(:,:,:),INTENT(IN) :: PZZ !I [m] height of layers
REAL, DIMENSION(:,:,:),INTENT(IN) :: PRHODREFA !I [kg/m3] density of air
!OUTPUT
REAL, DIMENSION(:,:,:,:),INTENT(INOUT) :: PPIZA_WVL !O [-] single scattering albedo aerosol layer for all SW wavelengths
REAL, DIMENSION(:,:,:,:),INTENT(INOUT) :: PCGA_WVL !O [-] assymetry factor faerosol layer for all SW wavelengths
REAL, DIMENSION(:,:,:,:),INTENT(INOUT) :: PTAUREL_WVL !O [-] opt.depth/opt.depth(550) faerosol layer for all SW wvl
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTAU550 !O [-] opt.depth at 550nm for aaerosol layer
INTEGER, INTENT(IN) :: KSWB !I [nbr] number of shortwave wavelengths
REAL, DIMENSION(:,:,:,:),INTENT(INOUT) :: PIR !O [-] Real part of the aerosol refractive index
REAL, DIMENSION(:,:,:,:),INTENT(INOUT) :: PII !O [-] Imaginary part of the aerosol refractive index
END SUBROUTINE AEROOPT_GET
!
END INTERFACE
!
END MODULE MODI_AEROOPT_GET
!#####################################################################
SUBROUTINE AEROOPT_GET( &
PSVTA & !I [moments/molec_{air}] Transported moments of aerosol
,PZZ & !I [m] height of layers
,PRHODREFA & !I [kg/m3] density of air
,PPIZA_WVL & !O [-] single scattering albedo of aerosol layer for all SW wavelengths
,PCGA_WVL & !O [-] assymetry factor for aerosol layer for all SW wavelengths
,PTAUREL_WVL & !O [-] opt.depth/opt.depth(550) for aerosol layer for all SW wvl
,PTAU550 & !O [-] opt.depth at 550nm for all aerosol layer
,KSWB & !I [nbr] number of shortwave bands
,PIR & !I [nbr] number of shortwave bands
,PII & !I [nbr] number of shortwave bands
)
!#####################################################################
!
!!
!! PURPOSE
!! -------
!!
!! AUTHOR
!! ------
!! Benjamin Aouizerats (CNRM/GMEI)
!!

WAUTELET Philippe
committed
! Modifications:
! P. Wautelet 22/02/2019: add kind parameter for CMPLX intrinsics (if not it default to single precision)
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CH_AEROSOL
USE MODE_AERO_PSD !Conversion procedures from moments to radius, ,number, mass and sigma
USE MODD_DUST
IMPLICIT NONE
!INPUT
REAL, DIMENSION(:,:,:,:),INTENT(IN) :: PSVTA !I [moments/molec_{air}] transported moments aerosol
REAL, DIMENSION(:,:,:),INTENT(IN) :: PZZ !I [m] height of layers
REAL, DIMENSION(:,:,:),INTENT(IN) :: PRHODREFA !I [kg/m3] density of air
!OUTPUT
REAL, DIMENSION(:,:,:,:),INTENT(INOUT) :: PPIZA_WVL !O [-] single scattering albedo aerosol layer for all SW wavelengths
REAL, DIMENSION(:,:,:,:),INTENT(INOUT) :: PCGA_WVL !O [-] assymetry factor faerosol layer for all SW wavelengths
REAL, DIMENSION(:,:,:,:),INTENT(INOUT) :: PTAUREL_WVL !O [-] opt.depth/opt.depth(550) faerosol layer for all SW wvl
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTAU550 !O [-] opt.depth at 550nm for aaerosol layer
REAL, DIMENSION(:,:,:,:),INTENT(INOUT) :: PIR !O [-] Real part of the aerosol refractive index
REAL, DIMENSION(:,:,:,:),INTENT(INOUT) :: PII !O [-] Imaginary part of the aerosol refractive index
INTEGER, INTENT(IN) :: KSWB !I [nbr] number of shortwave wavelengths
!LOCAL VARIABLES
INTEGER :: NMODE_AER
REAL, DIMENSION(SIZE(PSVTA,1),SIZE(PSVTA,2),SIZE(PSVTA,3),SIZE(PSVTA,4)) :: ZSVT
REAL, DIMENSION(SIZE(PSVTA,1),SIZE(PSVTA,2),SIZE(PSVTA,3),16 ,2) :: ZMASS ![kg/m3] mass of aerosol mode
REAL, DIMENSION(SIZE(PSVTA,1),SIZE(PSVTA,2),SIZE(PSVTA,3) ,2) :: ZMASSeq ![kg/m3] mass of aerosol mode
REAL, DIMENSION(SIZE(PSVTA,1),SIZE(PSVTA,2),SIZE(PSVTA,3), 2) :: ZRADIUS ![um] number median radius ofaerosol mode
REAL, DIMENSION(SIZE(PSVTA,1),SIZE(PSVTA,2),SIZE(PSVTA,3), 2) :: ZSIGMA ![-] dispersion coefficientaerosol mode
REAL, ALLOCATABLE, DIMENSION(:,:,:,:) :: ZTAU550_MDE ![-] opt.depth 550nm one mode
REAL, ALLOCATABLE, DIMENSION(:,:,:,:,:) :: ZTAU_WVL_MDE ![-] opt.depth @ wvl, one mode
REAL, ALLOCATABLE, DIMENSION(:,:,:,:,:) :: ZPIZA_WVL_MDE ![-] single scattering albedo @ wvl, one mode
REAL, ALLOCATABLE, DIMENSION(:,:,:,:,:) :: ZCGA_WVL_MDE ![-] assymetry factor @ wvl, one mode
INTEGER :: JMDE ![idx] counter for modes
INTEGER :: JWVL ![idx] counter for wavelengths
COMPLEX, DIMENSION(6,6) :: Ri !Refactive index
COMPLEX, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: eps1 !Intermediate computations
COMPLEX, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: eps2 !Intermediate computations
COMPLEX, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: eps3 !Intermediate computations
REAL , DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: f1 !Intermediate computations
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VOC ! Volume of aerosol
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VDDST
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VBC
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VSOA
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VSOA1
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VSOA2
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VSOA3
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VSOA4
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VSOA5
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VSOA6
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VSOA7
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VSOA8
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VSOA9
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VSOA10
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VAM
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VNI
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VH2O
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VSU
REAL, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3)) :: VEXTR
COMPLEX, DIMENSION(size(ZMASS,1),size(ZMASS,2),size(ZMASS,3),6)::Req ! Equivalent refractive index
REAL, PARAMETER :: EPSILON=1.d-8 ![um] a small number used to avoid zero
INTEGER ::JJJ
!-------------------------------------------------------------------------
!-------------------------------------------------------------------------
!-------------------------------------------------------------------------
!
NMODE_AER=2
!Allocate arrays which size depend on number of modes
ALLOCATE(ZTAU550_MDE(SIZE(PTAU550,1),SIZE(PTAU550,2),SIZE(PTAU550,3),NMODE_AER))
ALLOCATE(ZTAU_WVL_MDE(SIZE(PTAU550,1),SIZE(PTAU550,2),SIZE(PTAU550,3),KSWB,NMODE_AER))
ALLOCATE(ZPIZA_WVL_MDE(SIZE(PTAU550,1),SIZE(PTAU550,2),SIZE(PTAU550,3),KSWB,NMODE_AER))
ALLOCATE(ZCGA_WVL_MDE(SIZE(PTAU550,1),SIZE(PTAU550,2),SIZE(PTAU550,3),KSWB,NMODE_AER))
ZSVT(:,:,:,:)=PSVTA(:,:,:,:)
CALL PPP2AERO( &
ZSVT & !I [moments/molec_{air}] moments of aerosol for all modes
,PRHODREFA & !I [kg/m3] air density
,PSIG3D=ZSIGMA & !O [-] dispersion coefficient
,PRG3D=ZRADIUS & !O [um] number median radius
,PCTOTA=ZMASS & !O [kg/m3] mass of aerosol
)
ZMASS(:,:,:,:,:)=ZMASS(:,:,:,:,:)*1.E-9
DO JMDE=1,NMODE_AER

WAUTELET Philippe
committed
Ri(1,1)=CMPLX(1.80,-7.40E-1,kind=kind(Ri(1,1)))
Ri(1,2)=CMPLX(1.80,-7.40E-1,kind=kind(Ri(1,1)))
Ri(1,3)=CMPLX(1.83,-7.40E-1,kind=kind(Ri(1,1)))
Ri(1,4)=CMPLX(1.88,-6.90E-1,kind=kind(Ri(1,1)))
Ri(1,5)=CMPLX(1.97,-6.80E-1,kind=kind(Ri(1,1)))
Ri(1,6)=CMPLX(2.10,-7.20E-1,kind=kind(Ri(1,1)))

WAUTELET Philippe
committed
Ri(2,1)=CMPLX(1.45,-1.00E-3,kind=kind(Ri(1,1)))
Ri(2,2)=CMPLX(1.45,-1.00E-3,kind=kind(Ri(1,1)))
Ri(2,3)=CMPLX(1.45,-1.00E-3,kind=kind(Ri(1,1)))
Ri(2,4)=CMPLX(1.46,-1.00E-3,kind=kind(Ri(1,1)))
Ri(2,5)=CMPLX(1.49,-1.00E-3,kind=kind(Ri(1,1)))
Ri(2,6)=CMPLX(1.42,-1.26E-2,kind=kind(Ri(1,1)))

WAUTELET Philippe
committed
Ri(3,1)=CMPLX(1.36,-3.60E-8,kind=kind(Ri(1,1)))
Ri(3,2)=CMPLX(1.34,-3.00E-9,kind=kind(Ri(1,1)))
Ri(3,3)=CMPLX(1.33,-1.80E-8,kind=kind(Ri(1,1)))
Ri(3,4)=CMPLX(1.33,-5.75E-7,kind=kind(Ri(1,1)))
Ri(3,5)=CMPLX(1.31,-1.28E-4,kind=kind(Ri(1,1)))
Ri(3,6)=CMPLX(1.42,-2.54E-1,kind=kind(Ri(1,1)))

WAUTELET Philippe
committed
Ri(4,1)=CMPLX(1.52,-5.00E-4,kind=kind(Ri(1,1)))
Ri(4,2)=CMPLX(1.52,-5.00E-4,kind=kind(Ri(1,1)))
Ri(4,3)=CMPLX(1.52,-5.00E-4,kind=kind(Ri(1,1)))
Ri(4,4)=CMPLX(1.52,-5.00E-4,kind=kind(Ri(1,1)))
Ri(4,5)=CMPLX(1.51,-5.00E-4,kind=kind(Ri(1,1)))
Ri(4,6)=CMPLX(1.35,-1.40E-2,kind=kind(Ri(1,1)))

WAUTELET Philippe
committed
Ri(5,1)=CMPLX(1.53,-5.00E-3,kind=kind(Ri(1,1)))
Ri(5,2)=CMPLX(1.53,-5.00E-3,kind=kind(Ri(1,1)))
Ri(5,3)=CMPLX(1.53,-6.00E-3,kind=kind(Ri(1,1)))
Ri(5,4)=CMPLX(1.52,-1.30E-2,kind=kind(Ri(1,1)))
Ri(5,5)=CMPLX(1.52,-1.30E-2,kind=kind(Ri(1,1)))
Ri(5,6)=CMPLX(1.45,-5.00E-1,kind=kind(Ri(1,1)))

WAUTELET Philippe
committed
Ri(6,1)=CMPLX(1.448,-0.00292,kind=kind(Ri(1,1)))
Ri(6,2)=CMPLX(1.448,-0.00292,kind=kind(Ri(1,1)))
Ri(6,3)=CMPLX(1.4777,-0.01897,kind=kind(Ri(1,1)))
Ri(6,4)=CMPLX(1.44023,-0.00116,kind=kind(Ri(1,1)))
Ri(6,5)=CMPLX(1.41163,-0.00106,kind=kind(Ri(1,1)))
Ri(6,6)=CMPLX(1.41163,-0.00106,kind=kind(Ri(1,1)))
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
! Computation of the refractive index for the whole aerosol mode according to
! Maxwell-Garnett mixing rule
! IF (LDUST) THEN
! VDDST(:,:,:)=(ZMASS(:,:,:,JP_AER_DST,JMDE))/XFAC(JP_AER_DST)
! ELSE
VDDST(:,:,:)=0.
! ENDIF
VOC(:,:,:)=(ZMASS(:,:,:,5,JMDE))/XFAC(5)
VH2O(:,:,:)=(ZMASS(:,:,:,4,JMDE))/XFAC(4)
VAM(:,:,:)=(ZMASS(:,:,:,3,JMDE))/XFAC(3)
VSU(:,:,:)=(ZMASS(:,:,:,1,JMDE))/XFAC(1)
VNI(:,:,:)=(ZMASS(:,:,:,2,JMDE))/XFAC(2)
VBC(:,:,:)=(ZMASS(:,:,:,6,JMDE))/XFAC(6)
VSOA1(:,:,:)=(ZMASS(:,:,:,7,JMDE))/XFAC(7)
VSOA2(:,:,:)=(ZMASS(:,:,:,8,JMDE))/XFAC(8)
VSOA3(:,:,:)=(ZMASS(:,:,:,9,JMDE))/XFAC(9)
VSOA4(:,:,:)=(ZMASS(:,:,:,10,JMDE))/XFAC(10)
VSOA5(:,:,:)=(ZMASS(:,:,:,11,JMDE))/XFAC(11)
VSOA6(:,:,:)=(ZMASS(:,:,:,12,JMDE))/XFAC(12)
VSOA7(:,:,:)=(ZMASS(:,:,:,13,JMDE))/XFAC(13)
VSOA8(:,:,:)=(ZMASS(:,:,:,14,JMDE))/XFAC(14)
VSOA9(:,:,:)=(ZMASS(:,:,:,15,JMDE))/XFAC(15)
VSOA10(:,:,:)=(ZMASS(:,:,:,16,JMDE))/XFAC(16)
VSOA(:,:,:)=VSOA1(:,:,:)+VSOA2(:,:,:)+VSOA3(:,:,:)+VSOA4(:,:,:)+&
VSOA5(:,:,:)+VSOA6(:,:,:)+VSOA7(:,:,:)+VSOA8(:,:,:)+&
VSOA9(:,:,:)+VSOA10(:,:,:)
VEXTR(:,:,:)=VSOA(:,:,:)+VH2O(:,:,:)+VAM(:,:,:)+VSU(:,:,:)+VNI(:,:,:)
DO JWVL=1,KSWB !Number of SW wavelengths

WAUTELET Philippe
committed
eps1(:,:,:)=CMPLX((Ri(1,JWVL)*VBC(:,:,:)+Ri(2,JWVL)*VOC(:,:,:)+VDDST(:,:,:)*Ri(6,JWVL))/(VBC(:,:,:)+VOC(:,:,:)), &
kind=kind(eps1(1,1,1)))**2
Req(:,:,:,JWVL)=sqrt(CMPLX(eps1(:,:,:),kind=kind(eps1(1,1,1))))
WHERE (VEXTR(:,:,:).NE.0. )
eps2(:,:,:)=CMPLX((VSOA(:,:,:)*Ri(2,JWVL)+VH2O(:,:,:)*Ri(3,JWVL)+VAM(:,:,:)*Ri(4,JWVL)&
+VSU(:,:,:)*Ri(4,JWVL)+VNI(:,:,:)*Ri(5,JWVL))/&

WAUTELET Philippe
committed
(VSOA(:,:,:)+VH2O(:,:,:)+VAM(:,:,:)+VSU(:,:,:)+VNI(:,:,:)),kind=kind(eps2(1,1,1)))**2
f1(:,:,:)=(VOC(:,:,:)+VBC(:,:,:))/(VSOA(:,:,:)+VH2O(:,:,:)+VAM(:,:,:)+VSU(:,:,:)+VNI(:,:,:)+VOC(:,:,:)+VBC(:,:,:))
eps3(:,:,:)=CMPLX(eps2(:,:,:)*(eps1(:,:,:)+2*eps2(:,:,:)+2*f1(:,:,:)*(eps1(:,:,:)-eps2(:,:,:)))/&

WAUTELET Philippe
committed
(eps1(:,:,:)+2*eps2(:,:,:)-f1(:,:,:)*(eps1(:,:,:)-eps2(:,:,:))),kind=kind(eps3(1,1,1)))
Req(:,:,:,JWVL)=sqrt(CMPLX(eps3(:,:,:),kind=kind(eps3(1,1,1))))
ENDWHERE
ENDDO
ZMASSeq(:,:,:,JMDE)=ZMASS(:,:,:,1,JMDE)+ZMASS(:,:,:,2,JMDE)+ZMASS(:,:,:,3,JMDE)&
+ZMASS(:,:,:,4,JMDE)+ZMASS(:,:,:,5,JMDE)+ZMASS(:,:,:,6,JMDE)+ZMASS(:,:,:,7,JMDE)&
+ZMASS(:,:,:,8,JMDE)+ZMASS(:,:,:,9,JMDE)+ZMASS(:,:,:,10,JMDE)+ZMASS(:,:,:,11,JMDE)&
+ZMASS(:,:,:,12,JMDE)+ZMASS(:,:,:,13,JMDE)+ZMASS(:,:,:,14,JMDE)+ZMASS(:,:,:,15,JMDE)&
+ZMASS(:,:,:,16,JMDE)

WAUTELET Philippe
committed
PII(:,:,:,:) = aimag(CMPLX(Req(:,:,:,:),kind=kind(PII(1,1,1,1))))
PIR(:,:,:,:) = real( CMPLX(Req(:,:,:,:),kind=kind(PIR(1,1,1,1))))
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!Get aerosol optical properties from look up tables
CALL AEROOPT_LKT( &
ZRADIUS(:,:,:,JMDE) & !I [um] number median radius for current mode
,ZSIGMA(:,:,:,JMDE) & !I [none] dispersion coefficient for current mode
,ZMASSeq(:,:,:, JMDE) & !I [kg/m3] Mass of aerosol for current mode
,ZTAU550_MDE(:,:,:,JMDE) & !O [-] optical depth at 550 nm wavelength
,ZTAU_WVL_MDE(:,:,:,:,JMDE) & !O [-] opt.depth(lambda)/opt.depth(550nm)
,ZPIZA_WVL_MDE(:,:,:,:,JMDE) & !O [-] single scattering coefficient at any wavelength
,ZCGA_WVL_MDE(:,:,:,:,JMDE) & !O [-] assymetry factor at any wavelength
,PZZ(:,:,:) & !I [m] height of layers
,KSWB & !I [nbr] number of shortwave bands
,Req(:,:,:,:))
ENDDO !Loop on modes
!Erase earlier value of optical depth at 550 nm
PTAU550(:,:,:)=0.d0
!Get total at 550 nm from all modes
DO JMDE=1,NMODE_AER
PTAU550(:,:,:) = & !Aerosol optical depth at 550 nm for all aerosol
PTAU550(:,:,:) & !Aerosol optical depth at 550 nm for all aerosol
+ ZTAU550_MDE(:,:,:,JMDE) !Optical depth for one mode at 550 nm
ENDDO
!Initialize output variables
PTAUREL_WVL(:,:,:,:)=0.d0 !Initialize opt.depth at wvl=lambda
PCGA_WVL(:,:,:,:)=0.d0 !Initialize assym.factor at wvl=lambda
PPIZA_WVL(:,:,:,:)=0.d0 !Initialize single scattering albedo at wvl=lambda
!Find the numerator in the expression for the average of the optical properties
DO JMDE=1,NMODE_AER !Number of modes
DO JWVL=1,KSWB !Number of SW wavelengths
!Get sum of optical depth from all modes at wvl
PTAUREL_WVL(:,:,:,JWVL) = & !new opt.depth(lambda) / opt.depth(550)
PTAUREL_WVL(:,:,:,JWVL) & !old sum for all modes at wvl=lambda
+ZTAU_WVL_MDE(:,:,:,JWVL,JMDE) !optical depth for one mode at wvl=lambda
!Get sum of all assymmetry factors from all modes at wvl=lambda
PCGA_WVL(:,:,:,JWVL) = & !New sum of assymetry factors
PCGA_WVL(:,:,:,JWVL) & !old sum of assymetry factors
+ZCGA_WVL_MDE(:,:,:,JWVL,JMDE) & !Assymetry factor for one mode and one wavelength
*ZTAU_WVL_MDE(:,:,:,JWVL,JMDE) & !Optical depth of this wavelength and mode
*ZPIZA_WVL_MDE(:,:,:,JWVL,JMDE) !Fraction of radiation scattered
!Get sum of single scattering albdedo at wvl=lambda
PPIZA_WVL(:,:,:,JWVL) = & !New sum of single scattering albedo
PPIZA_WVL(:,:,:,JWVL) & !Old sum of single scattering albedo
+ZPIZA_WVL_MDE(:,:,:,JWVL,JMDE) & !SSA for onen mode and one wavelength
*ZTAU_WVL_MDE(:,:,:,JWVL,JMDE) !Optical depth for this wavelength and mode
ENDDO
ENDDO
!Compute the output values for aerosol optical properties
DO JWVL=1,KSWB
!Divide total single scattering albdeo by total optical depth at this wavelength
!This is needed since we weight all single scattering alebdos by wavelengths just above
PPIZA_WVL(:,:,:,JWVL) = & !The value we want is ....
PPIZA_WVL(:,:,:,JWVL) & !..value weighted by optical depths of all wvl and modes
/max(epsilon,PTAUREL_WVL(:,:,:,JWVL)) !..divided by the optical depth for all wvl
!Divide total assymetry factor by total optical depth at this wavelength
!This is needed since we weight all assymetry factors by wavelengths just above
PCGA_WVL(:,:,:,JWVL) = & !The value we want is ....
PCGA_WVL(:,:,:,JWVL) & !..value weighted by optical depths of all wvl and modes
/ &
(max(epsilon, &
(PTAUREL_WVL(:,:,:,JWVL) & !..divided scattered fraction of by the optical depth
*PPIZA_WVL(:,:,:,JWVL))))
!Finally convert PTAUREL_WVL which was until now an optical depth to a fraction of optical depth
PTAUREL_WVL(:,:,:,JWVL) = &
PTAUREL_WVL(:,:,:,JWVL) & !Opt.depth at lambda with contr. from all modes
/max(epsilon,PTAU550(:,:,:)) !Optical depth at 550 contr. from all modes
ENDDO !Loop on wavelenghts
!DEALLOCATE local arrays which size depend on number of modes
DEALLOCATE(ZTAU550_MDE)
DEALLOCATE(ZTAU_WVL_MDE)
DEALLOCATE(ZPIZA_WVL_MDE)
DEALLOCATE(ZCGA_WVL_MDE)
CONTAINS
SUBROUTINE AEROOPT_LKT( &
PRG & !I [um] number median radius of aerosol mode
,PSIGMA & !I [-] lognormal dispersion coefficient
,PMASS & !I [kg/m3] Mass concentration of aerosol
,PTAU550 & !O [optical depth at 550 nm
,PTAU_WVL & !O [-] opt.depth(lambda)/opt.depth(550nm)
,PPIZA_WVL & !O [-] single scattering coefficient at any wavelength
,PCGA_WVL & !O [-] assymetry factor at any wavelength
,PZZ & !I [m] height of layers
,KSWB & !I [nbr] number of short wave bands
,Req)
!Purpose: Get optical properties of one aerosol mode from the mass concentration,
!dispersion coefficient and number median radius.
!Use the module with the aerosol optical properties look up tables
USE MODD_AEROSET
IMPLICIT NONE
!INPUT
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRG !I [um] number median radius for one mode
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSIGMA !I [-] dispersion coefficient for one mode
REAL, DIMENSION(:,:,:), INTENT(IN) :: PMASS !I [kg/m3] mass of aerosol
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ !I [m] height of layers
COMPLEX, DIMENSION(:,:,:,:), INTENT(IN) :: Req !
INTEGER, INTENT(IN) :: KSWB !I [nbr] number of shortwave bands
!OUTPUT
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTAU550 !O [-] optical depth at 550 nm
REAL, DIMENSION(:,:,:,:), INTENT(OUT) :: PTAU_WVL !O [-] optical depth at wvl
REAL, DIMENSION(:,:,:,:), INTENT(OUT) :: PPIZA_WVL !O [-] single scattering albedo @ wvl
REAL, DIMENSION(:,:,:,:), INTENT(OUT) :: PCGA_WVL !O [-] assymetry factor @ wvl
!LOCALS
REAL, DIMENSION(SIZE(PTAU550,1),SIZE(PTAU550,2),SIZE(PTAU550,3),KSWB) :: ZEXT_COEFF_WVL ![m2/kg] Extinction coefficient at wvl
REAL, DIMENSION(SIZE(PTAU550,1),SIZE(PTAU550,2),SIZE(PTAU550,3) ) :: ZEXT_COEFF_550 ![m2/kg] Extinction coefficient at 550nm
REAL :: FACT_SIGMA ![-] factor needed to get right index in look up table for sigma
REAL :: FACT_RADIUS ![-] factor needed to get right index in look up table for radius
INTEGER :: WVL_IDX ![idx] counter for wavelengths
INTEGER :: JI, JJ, JK ![idx] counters for lon, lat and lev
INTEGER :: RG_IDX ![idx] index for radius to get in look up table
INTEGER :: SG_IDX ![idx] index for sigma to get in look up table
INTEGER :: JRAD ![idx] index for sigma to get in look up table
REAL,DIMENSION(SIZE(PRG,1),SIZE(PRG,2),SIZE(PRG,3)) :: ZRG ![um] bounded value for number median radius
REAL,DIMENSION(SIZE(PRG,1),SIZE(PRG,2),SIZE(PRG,3)) :: ZSIGMA ![um] bounded value for sigma
REAL, PARAMETER :: EPSILON=1.d-8 ![um] a small number used to avoid zero
REAL :: ZRADIUS_LKT_MAX, ZRADIUS_LKT_MIN ![um] values limited at midpoint values of bin
REAL :: ZSIGMA_LKT_MAX, ZSIGMA_LKT_MIN ![-] values limited at midpoint of bin
INTEGER :: JKRAD,II,IS !Index valid for radiation code
REAL,DIMENSION(300) :: RADI,DR,ND
REAL :: LWC,PI,DELTA
COMPLEX,DIMENSION(13,6) :: R
REAL,dimension(13) ::Err
real,dimension(1) ::pds2,pds1,temp1,temp2,lg1,lg2,lg3,pds3,pds4,pds5,pds6
REAL::TAU1,TAU2,TAU3,TAU4,TAU5,TAU6,TAU7,TAU8,SSA1,SSA2,&
SSA3,SSA4,SSA5,SSA6,SSA7,SSA8,GA1,GA2,GA3,GA4,GA5,GA6,GA7,GA8
REAL,DIMENSION(13)::PTAU1,PTAU2,PTAU3,PTAU4,PTAU5,PTAU6,PTAU7,PTAU8,PSSA1,PSSA2,PSSA3,PSSA4,PSSA5,&
PSSA6,PSSA7,PSSA8,PGA1,PGA2,PGA3,PGA4,PGA5,PGA6,PGA7,PGA8
integer,dimension(1)::INDri,INDrr,INDsi
real,dimension (10)::SI ,Dsi
real,dimension (8)::RR ,Drr
real,dimension (6)::RI ,Dri
!Limit max and min values to be midpont of bin to avoid 0 or NMAX+1 values
ZRADIUS_LKT_MAX=20.
ZRADIUS_LKT_MIN=1.E-12
ZSIGMA_LKT_MAX=2.55
ZSIGMA_LKT_MIN=1.0
!Remove unphysical values for rg
ZRG(:,:,:) = min( max(ZRADIUS_LKT_MIN,PRG(:,:,:)), ZRADIUS_LKT_MAX)
ZSIGMA(:,:,:) = min( max(ZSIGMA_LKT_MIN,PSIGMA(:,:,:)), ZSIGMA_LKT_MAX)
!Initilalize arrays to make sure, they are intent(OUT),
!and may be initialized strangely by the computer
PTAU550(:,:,:)=EPSILON
PTAU_WVL(:,:,:,:)=EPSILON
PPIZA_WVL(:,:,:,:)=EPSILON
PCGA_WVL(:,:,:,:)=EPSILON
PI=ACOS(-1.0)
DO IS=1,10
SI(IS)=0.85+IS*0.2
ENDDO
RR(1)=1.45
RR(2)=1.50
RR(3)=1.55
RR(4)=1.60
RR(5)=1.65
RR(6)=1.70
RR(7)=1.75
RR(8)=1.80
RI(1)=-0.001
RI(2)=-0.006
RI(3)=-0.008
RI(4)=-0.020
RI(5)=-0.100
RI(6)=-0.400
DO WVL_IDX = 1,KSWB
DO JK=2,SIZE(PMASS,3)-1
JKRAD = JK - 1 !Index in radiation code
DO JJ=1,SIZE(PMASS,2)
DO JI=1,SIZE(PMASS,1)
Drr(:)=abs((RR(:))-real(Req(JI,JJ,JK,WVL_IDX)))
Dri(:)=abs((RI(:))-aimag(Req(JI,JJ,JK,WVL_IDX)))
Dsi(:)=abs((SI(:))-PSIGMA(JI,JJ,JK))
INDrr=minloc(Drr(:))
INDri=minloc(Dri(:))
INDsi=minloc(Dsi(:))
TAU1=0.
TAU2=0.
TAU3=0.
TAU4=0.
TAU5=0.
TAU6=0.
TAU7=0.
TAU8=0.
SSA1=0.
SSA2=0.
SSA3=0.
SSA4=0.
SSA5=0.
SSA6=0.
SSA7=0.
SSA8=0.
GA1=0.
GA2=0.
GA3=0.
GA4=0.
GA5=0.
GA6=0.
GA7=0.
GA8=0.
pds1=0.
pds2=0.
pds3=0.
pds4=0.
pds5=0.
pds6=0.
!SWITCH RR,RI
if(SI(INDsi(1)).gt.PSIGMA(JI,JJ,JK).and.INDsi(1).ne.1) THEN
if( RR(INDrr(1)).gt.real(Req(JI,JJ,JK,WVL_IDX)).and.INDrr(1).ne.1) THEN
if (RI(INDri(1)).lt.aimag(Req(JI,JJ,JK,WVL_IDX)).and.INDri(1).ne.1) THEN
!CAS INDrr(1)-1<RR<INDrr(1)
!CAS INDri(1)-1<RI<INDri(1)
!CAS INDsi(1)-1<SI<INDsi(1)
pds1=abs(RR(INDrr(1)-1)-real(Req(JI,JJ,JK,WVL_IDX)))
pds2=abs(RR(INDrr(1))-real(Req(JI,JJ,JK,WVL_IDX)))
pds3=abs(RI(INDri(1)-1)-aimag(Req(JI,JJ,JK,WVL_IDX)))
pds4=abs(RI(INDri(1))-aimag(Req(JI,JJ,JK,WVL_IDX)))
pds5=abs(SI(INDsi(1)-1)-PSIGMA(JI,JJ,JK))
pds6=abs(SI(INDsi(1))-PSIGMA(JI,JJ,JK))
lg1=pds2+pds1
pds1=pds1/lg1
pds2=pds2/lg1
lg2=pds3+pds4
pds3=pds3/lg2
pds4=pds4/lg2
lg3=pds5+pds6
pds5=pds5/lg3
pds6=pds6/lg3
PTAU1(:)=POLYTAU(WVL_IDX,INDsi(1),INDrr(1),INDri(1),:)
if (PTAU1(13).GE.PRG(JI,JJ,JK)) THEN
TAU1=PTAU1(1)*LOG(PRG(JI,JJ,JK))**5+PTAU1(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU1(3)*LOG(PRG(JI,JJ,JK))**3+PTAU1(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU1(5)*LOG(PRG(JI,JJ,JK))+PTAU1(6)
else
TAU1=PTAU1(7)*LOG(PRG(JI,JJ,JK))**5+PTAU1(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU1(9)*LOG(PRG(JI,JJ,JK))**3+PTAU1(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU1(11)*LOG(PRG(JI,JJ,JK))+PTAU1(12)
endif
PTAU2(:)=POLYTAU(WVL_IDX,INDsi(1)-1,INDrr(1),INDri(1),:)
if (PTAU2(13).GE.PRG(JI,JJ,JK)) THEN
TAU2=PTAU2(1)*LOG(PRG(JI,JJ,JK))**5+PTAU2(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU2(3)*LOG(PRG(JI,JJ,JK))**3+PTAU2(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU2(5)*LOG(PRG(JI,JJ,JK))+PTAU2(6)
else
TAU2=PTAU2(7)*LOG(PRG(JI,JJ,JK))**5+PTAU2(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU2(9)*LOG(PRG(JI,JJ,JK))**3+PTAU2(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU2(11)*LOG(PRG(JI,JJ,JK))+PTAU2(12)
endif
PTAU3(:)=POLYTAU(WVL_IDX,INDsi(1),INDrr(1),INDri(1)-1,:)
if (PTAU3(13).GE.PRG(JI,JJ,JK)) THEN
TAU3=PTAU3(1)*LOG(PRG(JI,JJ,JK))**5+PTAU3(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU3(3)*LOG(PRG(JI,JJ,JK))**3+PTAU3(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU3(5)*LOG(PRG(JI,JJ,JK))+PTAU3(6)
else
TAU3=PTAU3(7)*LOG(PRG(JI,JJ,JK))**5+PTAU3(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU3(9)*LOG(PRG(JI,JJ,JK))**3+PTAU3(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU3(11)*LOG(PRG(JI,JJ,JK))+PTAU3(12)
endif
PTAU4(:)=POLYTAU(WVL_IDX,INDsi(1)-1,INDrr(1),INDri(1)-1,:)
if (PTAU4(13).GE.PRG(JI,JJ,JK)) THEN
TAU4=PTAU4(1)*LOG(PRG(JI,JJ,JK))**5+PTAU4(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU4(3)*LOG(PRG(JI,JJ,JK))**3+PTAU4(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU4(5)*LOG(PRG(JI,JJ,JK))+PTAU4(6)
else
TAU4=PTAU4(7)*LOG(PRG(JI,JJ,JK))**5+PTAU4(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU4(9)*LOG(PRG(JI,JJ,JK))**3+PTAU4(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU4(11)*LOG(PRG(JI,JJ,JK))+PTAU4(12)
endif
PTAU5(:)=POLYTAU(WVL_IDX,INDsi(1),INDrr(1)-1,INDri(1),:)
if (PTAU5(13).GE.PRG(JI,JJ,JK)) THEN
TAU5=PTAU5(1)*LOG(PRG(JI,JJ,JK))**5+PTAU5(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU5(3)*LOG(PRG(JI,JJ,JK))**3+PTAU5(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU5(5)*LOG(PRG(JI,JJ,JK))+PTAU5(6)
else
TAU5=PTAU5(7)*LOG(PRG(JI,JJ,JK))**5+PTAU5(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU5(9)*LOG(PRG(JI,JJ,JK))**3+PTAU5(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU5(11)*LOG(PRG(JI,JJ,JK))+PTAU5(12)
endif
PTAU6(:)=POLYTAU(WVL_IDX,INDsi(1)-1,INDrr(1)-1,INDri(1),:)
if (PTAU6(13).GE.PRG(JI,JJ,JK)) THEN
TAU6=PTAU6(1)*LOG(PRG(JI,JJ,JK))**5+PTAU6(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU6(3)*LOG(PRG(JI,JJ,JK))**3+PTAU6(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU6(5)*LOG(PRG(JI,JJ,JK))+PTAU6(6)
else
TAU6=PTAU6(7)*LOG(PRG(JI,JJ,JK))**5+PTAU6(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU6(9)*LOG(PRG(JI,JJ,JK))**3+PTAU6(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU6(11)*LOG(PRG(JI,JJ,JK))+PTAU6(12)
endif
PTAU7(:)=POLYTAU(WVL_IDX,INDsi(1),INDrr(1)-1,INDri(1)-1,:)
if (PTAU7(13).GE.PRG(JI,JJ,JK)) THEN
TAU7=PTAU7(1)*LOG(PRG(JI,JJ,JK))**5+PTAU7(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU7(3)*LOG(PRG(JI,JJ,JK))**3+PTAU7(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU7(5)*LOG(PRG(JI,JJ,JK))+PTAU7(6)
else
TAU7=PTAU7(7)*LOG(PRG(JI,JJ,JK))**5+PTAU7(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU7(9)*LOG(PRG(JI,JJ,JK))**3+PTAU7(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU7(11)*LOG(PRG(JI,JJ,JK))+PTAU7(12)
endif
PTAU8(:)=POLYTAU(WVL_IDX,INDsi(1)-1,INDrr(1)-1,INDri(1)-1,:)
if (PTAU8(13).GE.PRG(JI,JJ,JK)) THEN
TAU8=PTAU8(1)*LOG(PRG(JI,JJ,JK))**5+PTAU8(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU8(3)*LOG(PRG(JI,JJ,JK))**3+PTAU8(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU8(5)*LOG(PRG(JI,JJ,JK))+PTAU8(6)
else
TAU8=PTAU8(7)*LOG(PRG(JI,JJ,JK))**5+PTAU8(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU8(9)*LOG(PRG(JI,JJ,JK))**3+PTAU8(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU8(11)*LOG(PRG(JI,JJ,JK))+PTAU8(12)
endif
!!!!!!!!!!!!!!!!!!!!!!!SSA!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
PSSA1(:)=POLYSSA(WVL_IDX,INDsi(1),INDrr(1),INDri(1),:)
if (PSSA1(13).GE.PRG(JI,JJ,JK)) THEN
SSA1=PSSA1(1)*LOG(PRG(JI,JJ,JK))**5+PSSA1(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA1(3)*LOG(PRG(JI,JJ,JK))**3+PSSA1(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA1(5)*LOG(PRG(JI,JJ,JK))+PSSA1(6)
else
SSA1=PSSA1(7)*LOG(PRG(JI,JJ,JK))**5+PSSA1(8)*LOG(PRG(JI,JJ,JK))**4+&
PSSA1(9)*LOG(PRG(JI,JJ,JK))**3+PSSA1(10)*LOG(PRG(JI,JJ,JK))**2+&
PSSA1(11)*LOG(PRG(JI,JJ,JK))+PSSA1(12)
endif
PSSA2(:)=POLYSSA(WVL_IDX,INDsi(1)-1,INDrr(1),INDri(1),:)
if (PSSA2(13).GE.PRG(JI,JJ,JK)) THEN
SSA2=PSSA2(1)*LOG(PRG(JI,JJ,JK))**5+PSSA2(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA2(3)*LOG(PRG(JI,JJ,JK))**3+PSSA2(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA2(5)*LOG(PRG(JI,JJ,JK))+PSSA2(6)
else
SSA2=PSSA2(7)*LOG(PRG(JI,JJ,JK))**5+PSSA2(8)*LOG(PRG(JI,JJ,JK))**4+&
PSSA2(9)*LOG(PRG(JI,JJ,JK))**3+PSSA2(10)*LOG(PRG(JI,JJ,JK))**2+&
PSSA2(11)*LOG(PRG(JI,JJ,JK))+PSSA2(12)
endif
PSSA3(:)=POLYSSA(WVL_IDX,INDsi(1),INDrr(1),INDri(1)-1,:)
if (PSSA3(13).GE.PRG(JI,JJ,JK)) THEN
SSA3=PSSA3(1)*LOG(PRG(JI,JJ,JK))**5+PSSA3(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA3(3)*LOG(PRG(JI,JJ,JK))**3+PSSA3(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA3(5)*LOG(PRG(JI,JJ,JK))+PSSA3(6)
else
SSA3=PSSA3(7)*LOG(PRG(JI,JJ,JK))**5+PSSA3(8)*LOG(PRG(JI,JJ,JK))**4+&
PSSA3(9)*LOG(PRG(JI,JJ,JK))**3+PSSA3(10)*LOG(PRG(JI,JJ,JK))**2+&
PSSA3(11)*LOG(PRG(JI,JJ,JK))+PSSA3(12)
endif
PSSA4(:)=POLYSSA(WVL_IDX,INDsi(1)-1,INDrr(1),INDri(1)-1,:)
if (PSSA4(13).GE.PRG(JI,JJ,JK)) THEN
SSA4=PSSA4(1)*LOG(PRG(JI,JJ,JK))**5+PSSA4(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA4(3)*LOG(PRG(JI,JJ,JK))**3+PSSA4(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA4(5)*LOG(PRG(JI,JJ,JK))+PSSA4(6)
else
SSA4=PSSA4(7)*LOG(PRG(JI,JJ,JK))**5+PSSA4(8)*LOG(PRG(JI,JJ,JK))**4+&
PSSA4(9)*LOG(PRG(JI,JJ,JK))**3+PSSA4(10)*LOG(PRG(JI,JJ,JK))**2+&
PSSA4(11)*LOG(PRG(JI,JJ,JK))+PSSA4(12)
endif
PSSA5(:)=POLYSSA(WVL_IDX,INDsi(1),INDrr(1)-1,INDri(1),:)
if (PSSA5(13).GE.PRG(JI,JJ,JK)) THEN
SSA5=PSSA5(1)*LOG(PRG(JI,JJ,JK))**5+PSSA5(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA5(3)*LOG(PRG(JI,JJ,JK))**3+PSSA5(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA5(5)*LOG(PRG(JI,JJ,JK))+PSSA5(6)
else
SSA5=PSSA5(7)*LOG(PRG(JI,JJ,JK))**5+PSSA5(8)*LOG(PRG(JI,JJ,JK))**4+&
PSSA5(9)*LOG(PRG(JI,JJ,JK))**3+PSSA5(10)*LOG(PRG(JI,JJ,JK))**2+&
PSSA5(11)*LOG(PRG(JI,JJ,JK))+PSSA5(12)
endif
PSSA6(:)=POLYSSA(WVL_IDX,INDsi(1)-1,INDrr(1)-1,INDri(1),:)
if (PSSA6(13).GE.PRG(JI,JJ,JK)) THEN
SSA6=PSSA6(1)*LOG(PRG(JI,JJ,JK))**5+PSSA6(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA6(3)*LOG(PRG(JI,JJ,JK))**3+PSSA6(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA6(5)*LOG(PRG(JI,JJ,JK))+PSSA6(6)
else
SSA6=PSSA6(7)*LOG(PRG(JI,JJ,JK))**5+PSSA6(8)*LOG(PRG(JI,JJ,JK))**4+&
PSSA6(9)*LOG(PRG(JI,JJ,JK))**3+PSSA6(10)*LOG(PRG(JI,JJ,JK))**2+&
PSSA6(11)*LOG(PRG(JI,JJ,JK))+PSSA6(12)
endif
PSSA7(:)=POLYSSA(WVL_IDX,INDsi(1),INDrr(1)-1,INDri(1)-1,:)
if (PSSA7(13).GE.PRG(JI,JJ,JK)) THEN
SSA7=PSSA7(1)*LOG(PRG(JI,JJ,JK))**5+PSSA7(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA7(3)*LOG(PRG(JI,JJ,JK))**3+PSSA7(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA7(5)*LOG(PRG(JI,JJ,JK))+PSSA7(6)
else
SSA7=PSSA7(7)*LOG(PRG(JI,JJ,JK))**5+PSSA7(8)*LOG(PRG(JI,JJ,JK))**4+&
PSSA7(9)*LOG(PRG(JI,JJ,JK))**3+PSSA7(10)*LOG(PRG(JI,JJ,JK))**2+&
PSSA7(11)*LOG(PRG(JI,JJ,JK))+PSSA7(12)
endif
PSSA8(:)=POLYSSA(WVL_IDX,INDsi(1)-1,INDrr(1)-1,INDri(1)-1,:)
if (PSSA8(13).GE.PRG(JI,JJ,JK)) THEN
SSA8=PSSA8(1)*LOG(PRG(JI,JJ,JK))**5+PSSA8(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA8(3)*LOG(PRG(JI,JJ,JK))**3+PSSA8(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA8(5)*LOG(PRG(JI,JJ,JK))+PSSA8(6)
else
SSA8=PSSA8(7)*LOG(PRG(JI,JJ,JK))**5+PSSA8(8)*LOG(PRG(JI,JJ,JK))**4+&
PSSA8(9)*LOG(PRG(JI,JJ,JK))**3+PSSA8(10)*LOG(PRG(JI,JJ,JK))**2+&
PSSA8(11)*LOG(PRG(JI,JJ,JK))+PSSA8(12)
endif
!!!!!!!!!!!!!!!!!!!!!!!G!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
PGA1(:)=POLYG(WVL_IDX,INDsi(1),INDrr(1),INDri(1),:)
if (PGA1(13).GE.PRG(JI,JJ,JK)) THEN
GA1=PGA1(1)*LOG(PRG(JI,JJ,JK))**5+PGA1(2)*LOG(PRG(JI,JJ,JK))**4+&
PGA1(3)*LOG(PRG(JI,JJ,JK))**3+PGA1(4)*LOG(PRG(JI,JJ,JK))**2+&
PGA1(5)*LOG(PRG(JI,JJ,JK))+PGA1(6)
else
GA1=PGA1(7)*LOG(PRG(JI,JJ,JK))**5+PGA1(8)*LOG(PRG(JI,JJ,JK))**4+&
PGA1(9)*LOG(PRG(JI,JJ,JK))**3+PGA1(10)*LOG(PRG(JI,JJ,JK))**2+&
PGA1(11)*LOG(PRG(JI,JJ,JK))+PGA1(12)
endif
PGA2(:)=POLYG(WVL_IDX,INDsi(1)-1,INDrr(1),INDri(1),:)
if (PGA2(13).GE.PRG(JI,JJ,JK)) THEN
GA2=PGA2(1)*LOG(PRG(JI,JJ,JK))**5+PGA2(2)*LOG(PRG(JI,JJ,JK))**4+&
PGA2(3)*LOG(PRG(JI,JJ,JK))**3+PGA2(4)*LOG(PRG(JI,JJ,JK))**2+&
PGA2(5)*LOG(PRG(JI,JJ,JK))+PGA2(6)
else
GA2=PGA2(7)*LOG(PRG(JI,JJ,JK))**5+PGA2(8)*LOG(PRG(JI,JJ,JK))**4+&
PGA2(9)*LOG(PRG(JI,JJ,JK))**3+PGA2(10)*LOG(PRG(JI,JJ,JK))**2+&
PGA2(11)*LOG(PRG(JI,JJ,JK))+PGA2(12)
endif
PGA3(:)=POLYG(WVL_IDX,INDsi(1),INDrr(1),INDri(1)-1,:)
if (PGA3(13).GE.PRG(JI,JJ,JK)) THEN
GA3=PGA3(1)*LOG(PRG(JI,JJ,JK))**5+PGA3(2)*LOG(PRG(JI,JJ,JK))**4+&
PGA3(3)*LOG(PRG(JI,JJ,JK))**3+PGA3(4)*LOG(PRG(JI,JJ,JK))**2+&
PGA3(5)*LOG(PRG(JI,JJ,JK))+PGA3(6)
else
GA3=PGA3(7)*LOG(PRG(JI,JJ,JK))**5+PGA3(8)*LOG(PRG(JI,JJ,JK))**4+&
PGA3(9)*LOG(PRG(JI,JJ,JK))**3+PGA3(10)*LOG(PRG(JI,JJ,JK))**2+&
PGA3(11)*LOG(PRG(JI,JJ,JK))+PGA3(12)
endif
PGA4(:)=POLYG(WVL_IDX,INDsi(1)-1,INDrr(1),INDri(1)-1,:)
if (PGA4(13).GE.PRG(JI,JJ,JK)) THEN
GA4=PGA4(1)*LOG(PRG(JI,JJ,JK))**5+PGA4(2)*LOG(PRG(JI,JJ,JK))**4+&
PGA4(3)*LOG(PRG(JI,JJ,JK))**3+PGA4(4)*LOG(PRG(JI,JJ,JK))**2+&
PGA4(5)*LOG(PRG(JI,JJ,JK))+PGA4(6)
else
GA4=PGA4(7)*LOG(PRG(JI,JJ,JK))**5+PGA4(8)*LOG(PRG(JI,JJ,JK))**4+&
PGA4(9)*LOG(PRG(JI,JJ,JK))**3+PGA4(10)*LOG(PRG(JI,JJ,JK))**2+&
PGA4(11)*LOG(PRG(JI,JJ,JK))+PGA4(12)
endif
PGA5(:)=POLYG(WVL_IDX,INDsi(1),INDrr(1)-1,INDri(1),:)
if (PGA5(13).GE.PRG(JI,JJ,JK)) THEN
GA5=PGA5(1)*LOG(PRG(JI,JJ,JK))**5+PGA5(2)*LOG(PRG(JI,JJ,JK))**4+&
PGA5(3)*LOG(PRG(JI,JJ,JK))**3+PGA5(4)*LOG(PRG(JI,JJ,JK))**2+&
PGA5(5)*LOG(PRG(JI,JJ,JK))+PGA5(6)
else
GA5=PGA5(7)*LOG(PRG(JI,JJ,JK))**5+PGA5(8)*LOG(PRG(JI,JJ,JK))**4+&
PGA5(9)*LOG(PRG(JI,JJ,JK))**3+PGA5(10)*LOG(PRG(JI,JJ,JK))**2+&
PGA5(11)*LOG(PRG(JI,JJ,JK))+PGA5(12)
endif
PGA6(:)=POLYG(WVL_IDX,INDsi(1)-1,INDrr(1)-1,INDri(1),:)
if (PGA6(13).GE.PRG(JI,JJ,JK)) THEN
GA6=PGA6(1)*LOG(PRG(JI,JJ,JK))**5+PGA6(2)*LOG(PRG(JI,JJ,JK))**4+&
PGA6(3)*LOG(PRG(JI,JJ,JK))**3+PGA6(4)*LOG(PRG(JI,JJ,JK))**2+&
PGA6(5)*LOG(PRG(JI,JJ,JK))+PGA6(6)
else
GA6=PGA6(7)*LOG(PRG(JI,JJ,JK))**5+PGA6(8)*LOG(PRG(JI,JJ,JK))**4+&
PGA6(9)*LOG(PRG(JI,JJ,JK))**3+PGA6(10)*LOG(PRG(JI,JJ,JK))**2+&
PGA6(11)*LOG(PRG(JI,JJ,JK))+PGA6(12)
endif
PGA7(:)=POLYG(WVL_IDX,INDsi(1),INDrr(1)-1,INDri(1)-1,:)
if (PGA7(13).GE.PRG(JI,JJ,JK)) THEN
GA7=PGA7(1)*LOG(PRG(JI,JJ,JK))**5+PGA7(2)*LOG(PRG(JI,JJ,JK))**4+&
PGA7(3)*LOG(PRG(JI,JJ,JK))**3+PGA7(4)*LOG(PRG(JI,JJ,JK))**2+&
PGA7(5)*LOG(PRG(JI,JJ,JK))+PGA7(6)
else
GA7=PGA7(7)*LOG(PRG(JI,JJ,JK))**5+PGA7(8)*LOG(PRG(JI,JJ,JK))**4+&
PGA7(9)*LOG(PRG(JI,JJ,JK))**3+PGA7(10)*LOG(PRG(JI,JJ,JK))**2+&
PGA7(11)*LOG(PRG(JI,JJ,JK))+PGA7(12)
endif
PGA8(:)=POLYG(WVL_IDX,INDsi(1)-1,INDrr(1)-1,INDri(1)-1,:)
if (PGA8(13).GE.PRG(JI,JJ,JK)) THEN
GA8=PGA8(1)*LOG(PRG(JI,JJ,JK))**5+PGA8(2)*LOG(PRG(JI,JJ,JK))**4+&
PGA8(3)*LOG(PRG(JI,JJ,JK))**3+PGA8(4)*LOG(PRG(JI,JJ,JK))**2+&
PGA8(5)*LOG(PRG(JI,JJ,JK))+PGA8(6)
else
GA8=PGA8(7)*LOG(PRG(JI,JJ,JK))**5+PGA8(8)*LOG(PRG(JI,JJ,JK))**4+&
PGA8(9)*LOG(PRG(JI,JJ,JK))**3+PGA8(10)*LOG(PRG(JI,JJ,JK))**2+&
PGA8(11)*LOG(PRG(JI,JJ,JK))+PGA8(12)
endif
if (SSA1.GT.1.0) SSA1=1.0
if (SSA2.GT.1.0) SSA2=1.0
if (SSA3.GT.1.0) SSA3=1.0
if (SSA4.GT.1.0) SSA4=1.0
if (SSA5.GT.1.0) SSA5=1.0
if (SSA6.GT.1.0) SSA6=1.0
if (SSA7.GT.1.0) SSA7=1.0
if (SSA8.GT.1.0) SSA8=1.0
if (GA1.GT.1.0) GA1=1.0
if (GA2.GT.1.0) GA2=1.0
if (GA3.GT.1.0) GA3=1.0
if (GA4.GT.1.0) GA4=1.0
if (GA5.GT.1.0) GA5=1.0
if (GA6.GT.1.0) GA6=1.0
if (GA7.GT.1.0) GA7=1.0
if (GA8.GT.1.0) GA8=1.0
ZEXT_COEFF_WVL(JI,JJ,JKRAD,WVL_IDX)=pds1(1)*(pds3(1)*(pds5(1)*TAU1+pds6(1)*TAU2)+pds4(1)*(pds5(1)*TAU3+pds6(1)*TAU4))+&
pds2(1)*(pds3(1)*(pds5(1)*TAU5+pds6(1)*TAU6)+pds4(1)*(pds5(1)*TAU7+pds6(1)*TAU8))
PPIZA_WVL(JI,JJ,JKRAD,WVL_IDX)=pds1(1)*(pds3(1)*(pds5(1)*SSA1+pds6(1)*SSA2)+pds4(1)*(pds5(1)*SSA3+pds6(1)*SSA4))+&
pds2(1)*(pds3(1)*(pds5(1)*SSA5+pds6(1)*SSA6)+pds4(1)*(pds5(1)*SSA7+pds6(1)*SSA8))
PCGA_WVL(JI,JJ,JKRAD,WVL_IDX)=pds1(1)*(pds3(1)*(pds5(1)*GA1+pds6(1)*GA2)+pds4(1)*(pds5(1)*GA3+pds6(1)*GA4))+&
pds2(1)*(pds3(1)*(pds5(1)*GA5+pds6(1)*GA6)+pds4(1)*(pds5(1)*GA7+pds6(1)*GA8))
else if (RI(INDri(1)).gt.aimag(Req(JI,JJ,JK,WVL_IDX)).and.INDri(1).ne.6) THEN
!CAS INDrr(1)-1<RR<INDrr(1)
!CAS INDri(1)<RI<INDri(1)+1
!CAS INDsi(1)-1<SI<INDsi(1)
pds1=abs(RR(INDrr(1)-1)-real(Req(JI,JJ,JK,WVL_IDX)))
pds2=abs(RR(INDrr(1))-real(Req(JI,JJ,JK,WVL_IDX)))
pds3=abs(RI(INDri(1)+1)-aimag(Req(JI,JJ,JK,WVL_IDX)))
pds4=abs(RI(INDri(1))-aimag(Req(JI,JJ,JK,WVL_IDX)))
pds5=abs(SI(INDsi(1)-1)-PSIGMA(JI,JJ,JK))
pds6=abs(SI(INDsi(1))-PSIGMA(JI,JJ,JK))
lg1=pds2+pds1
pds1=pds1/lg1
pds2=pds2/lg1
lg2=pds3+pds4
pds3=pds3/lg2
pds4=pds4/lg2
lg3=pds5+pds6
pds5=pds5/lg3
pds6=pds6/lg3
PTAU1(:)=POLYTAU(WVL_IDX,INDsi(1),INDrr(1),INDri(1),:)
if (PTAU1(13).GE.PRG(JI,JJ,JK)) THEN
TAU1=PTAU1(1)*LOG(PRG(JI,JJ,JK))**5+PTAU1(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU1(3)*LOG(PRG(JI,JJ,JK))**3+PTAU1(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU1(5)*LOG(PRG(JI,JJ,JK))+PTAU1(6)
else
TAU1=PTAU1(7)*LOG(PRG(JI,JJ,JK))**5+PTAU1(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU1(9)*LOG(PRG(JI,JJ,JK))**3+PTAU1(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU1(11)*LOG(PRG(JI,JJ,JK))+PTAU1(12)
endif
PTAU2(:)=POLYTAU(WVL_IDX,INDsi(1)-1,INDrr(1),INDri(1),:)
if (PTAU2(13).GE.PRG(JI,JJ,JK)) THEN
TAU2=PTAU2(1)*LOG(PRG(JI,JJ,JK))**5+PTAU2(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU2(3)*LOG(PRG(JI,JJ,JK))**3+PTAU2(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU2(5)*LOG(PRG(JI,JJ,JK))+PTAU2(6)
else
TAU2=PTAU2(7)*LOG(PRG(JI,JJ,JK))**5+PTAU2(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU2(9)*LOG(PRG(JI,JJ,JK))**3+PTAU2(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU2(11)*LOG(PRG(JI,JJ,JK))+PTAU2(12)
endif
PTAU3(:)=POLYTAU(WVL_IDX,INDsi(1),INDrr(1),INDri(1)+1,:)
if (PTAU3(13).GE.PRG(JI,JJ,JK)) THEN
TAU3=PTAU3(1)*LOG(PRG(JI,JJ,JK))**5+PTAU3(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU3(3)*LOG(PRG(JI,JJ,JK))**3+PTAU3(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU3(5)*LOG(PRG(JI,JJ,JK))+PTAU3(6)
else
TAU3=PTAU3(7)*LOG(PRG(JI,JJ,JK))**5+PTAU3(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU3(9)*LOG(PRG(JI,JJ,JK))**3+PTAU3(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU3(11)*LOG(PRG(JI,JJ,JK))+PTAU3(12)
endif
PTAU4(:)=POLYTAU(WVL_IDX,INDsi(1)-1,INDrr(1),INDri(1)+1,:)
if (PTAU4(13).GE.PRG(JI,JJ,JK)) THEN
TAU4=PTAU4(1)*LOG(PRG(JI,JJ,JK))**5+PTAU4(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU4(3)*LOG(PRG(JI,JJ,JK))**3+PTAU4(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU4(5)*LOG(PRG(JI,JJ,JK))+PTAU4(6)
else
TAU4=PTAU4(7)*LOG(PRG(JI,JJ,JK))**5+PTAU4(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU4(9)*LOG(PRG(JI,JJ,JK))**3+PTAU4(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU4(11)*LOG(PRG(JI,JJ,JK))+PTAU4(12)
endif
PTAU5(:)=POLYTAU(WVL_IDX,INDsi(1),INDrr(1)-1,INDri(1),:)
if (PTAU5(13).GE.PRG(JI,JJ,JK)) THEN
TAU5=PTAU5(1)*LOG(PRG(JI,JJ,JK))**5+PTAU5(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU5(3)*LOG(PRG(JI,JJ,JK))**3+PTAU5(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU5(5)*LOG(PRG(JI,JJ,JK))+PTAU5(6)
else
TAU5=PTAU5(7)*LOG(PRG(JI,JJ,JK))**5+PTAU5(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU5(9)*LOG(PRG(JI,JJ,JK))**3+PTAU5(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU5(11)*LOG(PRG(JI,JJ,JK))+PTAU5(12)
endif
PTAU6(:)=POLYTAU(WVL_IDX,INDsi(1)-1,INDrr(1)-1,INDri(1),:)
if (PTAU6(13).GE.PRG(JI,JJ,JK)) THEN
TAU6=PTAU6(1)*LOG(PRG(JI,JJ,JK))**5+PTAU6(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU6(3)*LOG(PRG(JI,JJ,JK))**3+PTAU6(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU6(5)*LOG(PRG(JI,JJ,JK))+PTAU6(6)
else
TAU6=PTAU6(7)*LOG(PRG(JI,JJ,JK))**5+PTAU6(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU6(9)*LOG(PRG(JI,JJ,JK))**3+PTAU6(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU6(11)*LOG(PRG(JI,JJ,JK))+PTAU6(12)
endif
PTAU7(:)=POLYTAU(WVL_IDX,INDsi(1),INDrr(1)-1,INDri(1)+1,:)
if (PTAU7(13).GE.PRG(JI,JJ,JK)) THEN
TAU7=PTAU7(1)*LOG(PRG(JI,JJ,JK))**5+PTAU7(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU7(3)*LOG(PRG(JI,JJ,JK))**3+PTAU7(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU7(5)*LOG(PRG(JI,JJ,JK))+PTAU7(6)
else
TAU7=PTAU7(7)*LOG(PRG(JI,JJ,JK))**5+PTAU7(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU7(9)*LOG(PRG(JI,JJ,JK))**3+PTAU7(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU7(11)*LOG(PRG(JI,JJ,JK))+PTAU7(12)
endif
PTAU8(:)=POLYTAU(WVL_IDX,INDsi(1)-1,INDrr(1)-1,INDri(1)+1,:)
if (PTAU8(13).GE.PRG(JI,JJ,JK)) THEN
TAU8=PTAU8(1)*LOG(PRG(JI,JJ,JK))**5+PTAU8(2)*LOG(PRG(JI,JJ,JK))**4+&
PTAU8(3)*LOG(PRG(JI,JJ,JK))**3+PTAU8(4)*LOG(PRG(JI,JJ,JK))**2+&
PTAU8(5)*LOG(PRG(JI,JJ,JK))+PTAU8(6)
else
TAU8=PTAU8(7)*LOG(PRG(JI,JJ,JK))**5+PTAU8(8)*LOG(PRG(JI,JJ,JK))**4+&
PTAU8(9)*LOG(PRG(JI,JJ,JK))**3+PTAU8(10)*LOG(PRG(JI,JJ,JK))**2+&
PTAU8(11)*LOG(PRG(JI,JJ,JK))+PTAU8(12)
endif
!!!!!!!!!!!!!!!!!!!!!!!SSA!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
PSSA1(:)=POLYSSA(WVL_IDX,INDsi(1),INDrr(1),INDri(1),:)
if (PSSA1(13).GE.PRG(JI,JJ,JK)) THEN
SSA1=PSSA1(1)*LOG(PRG(JI,JJ,JK))**5+PSSA1(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA1(3)*LOG(PRG(JI,JJ,JK))**3+PSSA1(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA1(5)*LOG(PRG(JI,JJ,JK))+PSSA1(6)
else
SSA1=PSSA1(7)*LOG(PRG(JI,JJ,JK))**5+PSSA1(8)*LOG(PRG(JI,JJ,JK))**4+&
PSSA1(9)*LOG(PRG(JI,JJ,JK))**3+PSSA1(10)*LOG(PRG(JI,JJ,JK))**2+&
PSSA1(11)*LOG(PRG(JI,JJ,JK))+PSSA1(12)
endif
PSSA2(:)=POLYSSA(WVL_IDX,INDsi(1)-1,INDrr(1),INDri(1),:)
if (PSSA2(13).GE.PRG(JI,JJ,JK)) THEN
SSA2=PSSA2(1)*LOG(PRG(JI,JJ,JK))**5+PSSA2(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA2(3)*LOG(PRG(JI,JJ,JK))**3+PSSA2(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA2(5)*LOG(PRG(JI,JJ,JK))+PSSA2(6)
else
SSA2=PSSA2(7)*LOG(PRG(JI,JJ,JK))**5+PSSA2(8)*LOG(PRG(JI,JJ,JK))**4+&
PSSA2(9)*LOG(PRG(JI,JJ,JK))**3+PSSA2(10)*LOG(PRG(JI,JJ,JK))**2+&
PSSA2(11)*LOG(PRG(JI,JJ,JK))+PSSA2(12)
endif
PSSA3(:)=POLYSSA(WVL_IDX,INDsi(1),INDrr(1),INDri(1)+1,:)
if (PSSA3(13).GE.PRG(JI,JJ,JK)) THEN
SSA3=PSSA3(1)*LOG(PRG(JI,JJ,JK))**5+PSSA3(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA3(3)*LOG(PRG(JI,JJ,JK))**3+PSSA3(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA3(5)*LOG(PRG(JI,JJ,JK))+PSSA3(6)
else
SSA3=PSSA3(7)*LOG(PRG(JI,JJ,JK))**5+PSSA3(8)*LOG(PRG(JI,JJ,JK))**4+&
PSSA3(9)*LOG(PRG(JI,JJ,JK))**3+PSSA3(10)*LOG(PRG(JI,JJ,JK))**2+&
PSSA3(11)*LOG(PRG(JI,JJ,JK))+PSSA3(12)
endif
PSSA4(:)=POLYSSA(WVL_IDX,INDsi(1)-1,INDrr(1),INDri(1)+1,:)
if (PSSA4(13).GE.PRG(JI,JJ,JK)) THEN
SSA4=PSSA4(1)*LOG(PRG(JI,JJ,JK))**5+PSSA4(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA4(3)*LOG(PRG(JI,JJ,JK))**3+PSSA4(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA4(5)*LOG(PRG(JI,JJ,JK))+PSSA4(6)
else
SSA4=PSSA4(7)*LOG(PRG(JI,JJ,JK))**5+PSSA4(8)*LOG(PRG(JI,JJ,JK))**4+&
PSSA4(9)*LOG(PRG(JI,JJ,JK))**3+PSSA4(10)*LOG(PRG(JI,JJ,JK))**2+&
PSSA4(11)*LOG(PRG(JI,JJ,JK))+PSSA4(12)
endif
PSSA5(:)=POLYSSA(WVL_IDX,INDsi(1),INDrr(1)-1,INDri(1),:)
if (PSSA5(13).GE.PRG(JI,JJ,JK)) THEN
SSA5=PSSA5(1)*LOG(PRG(JI,JJ,JK))**5+PSSA5(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA5(3)*LOG(PRG(JI,JJ,JK))**3+PSSA5(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA5(5)*LOG(PRG(JI,JJ,JK))+PSSA5(6)
else
SSA5=PSSA5(7)*LOG(PRG(JI,JJ,JK))**5+PSSA5(8)*LOG(PRG(JI,JJ,JK))**4+&
PSSA5(9)*LOG(PRG(JI,JJ,JK))**3+PSSA5(10)*LOG(PRG(JI,JJ,JK))**2+&
PSSA5(11)*LOG(PRG(JI,JJ,JK))+PSSA5(12)
endif
PSSA6(:)=POLYSSA(WVL_IDX,INDsi(1)-1,INDrr(1)-1,INDri(1),:)
if (PSSA6(13).GE.PRG(JI,JJ,JK)) THEN
SSA6=PSSA6(1)*LOG(PRG(JI,JJ,JK))**5+PSSA6(2)*LOG(PRG(JI,JJ,JK))**4+&
PSSA6(3)*LOG(PRG(JI,JJ,JK))**3+PSSA6(4)*LOG(PRG(JI,JJ,JK))**2+&
PSSA6(5)*LOG(PRG(JI,JJ,JK))+PSSA6(6)
else
SSA6=PSSA6(7)*LOG(PRG(JI,JJ,JK))**5+PSSA6(8)*LOG(PRG(JI,JJ,JK))**4+&