Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
!MNH_LIC Copyright 1994-2018 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
!! ##############################
MODULE MODI_BLOWSNOW_VELGRAV
!! ##############################
!!
INTERFACE
!!
SUBROUTINE BLOWSNOW_VELGRAV(PSVT, PTHT, PABST,PRHODREF,PVGK)
IMPLICIT NONE
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PSVT ! Blowing snow concentration
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT, PABST, PRHODREF
REAL, DIMENSION(:,:,:,:), INTENT(OUT) :: PVGK
END SUBROUTINE BLOWSNOW_VELGRAV
!!
END INTERFACE
!!
END MODULE MODI_BLOWSNOW_VELGRAV
!!
!! #######################################
SUBROUTINE BLOWSNOW_VELGRAV(PSVT, PTHT, PABST, PRHODREF,PVGK)
!! #######################################
!!
!! PURPOSE
!! -------
!!
!! Compute number- and mass-averaged settling velocity for
!! blowing snow particles based on several methods :
!! - Mitchell (1996) : numerical integration assuming spherical
!! particles (expensive)
!! - Carrier (1953) and Dover (1993) : numerical integration (expensive)
!! - look-up table based on Carrier (1953) depending on mean radius and
!! pressure
!! - None : assume no settling velocity
!!
!! REFERENCE
!! ---------
!!
!! Mitchell (1996) : Use of mass- and area-dimensionla power laws for
!! determining precipitation particle terminal velocities, JAS,
!! 53(12),1710-1723
!! Carrier, C. : On Slow Viscous Flow, Tech. rep., Office of Naval Research, Contract Nonr-653(00), Brown
!! University, Providence, RI, 1953.
!! Dover, S. : Numerical Modelling of Blowing Snow, Ph.D. thesis, University of Leeds, U.K., 1993.
!!
!! AUTHOR
!! ------
!! V. Vionnet (CNRM/GMME/MOSAYC)
!!
!! MODIFICATIONS
!! -------------
!! Philippe Wautelet 28/05/2018: corrected truncated integer division (1*10**(-6) -> 1E-6)
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
!!
!!
!-----------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_BLOWSNOW
USE MODD_BLOWSNOW_n
USE MODD_CSTS_BLOWSNOW
USE MODI_GAMMA
USE MODI_GAMMA_INC
USE MODI_GAMMA_INC_LOW
USE MODE_BLOWSNOW_SEDIM_LKT
USE MODE_BLOWSNOW_PSD
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PSVT ! Blowing snow concentration
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT, PABST, PRHODREF
REAL, DIMENSION(:,:,:,:), INTENT(OUT) :: PVGK
!
!* 0.2 declaration of local variables
!
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) :: ZTEMP,ZMU
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) :: ZRG, ZBETA,ZMOB
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) :: ZR1,ZR2
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) :: ZAM1,ZAM2,ZAM3
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) :: ZAA, ZBB
INTEGER, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) :: NMAX
INTEGER :: ZNUM_EXP,ZMAS_EXP
REAL :: ZGAM,ZVEL_CARRIER,ZR
REAL :: ZW_M0,ZW_M3
REAL :: ZSUM_VEL_M0,ZSUM_VEL_M3,ZSUM_M3,ZSUM_M0
REAL :: ZDELTAR
REAL :: ZGAM_BM1,ZGAM_BM2,ZGAM_BM3,ZGAMB
REAL :: ZGAM_BM1B,ZGAM_BM2B,ZGAM_BM3B
INTEGER :: JI,JJ,JK,II !Loop counter
LOGICAL :: LNONEFFICIENT
!
ZDELTAR = 1e-6 ! Bin size (m)
ZGAM = GAMMA(XALPHA_SNOW)
!
!-----------------------------------------------------------------
!
!* 2. compute BETA and RG
!
CALL PPP2SNOW(PSVT, PRHODREF, PBET3D=ZBETA, PRG3D=ZRG)
!
!-----------------------------------------------------------------
!
!* 3. compute temperature and kinematic viscosity
!
! Temperature
ZTEMP(:,:,:)=PTHT(:,:,:)*(PABST(:,:,:)/XP00)**(XRD/XCPD)
!
! Sutherland's equation for kinematic viscosity
ZMU(:,:,:)=1.8325d-5*416.16/(ZTEMP(:,:,:)+120)*(ZTEMP(:,:,:)/296.16)*SQRT(ZTEMP(:,:,:)/296.16)/PRHODREF(:,:,:)
!
!-----------------------------------------------------------------
!
!* 4. compute number and mass-averaged settling velocity
!
IF(CSNOWSEDIM=='NONE') THEN ! No sedimentation
DO JI=1,SIZE(PSVT,1)
DO JJ=1,SIZE(PSVT,2)
DO JK=1,SIZE(PSVT,3)
PVGK(JI,JJ,JK,1)= 0.
PVGK(JI,JJ,JK,2)= 0.
! PVGK(JI,JJ,JK,3)= 0.
ENDDO
ENDDO
ENDDO
END IF
IF(CSNOWSEDIM=='MITC') THEN ! Sedimentation following Mitchell (1996)
LNONEFFICIENT = .FALSE.
IF(LNONEFFICIENT) THEN
ZGAMB = GAMMA(XALPHA_SNOW+3)
ZGAM_BM1 = GAMMA(3*XBM1-1+XALPHA_SNOW)
ZGAM_BM2 = GAMMA(3*XBM2-1+XALPHA_SNOW)
ZGAM_BM3 = GAMMA(3*XBM3-1+XALPHA_SNOW)
ZGAM_BM1B = GAMMA(3*XBM1+2+XALPHA_SNOW)
ZGAM_BM2B = GAMMA(3*XBM2+2+XALPHA_SNOW)
ZGAM_BM3B = GAMMA(3*XBM3+2+XALPHA_SNOW)
! Compute limit radius for integration of Mitchell's formulation
ZR1(:,:,:)=RLIM(ZMU,PRHODREF,XBESTL_1)
ZR2(:,:,:)=RLIM(ZMU,PRHODREF,XBESTL_2)
! Compute parameter avr for integration of Mitchell's formulation
ZAM1(:,:,:)=AVR(XAM1,XBM1,PRHODREF,ZMU)
ZAM2(:,:,:)=AVR(XAM2,XBM2,PRHODREF,ZMU)
ZAM3(:,:,:)=AVR(XAM3,XBM3,PRHODREF,ZMU)
DO JI=1,SIZE(PSVT,1)
DO JJ=1,SIZE(PSVT,2)
DO JK=1,SIZE(PSVT,3)
!Number weighted terminal velocity
PVGK(JI,JJ,JK,1)=(ZBETA(JI,JJ,JK)**(3*XBM1-1)*ZAM1(JI,JJ,JK)*ZGAM_BM1* &
GAMMA_INC(3*XBM1-1+XALPHA_SNOW,ZR1(JI,JJ,JK)/ZBETA(JI,JJ,JK)) + &
ZBETA(JI,JJ,JK)**(3*XBM2-1)*ZAM2(JI,JJ,JK)*ZGAM_BM2* &
(GAMMA_INC(3*XBM2-1+XALPHA_SNOW,ZR2(JI,JJ,JK)/ZBETA(JI,JJ,JK))- &
GAMMA_INC(3*XBM2-1+XALPHA_SNOW,ZR1(JI,JJ,JK)/ZBETA(JI,JJ,JK)))+ &
ZBETA(JI,JJ,JK)**(3*XBM3-1)*ZAM3(JI,JJ,JK)*ZGAM_BM3* &
(1.-GAMMA_INC(3*XBM3-1+XALPHA_SNOW,ZR2(JI,JJ,JK)/ZBETA(JI,JJ,JK))))/ZGAM
!Mass weighted terminal velocity
PVGK(JI,JJ,JK,2)=(ZBETA(JI,JJ,JK)**(3*XBM1-1)*ZAM1(JI,JJ,JK)*ZGAM_BM1B* &
GAMMA_INC(3*XBM1+2+XALPHA_SNOW,ZR1(JI,JJ,JK)/ZBETA(JI,JJ,JK)) + &
ZBETA(JI,JJ,JK)**(3*XBM2-1)*ZAM2(JI,JJ,JK)*ZGAM_BM2B* &
(GAMMA_INC(3*XBM2+2+XALPHA_SNOW,ZR2(JI,JJ,JK)/ZBETA(JI,JJ,JK))- &
GAMMA_INC(3*XBM2+2+XALPHA_SNOW,ZR1(JI,JJ,JK)/ZBETA(JI,JJ,JK)))+ &
ZBETA(JI,JJ,JK)**(3*XBM3-1)*ZAM3(JI,JJ,JK)*ZGAM_BM3B* &
(1.-GAMMA_INC(3*XBM3+2+XALPHA_SNOW,ZR2(JI,JJ,JK)/ZBETA(JI,JJ,JK))))/ZGAMB
!Mass weighted terminal velocity for mobility index
! PVGK(JI,JJ,JK,3)= PVGK(JI,JJ,JK,2)
ENDDO
ENDDO
ENDDO
ELSE
! Fast integration of the incomplete gamma function following Blahak (2010)
! Blahak U., Efficient approximation of the incomplete gamma function for use
! in cloud model applications, GMD, 3, 329-336, 2010
ZGAMB = GAMMA(XALPHA_SNOW+3)
ZGAM_BM3 = GAMMA(3*XBM3-1+XALPHA_SNOW)
ZGAM_BM3B = GAMMA(3*XBM3+2+XALPHA_SNOW)
! Compute limit radius for integration of Mitchell's formulation
ZR1(:,:,:)=RLIM(ZMU,PRHODREF,XBESTL_1)
ZR2(:,:,:)=RLIM(ZMU,PRHODREF,XBESTL_2)
! Compute parameter avr for integration of Mitchell's formulation
ZAM1(:,:,:)=AVR(XAM1,XBM1,PRHODREF,ZMU)
ZAM2(:,:,:)=AVR(XAM2,XBM2,PRHODREF,ZMU)
ZAM3(:,:,:)=AVR(XAM3,XBM3,PRHODREF,ZMU)
DO JI=1,SIZE(PSVT,1)
DO JJ=1,SIZE(PSVT,2)
DO JK=1,SIZE(PSVT,3)
!Number weighted terminal velocity
PVGK(JI,JJ,JK,1)=(ZBETA(JI,JJ,JK)**(3*XBM1-1)*ZAM1(JI,JJ,JK)* &
GAMMA_INC_LOW(3*XBM1-1+XALPHA_SNOW,ZR1(JI,JJ,JK)/ZBETA(JI,JJ,JK)) + &
ZBETA(JI,JJ,JK)**(3*XBM2-1)*ZAM2(JI,JJ,JK)* &
(GAMMA_INC_LOW(3*XBM2-1+XALPHA_SNOW,ZR2(JI,JJ,JK)/ZBETA(JI,JJ,JK))- &
GAMMA_INC_LOW(3*XBM2-1+XALPHA_SNOW,ZR1(JI,JJ,JK)/ZBETA(JI,JJ,JK)))+ &
ZBETA(JI,JJ,JK)**(3*XBM3-1)*ZAM3(JI,JJ,JK)* &
(ZGAM_BM3-GAMMA_INC_LOW(3*XBM3-1+XALPHA_SNOW,ZR2(JI,JJ,JK)/ZBETA(JI,JJ,JK))))/ZGAM
!Mass weighted terminal velocity
PVGK(JI,JJ,JK,2)=(ZBETA(JI,JJ,JK)**(3*XBM1-1)*ZAM1(JI,JJ,JK)* &
GAMMA_INC_LOW(3*XBM1+2+XALPHA_SNOW,ZR1(JI,JJ,JK)/ZBETA(JI,JJ,JK)) + &
ZBETA(JI,JJ,JK)**(3*XBM2-1)*ZAM2(JI,JJ,JK)* &
(GAMMA_INC_LOW(3*XBM2+2+XALPHA_SNOW,ZR2(JI,JJ,JK)/ZBETA(JI,JJ,JK))- &
GAMMA_INC_LOW(3*XBM2+2+XALPHA_SNOW,ZR1(JI,JJ,JK)/ZBETA(JI,JJ,JK)))+ &
ZBETA(JI,JJ,JK)**(3*XBM3-1)*ZAM3(JI,JJ,JK)* &
(ZGAM_BM3B-GAMMA_INC_LOW(3*XBM3+2+XALPHA_SNOW,ZR2(JI,JJ,JK)/ZBETA(JI,JJ,JK))))/ZGAMB
!Mass weighted terminal velocity for mobility index
! PVGK(JI,JJ,JK,3)= PVGK(JI,JJ,JK,2)
ENDDO
ENDDO
ENDDO
END IF
END IF
IF(CSNOWSEDIM=='CARR') THEN
! Settling velocity is computed according to Carrier's drag coofficient.
! This method is used in other blowing snow model such as PIEKTUK or SNOWSTORM
! We perfom a numerical integration since no analytical solution exists.
ZAA(:,:,:) = 6.203*ZMU(:,:,:)/2
ZBB(:,:,:) = 5.516*XRHOLI/(4*PRHODREF(:,:,:))*XG
NMAX(:,:,:)=GET_INDEX(ZBETA,ZDELTAR)
! Exponent used to weight the number-averaged falling speed
ZNUM_EXP=0.
! Exponent used to weight the mass-averaged falling speed
ZMAS_EXP=3.
DO JI=1,SIZE(PSVT,1)
DO JJ=1,SIZE(PSVT,2)
DO JK=1,SIZE(PSVT,3)
ZSUM_M3=0.
ZSUM_M0=0.
ZSUM_VEL_M0=0.
ZSUM_VEL_M3=0.
DO II=1,NMAX(JI,JJ,JK)
ZR = 1E-6+(II-0.5)*ZDELTAR
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
ZVEL_CARRIER = - ZAA(JI,JJ,JK)/ZR+((ZAA(JI,JJ,JK)/ZR)**2.+ZBB(JI,JJ,JK)*ZR)**0.5
ZW_M0=ZR**(XALPHA_SNOW-1)*exp(-ZR/ZBETA(JI,JJ,JK))/(ZBETA(JI,JJ,JK))**XALPHA_SNOW*ZGAM
ZW_M3=ZR**ZMAS_EXP*ZW_M0
ZW_M0=ZR**ZNUM_EXP*ZW_M0
ZSUM_M3 = ZSUM_M3+ZW_M3*ZDELTAR
ZSUM_M0 = ZSUM_M0+ZW_M0*ZDELTAR
ZSUM_VEL_M0 = ZSUM_VEL_M0+ ZW_M0*ZVEL_CARRIER*ZDELTAR
ZSUM_VEL_M3 = ZSUM_VEL_M3+ ZW_M3*ZVEL_CARRIER*ZDELTAR
ENDDO
PVGK(JI,JJ,JK,1) = ZSUM_VEL_M0/ZSUM_M0
PVGK(JI,JJ,JK,2) = ZSUM_VEL_M3/ZSUM_M3
!PVGK(JI,JJ,JK,3) = PVGK(JI,JJ,JK,2)
ENDDO
ENDDO
ENDDO
END IF
IF(CSNOWSEDIM=='TABC') THEN
! Sedimentation of snow particles is computed according to Carrier's drag coofficient.
! To reduce computational time; look-up tables are used. They depend on the
! average radius and the pressure (interpolation)
CALL BLOWSNOW_SEDIM_LKT(ZRG,PABST,PVGK)
END IF
CONTAINS
FUNCTION RLIM(PMU,PRHODREF,PBEST_LIM) RESULT(PRLIM)
!
!! PURPOSE
!! -------
! Calculate the radius of a sperical particle for a given Best Number
!
!
USE MODD_CSTS_BLOWSNOW, ONLY : XRHOLI,XG
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF ! (kg/m3)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PMU ! (m2/s)
REAL, INTENT(IN) :: PBEST_LIM! (-)
!
REAL, DIMENSION(SIZE(PMU,1),SIZE(PMU,2),SIZE(PMU,3)) :: PRLIM ! (m)
!
PRLIM(:,:,:)=(3./32.*PRHODREF(:,:,:)/(XRHOLI*XG)*PMU(:,:,:)**2.*PBEST_LIM)**0.333333333
END FUNCTION RLIM
FUNCTION AVR(PARE,PBRE,PRHODREF,PMU) RESULT(PAVR)
!
!! PURPOSE
!! -------
! Calculate the parameter av_r in KC02 formulation (Eq. 3.1)
!
!
USE MODD_CSTS_BLOWSNOW, ONLY : XRHOLI,XG
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
REAL, INTENT(IN) :: PARE ! (-)
REAL, INTENT(IN) :: PBRE ! (-)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF ! (kg/m3)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PMU ! (m2/s)
!
REAL, DIMENSION(SIZE(PMU,1),SIZE(PMU,2),SIZE(PMU,3)) :: PAVR ! (-)
!
PAVR(:,:,:)=2.**(3.*PBRE-1.)*PARE*PMU(:,:,:)**(1.-2.*PBRE)*(4./3.*XRHOLI/PRHODREF(:,:,:)*XG)**PBRE
END FUNCTION AVR
FUNCTION GET_INDEX(PBETA,PDELTAR) RESULT(KMAX)
!
!! PURPOSE
!! -------
! Calculate the upper index in numerical integration of Carrier's formulation
! Index equals to 5* mean radius
!
!
USE MODD_BLOWSNOW, ONLY : XALPHA_SNOW
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
REAL, INTENT(IN) :: PDELTAR ! (-)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PBETA ! (kg/m3)
!
INTEGER, DIMENSION(SIZE(PBETA,1),SIZE(PBETA,2),SIZE(PBETA,3)) :: KMAX ! (-)
!
KMAX(:,:,:)=int(PBETA(:,:,:)*XALPHA_SNOW*5/PDELTAR)
END FUNCTION GET_INDEX
END SUBROUTINE BLOWSNOW_VELGRAV