Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
\section{Conversion to GRIB or Vis5D files}
\subsection{Presentation}
FM synchronous file can be convert into \underline{GRIB}
or \underline{Vis5D} format.
This section aims at describ how the converter works and how use it.
The GRIB (GRId in Binary) format is a standard meteorological one, defined
by the WMO. GRIB files can be plotted with METVIEW
%\footnote{available on {\tt xdata} workstation in CNRM}
graphic interface (developped at ECMWF), or
R2\footnote{used in the GMME/MICADO team at CNRM} software.
The Vis5D format is specified for using Vis5D\footnote{home page
{\tt http://www.ssec.wisc.edu/\~ billh/vis5d.html}}
software (following the GNU General Public License): 3 spatial
dimensions, time dimension, 5$^{th}$ dimension for enumeration of variables.
It is rather designed for animation of 3D plotting.
Choice was made to put together the two file formats in a same conversion
program because in both cases specificities of Meso-NH grids have to be
treated in the same way (horizontally: Arakawa C-grid, vertically: Gal-Chen
coordinate $\hat z$ following terrain). However, the user has to choose one
of the two formats available when running the tool
(see section \ref{s:execution}).
\subsection{Usage} \label{s:execution}
The interactive tool is
called {\tt lfi2grb} or {\tt lfi2v5d} according the wanted output
file format, but it runs the same program. Some questions are to be
answered to indicate the number and type of vertical levels, the type of
horizontal domain,
and the name of the variables to write into the output file.
All that is typed on keyboard is saved in {\tt dirconv.grb} or {\tt dirconv.v5d}
file, it can be appended and used as input (after renaming it) for the next call
of the tool (e.g. {\tt mv dirconv.grb dirgrb ; lfi2grb < dirgrb}).
For historical reasons, a program with the same goal of conversion to GRIB or
Vis5d has been first developped as a main program
of MesoNH, as DIAG program is. This program called {\bf CONVLFI} runs with
the MesoNH procedure {\bf prepmodel} and
a namelist file {\tt CONVLFI1.nam} (see \ref{ss:convlfi}).
To use the converter after a {\bf DIAG prepmodel} job, the Meso-NH file must
remain a synchronous file, not transformed onto a diachronic file:
in {\bf prepmodelrc} specify {\tt OUTFILE\_TOOLS='fm'}
(default is 'conv2dia' to convert with {\tt conv2dia}).
\subsubsection{{\tt lfi2grb} tool}
When {\tt lfi2grb} tool is invoked, you must indicate,
after the name of the input file, first
the horizontal grid (type, eventually type of interpolation and domain),
the vertical grid (type and levels),
then the list of the 3-dimensional fields to convert,
and the list of the 2-dimensional ones.
For the \underline{horizontal grid}, you can either keep the one of MesoNH file
(cartesien or conformal projection) or interpolate onto a lat-lon regular grid.
In the first case, you can replace all the fields on mass points (A-grid)
or keep the native grid (C-grid).
In the second case, you have to indicate
the bounds of the domain with north and south latitudes and west and east
longitudes, as well as the type of horizontal interpolation:
nearest-neighbour value or bilinear interpolation with the 4 surrounding values.
The resolution of the lat.-lon. grid is automatically initialized
with the equivalent value of the grid-mesh where the map scale is minimum.
The program also indicates the number of grid points of the Meso-NH domain
inside the prescribed lat-lon domain. If there are points of lat-lon domain
outside Meso-NH one, the value of the interpolated fields at these points
will be a missing one.
The \underline{vertical grid} can be either the native K levels or pressure
levels.
In the first case ({\tt K}), all levels are kept and no interpolation is done:
the height specified in the GRIB header is the one of the grid without orography.
In the second case ({\tt P}), the list of pressure levels is either specified
manually or computed using a linear function from user-specified
minimum, maximum and increment values. If a prescribed level is below the lower
Meso-NH level or above the upper MesoNH level, the value of the field at this
level will be a missing one. Otherwise, the value is computed from
a linear interpolation in log(P).
The \underline{3-dimensional fields} to convert are specified as follows:
one field per line with first the name of the record in the input file
following by its grib code (tabular character is allowed). Note that no test
is done on the value of grib code (GRIB header {\sf ISEC1(6)}): you choose it
to easily identify the field with the software used after the conversion.
The end of the list is indicated by the keyword {\tt END}.
The \underline{2-dimensional fields} to convert are specified as follows:
one field per line with first the name of the record in the input file
(it can be a K-level of a 3-dimensional field too),
following by its grib code and possibly level indicator and level value
(tabular character is allowed).
Note that the value of the level indicator ({\sf ISEC1(7)}) is optional
(the default value is 105: {\sf 'specified height above ground'}).
So is the level value ({\sf ISEC1(8)}), the default value is the altitude of
the first mass point of the K-levels.
The end of the list is indicated by the keyword {\tt END}.
\subsubsection{Example of {\tt lfi2grb} use}
\begin{itemize}
\item to convert onto a GRIB file with horizontal and vertical interpolations in P levels:\\
(all that is typed on keyboard (in {\it italic} in the example below)
is saved in {\tt dirconv.grb})
\end{itemize}
\small
{\tt - ENTER FM synchronous FILE NAME (without .lfi) ?} \\
{\tt\it CEXP.1.CSEG.001d } \hspace{3.5cm} $<$- the input file must be splitted in .des and .lfi \\
{\tt - Horizontal interpolation to lat-lon regular grid? (Y/y/O/o/N/n)}\\
{\tt\it y } \\
{\tt - Type of interpolation? NEARest-neighbour (default) or BILInear }\\
{\tt\it NEAR } \\
{\tt - NSWE target domain bounds (in degrees)? }\\
{\tt\it 55. 35. -20. 10. } \\
{\tt - Vertical grid: type K or P ? }\\
{\tt\it P } \\
{\tt - Type of vertical grid: given by linear FUNCTN (default) or MANUALly ?}\\
{\tt\it FUNCTN } \\
{\tt - Enter number of P levels ?} \\
{\tt\it 5 } \\
{\tt - Values of the 5 P levels (hPa, from bottom to top):} \\
{\tt\it 1000. 850. 700. 500. 300. } \\
{\tt - Enter 3D variables to CONVERT (1/1 line, end by END): }\\
{\tt MesoNH field name, grib parameter indicator }\\
{\tt\it UM 33 }\\
{\tt - next 3D field or END ? }\\
{\tt\it VM 34 }\\
{\tt - next 3D field or END ? }\\
{\tt\it END }\\
{\tt - Enter 2D variables to CONVERT (1/1 line, end by END): }\\
{\tt MesoNH field name, grib parameter indicator, eventually level indicator and level value}\\
{\tt\it T2M 13 105 2}\\
{\tt - next 2D field or END ? }\\
{\tt\it THM\_K\_2 13}\\
{\tt - next 2D field or END ? }\\
{\tt\it END}\\
{\tt 2 fields (3D), and 2 fields (2D) written in CEXP.1.CSEG.001d.GRB }\\
\normalsize
\subsubsection{{\tt lfi2v5d} tool}
When {\tt lfi2v5d} tool is invoked, you must indicate,
after the name of the input file, first
the vertical grid (type and levels),
then the list of the 3-dimensional fields to convert,
and the list of the 2-dimensional ones.
No horizontal interpolation is available for the Vis5D format output: all the
converted fields are replaced on mass points (A-grid) of the MesoNH grid
(cartesien or conformal projection).
The \underline{vertical grid} can be either the native K levels, altitude
levels or pressure levels.
In the first case ({\tt K}), all levels are kept and the fields are interpolated
on the levels of the lowest point of the domain.
In the second and third cases ({\tt Z} and {\tt P}), the list of levels is
either specified
manually or computed using a linear function from user-specified
minimum, maximum and increment values. The value of the field is computed from
a linear interpolation in Z or in log(P).
The \underline{3-dimensional fields} to convert are specified with
one record name per line.
The end of the list is indicated by the keyword {\tt END}.
Then the \underline{2-dimensional fields},
or a K-level of 3-dimensional fields,
to convert are specified in the same way.
\subsubsection{Example of {\tt lfi2v5d} use}
\begin{itemize}
\item to convert onto a Vis5D file with vertical interpolation in Z levels:\\
(all that is typed on keyboard (in {\it italic} in the example below)
is saved in {\tt dirconv.v5d})
\end{itemize}
\small
{\tt - ENTER FM synchronous FILE NAME (without .lfi) ?} \\
{\tt\it CEXP.1.CSEG.001 } \hspace{3.5cm} $<$- the input file must be splitted in .des and .lfi \\
{\tt - Verbosity level ?} \\
{\tt\it 5 } \\
{\tt - File 2D (xz): L2D=T or F ?} \\
{\tt\it F } \\
{\tt - Vertical grid: type K,Z or P ?} \\
{\tt\it Z } \\
{\tt - Type of vertical grid: given by linear FUNCTN (default) or MANUALly ?} \\
{\tt\it FUNCTN } \\
{\tt - Vertical grid: min, max, int (m for Z, hPa for P)?} \\
{\tt\it 1500 9000 3000 } \\
{\tt - Enter 3D variables to CONVERT (1/1 line, end by END): }\\
{\tt\it THM } \\
{\tt - next 3D field or END ? }\\
{\tt\it POVOM } \\
{\tt - next 3D field or END ? }\\
{\tt\it END }\\
{\tt - Enter 2D variables to CONVERT (1/1 line, end by END): }\\
{\tt\it ZS } \\
{\tt - next 2D field or END ? }\\
{\tt\it END }\\
{\tt 2 fields (3D), and 1 fields (2D) written in CEXP.1.CSEG.001d.V5D }\\
\subsubsection{{\bf CONVLFI} program} \label{ss:convlfi}
The MesoNH program {\bf CONVLFI} allows conversion onto GRIB
(the horizontal grid is either the native
MesoNH grid (Arakawa C-grid) of the field, the MesoNH mass grid
(Arakawa A-grid),
the vertical grid is either the native K levels or pressure levels), or
conversion onto Vis5D (the horizontal grid is the MesoNH mass grid
(A-grid), the vertical grid is either the native K levels without orography,
altitude or pressure levels).
The conversion is done with the Meso--NH procedure {\bf prepmodel} used with
the {\bf CONVLFI} program and the {\tt CONVLFI1.nam} namelist file.
Up to 24 FM files can be treated identically in a single prepmodel job.
\\
A) In the file \underline{\bf prepmodelrc}, the input and output host, directories
and login control variables refer to the input and output files as usual.
The other control variables to initialize specifically in this file are:
\begin{itemize}
\item MAINPROG=CONVLFI
\item LOAD\_OPT='location\_of\_v5d\_library'
\item OUTHOST=name\_workstation (for example) \\
this allows future use of {\tt vis5d} or {\tt metview} on your local host.
\end{itemize}
B) In the \underline{\tt CONVLFI1.nam} namelist file, the user must indicate
the format type wanted, the number and type of vertical levels,
the type of horizontal interpolation on a lat/lon domain
as well as the name of the variables to write into the output file:
\begin{enumerate}
\item\underline{Namelist NAM\_OUTFILE}:
\begin{center}
\begin{tabular} {|l|l|l|}
\hline
Fortran name & Fortran type & default value\\
\hline
\hline
CMNHFILE & array of character (len=28) & none \\
COUTFILETYPE & character (len=3) & none \\
NVERB & integer & 5 \\
LAGRID & logical & .TRUE. \\
CLEVTYPE & character (len=1) & 'P' if COUTFILETYPE='GRB' \\
& & 'K' if COUTFILETYPE='V5D' \\
CLEVLIST & character (len=6) & 'FUNCTN' \\
XVLMIN & real & 10000. if COUTFILETYPE='GRB' \\
XVLMAX & real & 100000. if COUTFILETYPE='GRB' \\
XVLINT & real & 10000. if COUTFILETYPE='GRB' \\
LLMULTI & logical & .TRUE. \\
\hline
\end{tabular}
\end{center}
\begin{itemize}
\item CMNHFILE: name of the input FM file (from an initialization sequence, or
a model simulation, or after diagnostics computation).
\index{CMNHFILE!\innam{NAM\_OUTFILE}}
\item COUTFILETYPE: type of the output file, appended
to CMNHFILE to generate the name of the output file.
\begin{itemize}
\item 'V5D'
\item 'GRB'
\end{itemize}
\index{COUTFILETYPE!\innam{NAM\_OUTFILE}}
\item NVERB: verbosity level
\begin{itemize}
\item 0 for minimum of prints
\item 5 for intermediate level of prints
\item 10 for maximum of prints.
\end{itemize}
\index{NVERB!\innam{NAM\_OUTFILE}}
\item LAGRID: switch to interpolate fields on an Arakawa A-grid (mass grid),
\subitem forced to .TRUE. if Vis5D file or horizontal interpolation.
\index{LAGRID!\innam{NAM\_OUTFILE}}
\item CLEVTYPE: type of vertical levels in output file,
\index{CLEVTYPE!\innam{NAM\_OUTVER}}
\begin{itemize}
\item 'P' pressure levels
\item 'Z' z levels (only used for COUTFILETYPE='V5D')
\item 'K'
\subitem if COUTFILETYPE='GRB': native vertical grid of Meso-NH (no
interpolation, height specified in GRIB message is the one of the grid
without orography),
\subitem if COUTFILETYPE='V5D': native vertical grid of Meso-NH (fields are
interpolated on the levels of the lowest point of the domain).
\end{itemize}
\item CLEVLIST: how vertical levels are specified
\begin{itemize}
\item 'MANUAL' number and list of levels specified in the 1$^{st}$ free-format
part,
\item 'FUNCTN' using a linear function, with the next 3 parameters.
\end{itemize}
\index{CLEVLIST!\innam{NAM\_OUTVER}}
\item XVLMIN: minimum value for the vertical grid
\subitem (in m for CLEVTYPE = 'Z', in Pa for CLEVTYPE = 'P'),
\item XVLMAX: maximum value for the vertical grid (`'),
\item XVLINT: increment value for the vertical grid (`').
\item LLMULTI: switch to produce a multigrib file (.T.) or monogrib files (.F.),
only used for COUTFILETYPE='GRB' (each monogrib file name is composed with the
date, the variable name and the level).
\index{LLMULTI!\innam{NAM\_OUTFILE}}
\end{itemize}
\item\underline{Free-format part}: (number and list of vertical levels) \\
This part is only used if CLEVLIST='MANUAL':
\begin{enumerate}
\item first the number of vertical levels,
\item then the list of levels, by increasing values in m if CLEVTYPE = 'Z', or decreasing
values in Pa if CLEVTYPE = 'P'
\end{enumerate}
\item\underline{Free-format part}: (variable names)
This part indicates the record name of the variables of the input file to
write in the output file. It is specified in two parts:
\begin{enumerate}
\item between the keywords BEGIN\_3D and END\_3D: the name of the 3D fields,
following by their grib code if COUTFILETYPE='GRB' (separed by tabular
character).
\item between the keywords BEGIN\_2D and END\_2D: the name of the 2D fields,
following by their grib code, and possibly level indicator and level value
if COUTFILETYPE='GRB' (separed by tabular character).
\end{enumerate}
{\bf N.B.:} do not forget the comment line after the keyword BEGIN\_3D
and BEGIN\_2D.
\end{enumerate}
\underline{C) Example of namelist file CONVLFI1.nam}
\begin{itemize}
\item
to convert into a Vis5d file:
\end{itemize}
\begin{verbatim}
&NAM_OUTFILE CMNHFILE(1)='T1E20.2.09B24.002',
CMNHFILE(2)='T1E20.2.09B24.003',
COUTFILETYPE='V5D',
CLEVTYPE='Z', CLEVLIST='MANUAL',
LAGRID=T, NVERB=10 /
15
30.
100.
250.
500.
1000.
1500.
2000.
2500.
3000.
3500.
4000.
4500.
5000.
6000.
8000.
BEGIN_3D
#variables 3D (MesoNH field name)
UM
VM
WM
THM
END_3D
BEGIN_2D
#variables 2D (MesoNH field name)
ZS
END_2D
\end{verbatim}
\begin{itemize}
\item
to convert into a GRIB file:
\end{itemize}
\begin{verbatim}
&NAM_OUTFILE CMNHFILE(1)='T1E20.2.09B24.002',
CMNHFILE(2)='T1E20.2.09B24.003',
COUTFILETYPE='GRB',
CLEVTYPE='P', CLEVLIST='FUNCTN',
XVLMAX=100000., XVLMIN=10000., XVLINT=10000.,
LAGRID=T, NVERB=5 /
BEGIN_3D
#variables 3D (MesoNH field name, grib parameter indicator)
UM 33
VM 34
WM 40
THM 13
END_3D
BEGIN_2D
#variables 2D (MesoNH field name, grib parameter indicator)
ZS 8
END_2D
next lines are ignored
codes example:
MSLP 1
ACPRR 61
INPRR 59
PABSM 1
ALT 6
TEMP 11
REHU 52
RVM 53
RCM 153
RRM 170
RIM 178
RSM 171
RGM 179
RHM 226
RARE 230
HHRE 231
VVRE 232
VDOP 233
POVOM 234
\end{verbatim}
\normalsize
\subsection{Short description of the program}
Two main tasks are performed by the program:
\begin{enumerate}
\item \subitem After the specification of the name of the input file, a `light'
initialization subroutine {\tt init\_for\_convlfi.f90 } is called to initialize
the I/O interface, the geometry, dimensions, grids, metric coefficients, times,
and to read pressure field.
\subitem According the output grids choosen, extra arrays are allocated for
interpolations.
\ignore{
If horizontal interpolation is required, the equivalent
resolution and the number of usefull points are computed by the subroutine
{\tt ini2lalo.f90}.
}%ignore
\item Then fields are treated one after another: first 3D fields, then
2D fields.
\subitem In the case of GRIB conversion, fields are interpolated and written
one after another (subroutine {\tt code\_and\_write\_grib.f90 } called for each
horizontal level of each field).
\subitem For Vis5D conversion, fields are interpolated and written
all together (subroutine \newline {\tt code\_and\_write\_vis5d.f90 } called at the end).
\end{enumerate}
Using a `light' initialization routine and reading fields name from standard
input allows the conversion program not to be dependant of a MesoNH version
or program.
\subsection{Some tips to use Vis5D}
See the complete guide for using Vis5D: file README.ps in the Vis5D package.
\subsubsection{Utilities} (section 5 of README.ps)
\begin{itemize}
\item
{\tt v5dinfo filename}: shows summary of the v5d file: number and name of
the variables, size of the 3-D grid, number of time steps, vertical
grid definition and projection definition.
\item
{\tt v5dstats filename}: shows statistics of the v5d file:
minimum value, maximum value, mean value, standard deviation of
each variable.
\item
{\tt v5dedit filename}: edits the header of the v5d file and allows to change
it: variables names, variables units, times and dates, projection, vertical
coordinate system, low levels. \\
{\it Useful to set the variable's units since they are not set by the program
CONVLFI.}
\item
{\tt v5dappend [-var] filename1 ... targetfile}: joins v5d files together:
{\it useful since the {\bf prepmodel} job generates a separate v5d file for each
timestep}, {\tt var} indicates list of variables to omit in the target file,
the dimensions of 3-D grids must be the same in each input file.
\end{itemize}
\subsubsection{Options} \label{ss:opt} (section 6.1 of README.ps) \\
To call Vis5D: {\tt vis5d file1 [options] file2 [options] ...} \\
Options can be be specified here when calling, or by pressing the {\sf DISPLAY}
button of the main control panel and then the 'Options' menu.
Options useful to set when calling: \\
{\tt [-date]} use 'dd month yy' instead of julian 'yyddd' date, \\
{\tt [-box x y z]} specify the aspect ratio of the 3-D box (default is 2 2 1), \\
{\tt [-mbs n]} override the assumed system memory size of 32 megabytes (Vis5D
tells you value to specify if not enough), \\
{\tt [-topo file]} use a topography file other than the default EARTH.TOPO
\subsubsection{Control panel} (section 6.2 of README.ps) \\
The top buttons control primary functions of Vis5D (see section
\ref{sss:funct}). \\
The middle ones control the viewing modes (see section \ref{sss:viewing}).\\
The bottom 2-D matrix of buttons contains physical variables on the rows, and
types of graphic representation on the columns. To control any type of graphic,
click on the button with the left mouse button.
A pop-up window appears when clicking with the middle mouse button, and
one window to modify colors with the right button
(see section \ref{sss:graph}).
\\
\underline{\bf Primary functions} \label{sss:funct}(section 6.3 of README.ps)
\begin{itemize}
\item{\sf SAVE PIC} to save the image in a file: first toggle the {\sf REVERSE}
button to reverse black and white, then toggle the {\sf SAVE PIC} button and
choose {\tt xwd} (X Window Dump) format. The file can be visualised with
{\tt xv} utility and transformed into {\tt postscript} format.
\item{\sf GRID\#s} to display the grid indices instead of latitude, longitude and
vertical units along the edges of the box.
\item{\sf CONT\#s, LEGENDS} to toggle on or off the isoline values, the colorbar
legends.
\item{\sf BOX, CLOCK} to toggle on or off the display of the box and the clock.
\item{\sf TOP, SOUTH, WEST} to set a top (or bottom), a south (or north), a west
(or east) view.
{\it Select} {\sf SOUTH} {\it to visualise 2D file.}
\item{\sf SAVE, RESTORE, SCRIPT} to save and restore isolines, colors, labels,
view (write and read a Tcl script).
\item{\sf UVW VARS} to specify the names of the variables to use to display wind
slices and trajectories, several triplets of variables can be used.
\item{\sf NEW VAR..} to duplicate variables or create new ones by specifying
mathematical expressions (formulas use names of existing variables, numbers,
arithmetic operations, functions such as $SQRT,EXP,LOG,SIN,COS,TAN,ABS,MIN,MAX$,
ex: horizontal wind speed, $spd=SQRT(UM*UM+VM*VM)$
see section 6.13 of README.ps).
\item{\sf ANIMATE} when several time steps: left mouse button: forward,
right button: backward, S key: slower, F key: faster.
\item{\sf STEP} when several time steps: left mouse button: one step ahead,
middle button: first step, right button: one step back.
\item{\sf DISPLAY} to change the number of displays, the display options
(see section \ref{ss:opt}), the display parameters (as with the {\tt v5dedit}
utility).
\end{itemize}
\underline{\bf Viewing modes} \label{sss:viewing}(section 6.4 of README.ps) \\
The underlined modes are the most useful (the others are much better displayed
with {\tt diaprog} Meso-NH graphics).
\begin{itemize}
\item\underline{\sf Normal}
to rotate, zoom and translate the graphics in the 3D window.
%\item{\sf Trajectory}
% to create and display wind trajectories.
%
\item\underline{\sf Slice}
to reposition horizontal and vertical slices.
\item\underline{\sf Label}
to create and edit text labels in the 3D window.
\item{\sf Probe}
to inspect individual grid values with a cursor moving through the 3D grid.
\item{\sf Sounding}
to display a vertical sounding at the location of the moveable cursor.
\item{\sf Clipping}
to reposition the six bounding planes of the 3-D box. Select one plane (top, bottom,
north, south, west or east) with the middle mouse button, and reposition it
with the right mouse button.
\end{itemize}
\underline{\bf Types of graphic representations} \label{sss:graph}(sections 6.5 to 6.9 of README.ps) \\
The underlined types are the most useful (the others are much better displayed
with {\tt diaprog} Meso-NH graphics).
\begin{itemize}
\item\underline{\sf Isosurfaces}:
A 3-D contour surface showing the volume bounding by a particular value of the
field (set with the left mouse button). The isosurface is either monocolor
or colored according to the values of another variable (right mouse button).
\item\underline{\sf Slices}:
Planar cross section (horizontally or vertically) can be moved in this mode.
To replace geographic coordinates by grid
coordinates, press the {\sf "GRID \#s"} button on the control panel.
\subitem contour line: interval can be changed
and min/max values specified in the pop-up window. {\tt -10 (-30,20)} will
plot values between -30 and 20 at intervals 10 with negative values dashed.
Color can be changed with the right mouse button.
\subitem colored slice: colors can be changed in the pop-up window
(with the mouse buttons or arrow keys). Color table is displayed in the
3-D window if the {\sf "LEGEND \#s"} button is selected.
%Transparency can be changed by pressing the SHIFT key while using mouse.
To change limits of plotted values, use the keyboard array buttons when in
the variable control panel (left and right for limits in the extend of the
variable values, up and down for colors inside it).
\subitem wind vector slice: (buttons {\sf Hwind1, Vwind1, Hwind2, Vwind2})
the scale parameter multiplies the length of vectors drawn
(double: 2, half: 0.5), the density parameter controls the number of vectors
(between zero and one, 0.5 for one vector of two, 0.25 for one of four).
\subitem wind stream slice: (buttons {\sf HStream, VStream})
the density parameter controls the number of streamlines
(between zero and two).
\item\underline{\sf Volume rendering}: {\it for powerful workstations..}
\end{itemize}
\subsubsection{Advanced use}
\begin{itemize}
\item generate your own topography file, with the {\tt maketopo.c} program
in the {\tt util} directory (see 5 of README.ps).
\item Tcl language, to write script (button {\sf SCRIPT}) or
interactively (button {\sf INTERP..}) (see 6.16 of README.ps).
\item external analysis functions written in Fortran,
in {\tt userfuncs} directory (see 6.13.3 of README.ps).
\end{itemize}
\subsection{State of art}
The converter only runs on Linux and VPP.
In HP, right compilation options have to be found to use the external library...