Newer
Older
!ORILAM_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!ORILAM_LIC This is part of the ORILAM software governed by the CeCILL-C licence
!ORILAM_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!ORILAM_LIC for details.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
!-----------------------------------------------------------------
!--------------- special set of characters for RCS information
!-----------------------------------------------------------------
! $Source$ $Revision$
! MASDEV4_7 chimie 2006/05/18 13:07:25
!-----------------------------------------------------------------
!! ########################
MODULE MODI_CH_AER_COAG
!! ########################
!!
INTERFACE
!!
SUBROUTINE CH_AER_COAG(PM, PSIG0, PRG0, PN0,PDMINTRA,PDMINTER,PTGAS,PMU,&
PLAMBDA,PRHOP0)
IMPLICIT NONE
REAL, DIMENSION(:,:), INTENT(INOUT) :: PM,PRHOP0
REAL, DIMENSION(:), INTENT(INOUT) :: PLAMBDA, PMU
REAL, DIMENSION(:,:), INTENT(INOUT) :: PDMINTRA
REAL, DIMENSION(:,:), INTENT(INOUT) :: PDMINTER
REAL, DIMENSION(:),INTENT(IN) :: PTGAS
REAL, DIMENSION(:,:), INTENT(IN) :: PSIG0, PRG0, PN0
END SUBROUTINE CH_AER_COAG
!!
END INTERFACE
!!
END MODULE MODI_CH_AER_COAG
!!
!! #############################################
SUBROUTINE CH_AER_COAG(PM, PSIG0, PRG0, PN0,PDMINTRA,PDMINTER,PTGAS,PMU,&
PLAMBDA,PRHOP0)
!! #############################################
!!
!! PURPOSE
!! -------
!!
!! compute the terms due to Brownian, turbulent and Gravitational
!! coagulation:
!! a set of arrays are used to evaluate the double integral
!! REFERENCE
!! ---------
!! none
!!
!! AUTHOR
!! ------
!! Vincent Crassier (LA)
!!
!! MODIFICATIONS
!! -------------
!*****************************************************************
! * Arrays of numerical evaluation of coagulation terms
! in the free-molecule regime (computed from the ESMAP code)
!
! ZINTRA - Intamodal coagulation, mode i,j 0th and 6th Moment
!
! ZINTER0I - Intermodal coagulation, mode i, 0th Moment
! ZINTER3I - Intermodal coagulation, mode i, 3rd Moment
! ZINTER6I - Intermodal coagulation, mode i, 6th Moment
! ZINTER6J - Intermodal coagulation, mode j, 6th Moment
!
! * Variables used during the coefficients evaluation
! ZXI(i) - Variables values at the array nodes
! ZXINT(i) - Variables values where the interpolation
! is to be made
!
! intramodal coagulation
!
! ZXINTRAMIN - Minimal value of ln(sigma)
! ZXINTRAMAX - Maximal value of ln(sigma)
! ZDXINTRA - Step of ln(sigma) in the array
!
! intermodal coagulation
!
! ZXINTERMIN(i) - Minimal value of the variable i
! ZXINTERMAX(i) - Maximal value of the variable i
! ZDXINTER(i) - Step of the variable i in the arrays
!
! i=1 - ln(sigmaj)
! i=2 - ln(sigmai)
! i=3 - ln((ZR=Rgj/Rgi)**2)
!
!***************************************************************
!!
!! EXTERNAL
!! -------
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
USE MODD_CH_AEROSOL
USE MODD_CST, ONLY : &
XPI & !Definition of pi
,XBOLTZ ! Boltzman constant
!!
IMPLICIT NONE
!
!* 0.1 Declarations of arguments
!
REAL, DIMENSION(:,:), INTENT(INOUT) :: PM,PRHOP0
REAL, DIMENSION(:), INTENT(INOUT) :: PLAMBDA, PMU
REAL, DIMENSION(:,:), INTENT(INOUT) :: PDMINTRA
REAL, DIMENSION(:,:), INTENT(INOUT) :: PDMINTER
REAL, DIMENSION(:),INTENT(IN) :: PTGAS
REAL, DIMENSION(:,:), INTENT(IN) :: PSIG0, PRG0, PN0
!
!* 0.2 Declarations of local variables
!
INTEGER :: JI,JJ
!
REAL :: ZTURBDS ! Rate of dissipation of kinetic energy per unit mass (m2/s3)
!
REAL, DIMENSION(SIZE(PM,1)) :: ZKFM,ZKNC
!REAL, DIMENSION(SIZE(PM,1)) :: ZKTURB,ZKGRAV,ZR3,ZRM4
REAL, DIMENSION(SIZE(PM,1)) :: ZR,ZR2,ZR4
REAL, DIMENSION(SIZE(PM,1)) :: ZRM,ZRM2,ZRM3
REAL, DIMENSION(SIZE(PM,1)) :: ZKNG
REAL, DIMENSION(SIZE(PM,1)) :: ZAI,ZKNGI,ZAJ,ZKNGJ
REAL, DIMENSION(SIZE(PM,1)) :: ZINTRA0NC,ZINTRA0FM,ZINTRA0
REAL, DIMENSION(SIZE(PM,1)) :: ZINTRA3NC,ZINTRA3FM,ZINTRA3
REAL, DIMENSION(SIZE(PM,1)) :: ZINTRA6NC,ZINTRA6FM,ZINTRA6
REAL, DIMENSION(SIZE(PM,1)) :: ZINTERNC,ZINTERFM,ZINTER
REAL, DIMENSION(SIZE(PM,1)) :: ZAPPROX
!
REAL, DIMENSION(SIZE(PM,1)) :: ZA,ZB,ZC,ZD
REAL, DIMENSION(SIZE(PM,1)) :: ZRGJ, ZRGI, ZRG
!
REAL, DIMENSION(SIZE(PM,1)) :: ZERF0,ZPHI0,ZXi,ZSOL
REAL, DIMENSION(SIZE(PM,1)) :: ZERF3,ZPHI3
REAL, DIMENSION(SIZE(PM,1)) :: ZERF6,ZPHI6
REAL, DIMENSION(SIZE(PM,1),JPMODE) :: ZINVSIG,ZLNDG
!
REAL, DIMENSION(SIZE(PM,1),JPMODE) :: ZESG01,ZESG04,ZESG05,ZESG08,ZESG09
REAL, DIMENSION(SIZE(PM,1),JPMODE) :: ZESG12,ZESG16
REAL, DIMENSION(SIZE(PM,1),JPMODE) :: ZESG20,ZESG24,ZESG25,ZESG28
REAL, DIMENSION(SIZE(PM,1),JPMODE) :: ZESG32,ZESG36
REAL, DIMENSION(SIZE(PM,1),JPMODE) :: ZESG49
REAL, DIMENSION(SIZE(PM,1),JPMODE) :: ZESG52
REAL, DIMENSION(SIZE(PM,1),JPMODE) :: ZESG64
REAL, DIMENSION(SIZE(PM,1),JPMODE) :: ZESG81,ZESG85
REAL, DIMENSION(SIZE(PM,1),JPMODE) :: ZESG100,ZESG121,ZESG144,ZESG169,ZESG196
REAL, DIMENSION(SIZE(PM,1),JPMODE) :: ZESG256
REAL, DIMENSION(SIZE(PM,1)) :: ZRB0,ZRB6
REAL, DIMENSION(SIZE(PM,1)) :: ZRES
!-------------------------------------------------------------------------------!
ZTURBDS=0.001
ZKNC(:)=2.*XBOLTZ*PTGAS(:)/(3.*PMU(:))
!
PDMINTRA(:,:)=0.
PDMINTER(:,:)=0.
!
!****************************************************************
! Initialisation des variables utilisees dans le calcul des
! coefficients de coagulation
!****************************************************************
ZESG01(:,:) = exp(0.125*PSIG0(:,1:JPMODE)**2)
ZESG04(:,:) = ZESG01(:,:) ** 4
ZESG05(:,:) = ZESG04(:,:) * ZESG01(:,:)
ZESG08(:,:) = ZESG04(:,:) * ZESG04(:,:)
ZESG09(:,:) = ZESG04(:,:) * ZESG05(:,:)
ZESG12(:,:) = ZESG04(:,:) * ZESG04(:,:) * ZESG04(:,:)
ZESG16(:,:) = ZESG08(:,:) * ZESG08(:,:)
ZESG20(:,:) = ZESG16(:,:) * ZESG04(:,:)
ZESG24(:,:) = ZESG12(:,:) * ZESG12(:,:)
ZESG25(:,:) = ZESG16(:,:) * ZESG09(:,:)
ZESG28(:,:) = ZESG20(:,:) * ZESG08(:,:)
ZESG32(:,:) = ZESG16(:,:) * ZESG16(:,:)
ZESG36(:,:) = ZESG16(:,:) * ZESG20(:,:)
ZESG49(:,:) = ZESG25(:,:) * ZESG20(:,:) * ZESG04(:,:)
ZESG52(:,:) = ZESG16(:,:) * ZESG36(:,:)
ZESG64(:,:) = ZESG32(:,:) * ZESG32(:,:)
ZESG81(:,:) = ZESG49(:,:) * ZESG32(:,:)
ZESG85(:,:) = ZESG64(:,:) * ZESG20(:,:) * ZESG01(:,:)
ZESG100(:,:) = ZESG36(:,:) * ZESG64(:,:)
ZESG121(:,:) = ZESG85(:,:) * ZESG36(:,:)
ZESG144(:,:) = ZESG100(:,:) * ZESG36(:,:) * ZESG08(:,:)
ZESG169(:,:) = ZESG144(:,:) * ZESG25(:,:)
ZESG196(:,:) = ZESG144(:,:) * ZESG52(:,:)
ZESG256(:,:) = ZESG144(:,:) * ZESG100(:,:) * ZESG12(:,:)
!***************************************************************
! Transfert de moments entre les modes i et j
!***************************************************************
ZINVSIG(:,:)=1./PSIG0(:,1:JPMODE)**2
ZLNDG(:,:)=log(2.*PRG0(:,1:JPMODE))
ZA(:)=0.5*(ZINVSIG(:,1)-ZINVSIG(:,2))
ZD(:) = 0.
ZXi(:)= 0.
WHERE (ABS(ZA(:)) > 1E-4)
ZB(:)=ZINVSIG(:,2)*ZLNDG(:,2)-ZINVSIG(:,1)*ZLNDG(:,1)
ZC(:)=0.5*(ZINVSIG(:,1)*ZLNDG(:,1)**2-ZINVSIG(:,2)*ZLNDG(:,2)**2) - &
&log((PN0(:,1)*PSIG0(:,2))/(PN0(:,2)*PSIG0(:,1)))
ZD(:)=ZB(:)**2-4.*ZA(:)*ZC(:)
ZSOL(:)=(-ZB(:)+sqrt(ABS(ZD(:))))/(2.*ZA(:))
WHERE (ZSOL(:) < 5.E+2)
ZSOL(:)=exp(ZSOL(:))/2.
ZXi(:)=log(ZSOL(:)/PRG0(:,1))/(sqrt(2.)*PSIG0(:,1))
ENDWHERE
ENDWHERE
!*********************************************************************
! calculate the intramodal moment coefficients (log-normal model)
!*********************************************************************
do JI=1,JPMODE
ZKFM(:)=sqrt(3.*XBOLTZ*PTGAS(:)/PRHOP0(:,JI))*1.e-3
!ZKTURB(:)=sqrt(XPI*ZTURBDS*PMU(:)/(120.*PRHOP0(:,JI)))*1.e-18
!ZKGRAV(:)=1.5/4.*0.544*XPI*PRHOP0(:,JI)/PMU(:)*1.e-24
!*************************************************************
! calculate ZVG,ln2(sigma) and sigma
! (log-normal model)
!*************************************************************
ZRG(:)=PRG0(:,JI)
ZKNG(:)=PLAMBDA(:)/ZRG(:)
ZAI(:)=1.392*ZKNG(:)**0.0783
!***********************
! Brownian Coagulation
!***********************
ZRB0(:)=0.8
ZRB6(:)=ZRB0
ZINTRA0FM(:)=ZKFM(:)*ZRB0(:)*sqrt(2.*ZRG(:))*(ZESG01(:,JI)+ZESG25(:,JI)+2.*ZESG05(:,JI))
ZINTRA3FM(:)=ZKFM(:)*ZRB0(:)*sqrt(ZRG(:))**7*sqrt(2.)*(ZESG49(:,JI)+ZESG36(:,JI)*ZESG01(:,JI)+&
&2.*ZESG25(:,JI)*ZESG04(:,JI)+ZESG09(:,JI)*ZESG16(:,JI)+ZESG100(:,JI)*ZESG09(:,JI)+&
&2.*ZESG64(:,JI)*ZESG01(:,JI))
ZINTRA6FM(:)=ZKFM(:)*ZRB6(:)*sqrt(ZRG(:))**13*sqrt(2.)*ZESG85(:,JI)*&
(1.+2.*ZESG04(:,JI)+ZESG24(:,JI))
ZINTRA0NC(:)=ZKNC(:)*(1.+ZESG08(:,JI)+ZAI(:)*ZKNG(:)*(ZESG20(:,JI)+ZESG04(:,JI)))
ZINTRA3NC(:)=ZKNC(:)*ZRG(:)**3*(2.*ZESG36(:,JI)+ZAI(:)*ZKNG(:)*(ZESG16(:,JI)+ZESG04(:,JI)*ZESG04(:,JI)+&
&ZESG36(:,JI)*ZESG04(:,JI)+ZESG64(:,JI)*ZESG16(:,JI))+ZESG16(:,JI)*ZESG04(:,JI)+&
&ZESG64(:,JI)*ZESG04(:,JI))
ZINTRA6NC(:)=2.*ZKNC(:)*(ZRG(:))**6*ZESG52(:,JI)*(ZESG20(:,JI)+ZESG28(:,JI)+ZAI(:)*ZKNG(:)*(1.+ZESG16(:,JI)))
ZINTRA0(:)=ZINTRA0FM(:)*(ZINTRA0NC(:)/(ZINTRA0FM(:)+ZINTRA0NC(:)))
ZINTRA3(:)=ZINTRA3FM(:)*(ZINTRA3NC(:)/(ZINTRA3FM(:)+ZINTRA3NC(:)))
ZINTRA6(:)=ZINTRA6FM(:)*(ZINTRA6NC(:)/(ZINTRA6FM(:)+ZINTRA6NC(:)))
PDMINTRA(:,NM0(JI))=ZINTRA0(:)
PDMINTRA(:,NM3(JI))=ZINTRA3(:)
PDMINTRA(:,NM6(JI))=ZINTRA6(:)
!print*,'PDMINTRA(:,NM0(',JI,') =',MINVAL(PDMINTRA(:,NM0(JI))), MAXVAL(PDMINTRA(:,NM0(JI)))
!print*,'PDMINTRA(:,NM3(',JI,') =',MINVAL(PDMINTRA(:,NM3(JI))), MAXVAL(PDMINTRA(:,NM3(JI)))
!print*,'PDMINTRA(:,NM6(',JI,') =',MINVAL(PDMINTRA(:,NM6(JI))), MAXVAL(PDMINTRA(:,NM6(JI)))
enddo
!print*,'=============================='
!print*,'=============================='
WHERE (ZD(:) > 0. .AND. ZXi(:) > (6.*PSIG0(:,1)/sqrt(2.)))
! transfert du moment d'ordre 0 (nombre)
!**************************************
ZERF0(:)=sqrt(1.-exp(-4.*(ZXi(:))**2/XPI))
ZPHI0(:)=0.5*(1.+ZERF0(:))
! transfert du moment d'ordre 3 (masse)
!**************************************
ZERF3(:)=sqrt(1.-exp(-4.*(ZXi(:)-3.*PSIG0(:,1)/sqrt(2.))**2/XPI))
ZPHI3(:)=0.5*(1.+ZERF3(:))
! transfert du moment d'ordre 6 (dispersion)
!**************************************
ZERF6(:)=sqrt(1.-exp(-4.*(ZXi(:)-6.*PSIG0(:,1)/sqrt(2.))**2/XPI))
ZPHI6(:)=0.5*(1.+ZERF6(:))
PDMINTRA(:,NM0(2))=PDMINTRA(:,NM0(2))-(1.-ZPHI0(:)**2)*PDMINTRA(:,NM0(1))*(PM(:,NM0(1))/PM(:,NM0(2)))**2
PDMINTRA(:,NM0(1))=(2.-ZPHI0(:)**2)*PDMINTRA(:,NM0(1))
PDMINTRA(:,NM3(2))=PDMINTRA(:,NM3(1))*(1.-ZPHI0(:)*ZPHI3(:))*PM(:,NM0(1))**2
PDMINTRA(:,NM3(1))=PDMINTRA(:,NM3(1))*(ZPHI0(:)*ZPHI3(:)-1.)*PM(:,NM0(1))**2
ZKFM(:)=sqrt(3.*XBOLTZ*PTGAS(:)/PRHOP0(:,1))*1.e-3
ZRG(:)=PRG0(:,1)
ZKNG(:)=PLAMBDA(:)/ZRG(:)
ZAI(:)=1.392*ZKNG(:)**0.0783
ZINTRA6FM(:)=ZKFM(:)*sqrt(2.)*sqrt(ZRG(:))**13*(ZESG169(:,1)+ZESG144(:,1)*ZESG01(:,1)+&
2.*ZESG121(:,1)*ZESG04(:,1)+ZESG81(:,1)*ZESG16(:,1)+&
ZESG256(:,1)*ZESG09(:,1)+ZESG196(:,1)*ZESG01(:,1))
ZINTRA6NC(:)=ZKNC(:)*(ZRG(:))**6*(2.*ZESG144(:,1)+ZAI(:)*ZKNG(:)*(ZESG100(:,1)+&
ZESG64(:,1)*ZESG04(:,1))+ZAI(:)*ZKNG(:)*(ZESG144(:,1)*ZESG04(:,1)+&
ZESG196(:,1)*ZESG16(:,1))+ZESG100(:,1)*ZESG04(:,1)+&
ZESG196(:,1)*ZESG04(:,1))
ZINTRA6(:)=ZINTRA6FM(:)*(ZINTRA6NC(:)/(ZINTRA6FM(:)+ZINTRA6NC(:)))
PDMINTRA(:,NM6(2))=PDMINTRA(:,NM6(2))+(PDMINTRA(:,NM6(1))*(1.-ZPHI3(:)**2)+ZINTRA6(:)*(1.-ZPHI0(:)*ZPHI6(:)))&
&*(PM(:,NM0(1))/PM(:,NM0(2)))**2
PDMINTRA(:,NM6(1))=PDMINTRA(:,NM6(1))*(ZPHI3(:)**2)+ZINTRA6(:)*(ZPHI0(:)*ZPHI6(:)-1.)
ELSEWHERE
PDMINTRA(:,NM3(1))=0.
PDMINTRA(:,NM3(2))=0.
ENDWHERE
do JI=1,JPMODE
!print*,'2.-ZPHI0(:)**2 =',MINVAL(2.-ZPHI0(:)**2), MAXVAL(2.-ZPHI0(:)**2)
! print*,'apres corr PDMINTRA(:,NM0(',JI,') =',MINVAL(PDMINTRA(:,NM0(JI))), MAXVAL(PDMINTRA(:,NM0(JI)))
! print*,'apres corr PDMINTRA(:,NM3(',JI,') =',MINVAL(PDMINTRA(:,NM3(JI))), MAXVAL(PDMINTRA(:,NM3(JI)))
! print*,'apres corr PDMINTRA(:,NM6(',JI,') =',MINVAL(PDMINTRA(:,NM6(JI))), MAXVAL(PDMINTRA(:,NM6(JI)))
enddo
!*********************************************************************
! calculate the intermodal moment coefficients (log-normal model)
!*********************************************************************
do JI=1,(JPMODE-1)
do JJ=(JI+1),JPMODE
ZRGI(:)=PRG0(:,JI)
ZKNGI(:)=PLAMBDA(:)/ZRGI(:)
ZAI(:)=1.392*ZKNGI(:)**0.0783
ZRGJ(:)=PRG0(:,JJ)
ZKNGJ(:)=PLAMBDA(:)/ZRGJ(:)
ZAJ(:)=1.392*ZKNGJ(:)**0.0783
ZR(:)=sqrt(ZRGJ(:)/ZRGI(:))
ZR2(:)=ZR(:)*ZR(:)
!ZR3(:)=ZR(:)*ZR2(:)
ZR4(:)=ZR2(:)*ZR2(:)
ZRM(:)=1./ZR(:)
ZRM2(:)=ZRM(:)*ZRM(:)
ZRM3(:)=ZRM(:)*ZRM2(:)
!ZRM4(:)=ZRM2(:)*ZRM2(:)
!**********************
! Brownian Coagulation
!**********************
ZRES(:)=0.9
ZAPPROX(:)=sqrt(2.*ZRGI(:))*(ZESG01(:,JI)+ZR(:)*ZESG01(:,JJ)+2.*ZR2(:)*ZESG01(:,JI)*ZESG04(:,JJ)&
+ZR4(:)*ZESG09(:,JI)*ZESG16(:,JJ)+ZRM3(:)*ZESG16(:,JI)*ZESG09(:,JJ)+&
2.*ZRM(:)*ZESG04(:,JI)*ZESG01(:,JJ))
ZINTERFM(:)=ZKFM(:)*ZRES(:)*ZAPPROX(:)
ZAPPROX(:)=2.+ZAI(:)*ZKNGI(:)*(ZESG04(:,JI)+ZR2(:)*ZESG16(:,JI)*ZESG04(:,JJ))+&
ZAJ(:)*ZKNGJ(:)*(ZESG04(:,JJ)+ZRM2(:)*ZESG16(:,JJ)*ZESG04(:,JI))+&
(ZR2(:)+ZRM2(:))*(ZESG04(:,JI)*ZESG04(:,JJ))
ZINTERNC(:)=ZKNC(:)*ZAPPROX(:)
ZINTER(:)=ZINTERNC(:)*(ZINTERFM(:)/(ZINTERNC(:)+ZINTERFM(:)))
PDMINTER(:,NM0(JI))=PM(:,NM0(JJ))*ZINTER(:)
PDMINTER(:,NM0(JJ))=-PM(:,NM0(JJ))*ZINTER(:)
ZAPPROX(:)=sqrt(2.)*sqrt(ZRGI(:))**7*(ZESG49(:,JI)+ZR(:)*ZESG36(:,JI)*ZESG01(:,JJ)+2.*ZR2(:)*&
ZESG25(:,JI)*ZESG04(:,JJ)+ZR4(:)*ZESG09(:,JI)*ZESG16(:,JJ)+ZRM3(:)*&
ZESG100(:,JI)*ZESG09(:,JJ)+2.*ZRM(:)*ZESG64(:,JI)*ZESG01(:,JJ))
ZINTERFM(:)=ZKFM(:)*ZRES(:)*ZAPPROX(:)
ZAPPROX(:)=(2.*ZESG36(:,JI)+ZAI(:)*ZKNGI(:)*(ZESG16(:,JI)+ZR2(:)*ZESG04(:,JI)*ZESG04(:,JJ))+&
ZAJ(:)*ZKNGJ(:)*(ZESG36(:,JI)*ZESG04(:,JJ)+ZRM2(:)*ZESG16(:,JJ)*ZESG64(:,JI))+&
ZR2(:)*ZESG16(:,JI)*ZESG04(:,JJ)+ZRM2(:)*ZESG64(:,JI)*ZESG04(:,JJ))*(ZRGI(:))**3
ZINTERNC(:)=ZKNC(:)*ZAPPROX(:)
ZINTER(:)=ZINTERNC(:)*(ZINTERFM(:)/(ZINTERNC(:)+ZINTERFM(:)))
PDMINTER(:,NM3(JI))=-PM(:,NM0(JI))*PM(:,NM0(JJ))*ZINTER(:)
PDMINTER(:,NM3(JJ))=PM(:,NM0(JI))*PM(:,NM0(JJ))*ZINTER(:)
ZAPPROX(:)=sqrt(2.)*sqrt(ZRGI(:))**13*(ZESG169(:,JI)+ZR(:)*ZESG144(:,JI)*ZESG01(:,JJ)+&
2.*ZR2(:)*ZESG121(:,JI)*ZESG04(:,JJ)+ZR4(:)*ZESG81(:,JI)*ZESG16(:,JJ)+&
ZRM3(:)*ZESG256(:,JI)*ZESG09(:,JJ)+2*ZRM(:)*ZESG196(:,JI)*ZESG01(:,JJ))
ZINTERFM(:)=ZKFM(:)*ZRES(:)*ZAPPROX(:)
ZAPPROX(:)=(ZRGI(:))**6*(2.*ZESG144(:,JI)+ZAI(:)*ZKNGI(:)*(ZESG100(:,JI)+&
ZR2(:)*ZESG64(:,JI)*ZESG04(:,JJ))+ZAJ(:)*ZKNGJ(:)*(ZESG144(:,JI)*ZESG04(:,JJ)+&
ZRM2(:)*ZESG196(:,JI)*ZESG16(:,JJ))+ZR2(:)*ZESG100(:,JI)*ZESG04(:,JJ)+&
ZRM2(:)*ZESG196(:,JI)*ZESG04(:,JJ))
ZINTERNC(:)=ZKNC(:)*ZAPPROX(:)
ZINTER(:)=ZINTERNC(:)*(ZINTERFM(:)/(ZINTERNC(:)+ZINTERFM(:)))
PDMINTER(:,NM6(JI))=-PM(:,NM0(JI))*PM(:,NM0(JJ))*ZINTER(:)
PDMINTER(:,NM6(JJ))=PM(:,NM0(JI))*PM(:,NM0(JJ))*ZINTER(:)
ZAPPROX(:)=sqrt(2.)*sqrt(ZRGI(:))**7*sqrt(ZRGJ(:))**6*(ZESG49(:,JI)*&
ZESG36(:,JJ)+ZR(:)*ZESG36(:,JI)*ZESG49(:,JJ)+2.*ZR2(:)*ZESG25(:,JI)*&
ZESG64(:,JJ)+ZR4(:)*ZESG09(:,JI)*ZESG100(:,JJ)+ZRM3(:)*ZESG100(:,JI)*&
ZESG09(:,JJ)+2.*ZRM(:)*ZESG64(:,JI)*ZESG25(:,JJ))
ZINTERFM(:)=ZKFM(:)*ZRES(:)*ZAPPROX(:)
ZAPPROX(:)=(ZRGI(:))**3*(ZRGJ(:))**3*(2.*ZESG36(:,JI)*ZESG36(:,JJ)+&
ZAI(:)*ZKNGI(:)*(ZESG16(:,JI)*ZESG16(:,JJ)+ZR2(:)*ZESG04(:,JI)*ZESG64(:,JJ))+&
ZAJ(:)*ZKNGJ(:)*(ZESG36(:,JI)*ZESG16(:,JJ)+ZRM2(:)*ZESG64(:,JI)*ZESG04(:,JJ))+&
ZR2(:)*ZESG16(:,JI)*ZESG64(:,JJ)+ZRM2(:)*ZESG64(:,JI)*ZESG16(:,JJ))
ZINTERNC(:)=ZKNC(:)*ZAPPROX(:)
ZINTER(:)=ZINTERNC(:)*(ZINTERFM(:)/(ZINTERNC(:)+ZINTERFM(:)))
PDMINTER(:,NM6(JJ))=PDMINTER(:,NM6(JJ))+2.*PM(:,NM0(JI))*PM(:,NM0(JJ))*ZINTER(:)
enddo
enddo
END SUBROUTINE CH_AER_COAG