Skip to content
Snippets Groups Projects
mode_lima_ccn_activation.f90 31.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • !MNH_LIC Copyright 2013-2021 CNRS, Meteo-France and Universite Paul Sabatier
    !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
    !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
    !MNH_LIC for details. version 1.
    !-----------------------------------------------------------------
    
    MODULE MODE_LIMA_CCN_ACTIVATION
      IMPLICIT NONE
    CONTAINS
    !     ##############################################################################
        SUBROUTINE LIMA_CCN_ACTIVATION (CST,                                           &
                                        PRHODREF, PEXNREF, PPABST, PT, PDTHRAD, PW_NU, &
    
                                        PAERO,PSOLORG, PMI,  HACTCCN,                  &
    
                                        PTHT, PRVT, PRCT, PCCT, PRRT, PNFT, PNAT,      &
    
    !     ##############################################################################
    
    !
    !!
    !!    PURPOSE
    !!    -------
    !!      The purpose of this routine is to compute the activation of CCN 
    !!    according to Cohard and Pinty, QJRMS, 2000
    !!
    !!
    !!**  METHOD
    !!    ------
    !!      The activation of CCN is checked for quasi-saturated air parcels 
    !!    to update the cloud droplet number concentration.
    !!
    !!    Computation steps :
    !!      1- Check where computations are necessary
    !!      2- and 3- Compute the maximum of supersaturation using the iterative 
    !!                Ridder algorithm
    !!      4- Compute the nucleation source
    !!      5- Deallocate local variables
    !! 
    !!    Contains :
    !!      6- Functions : Ridder algorithm
    !!
    !!
    !!    REFERENCE
    !!    ---------
    !!
    !!      Cohard, J.-M. and J.-P. Pinty, 2000: A comprehensive two-moment warm 
    !!      microphysical bulk scheme. 
    !!        Part I: Description and tests
    !!        Part II: 2D experiments with a non-hydrostatic model
    !!      Accepted for publication in Quart. J. Roy. Meteor. Soc. 
    !!
    !!    AUTHOR
    !!    ------
    !!      J.-M. Cohard     * Laboratoire d'Aerologie*
    !!      J.-P. Pinty      * Laboratoire d'Aerologie*
    !!      S.    Berthet    * Laboratoire d'Aerologie*
    !!      B.    Vié        * Laboratoire d'Aerologie*
    !!
    !!    MODIFICATIONS
    !!    -------------
    !!      Original             ??/??/13 
    !  B. Vie      03/03/2020: use DTHRAD instead of dT/dt in Smax diagnostic computation
    !  P. Wautelet 10/04/2019: replace ABORT and STOP calls by Print_msg
    !  P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
    !  P. Wautelet 28/05/2019: move COUNTJV function to tools.f90
    
    !  C. Barthe      06/2022: save mixing ratio change for cloud electrification
    
    !
    !-------------------------------------------------------------------------------
    !
    !*       0.    DECLARATIONS
    !              ------------
    !
    
    USE MODD_CST,            ONLY: CST_t
    !use modd_field,           only: TFIELDDATA, TYPEREAL
    !USE MODD_IO,              ONLY: TFILEDATA
    
    !USE MODD_LUNIT_n,         ONLY: TLUOUT
    
    USE MODD_PARAMETERS,      ONLY: JPHEXT, JPVEXT
    
    USE MODD_PARAM_LIMA,      ONLY: LADJ, LACTIT, NMOD_CCN, XCTMIN, XKHEN_MULTI, XRTMIN, XLIMIT_FACTOR
    
    USE MODD_PARAM_LIMA_WARM, ONLY: XWMIN, NAHEN, NHYP, XAHENINTP1, XAHENINTP2, XCSTDCRIT, XHYPF12,      &
                                    XHYPINTP1, XHYPINTP2, XTMIN, XHYPF32, XPSI3, XAHENG, XAHENG2, XPSI1, &
                                    XLBC, XLBEXC
    
    USE MODD_NEB_n,           ONLY: LSUBG_COND
    
    USE MODD_CH_AEROSOL
    USE MODD_DUST
    USE MODD_SALT
    USE MODD_NSV
    USE MODI_CH_AER_ACTIVATION
    
    
    !USE MODE_IO_FIELD_WRITE,  only: IO_Field_write
    
    use mode_tools,           only: Countjv
    
    USE MODI_GAMMA
    
    IMPLICIT NONE
    !
    !*       0.1   Declarations of dummy arguments :
    !
    
    TYPE(CST_t),              INTENT(IN)    :: CST
    !TYPE(TFILEDATA),          INTENT(IN)    :: TPFILE     ! Output file
    
    !
    REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRHODREF   ! Reference density
    REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PEXNREF    ! Reference Exner function
    REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PPABST     ! abs. pressure at time t
    REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PT         ! Temperature
    REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PDTHRAD    ! Radiative temperature tendency
    !
    REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PW_NU      ! updraft velocity used for
                                                          ! the nucleation param.
    
    REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PAERO   ! Aerosol concentration
    REAL, DIMENSION(:,:,:,:), INTENT(IN)    :: PSOLORG ![%] solubility fraction of soa
    REAL, DIMENSION(:,:,:,:), INTENT(IN)    :: PMI
    CHARACTER(LEN=4),         INTENT(IN)    :: HACTCCN  ! kind of CCN activation
    
    
    !   
    REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PTHT       ! Theta at t 
    REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PRVT       ! Water vapor m.r. at t 
    REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PRCT       ! Cloud water m.r. at t 
    REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PCCT       ! Cloud water m.r. at t 
    REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRRT       ! Cloud water m.r. at t 
    REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PNFT       ! CCN C. available at t
    REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PNAT       ! CCN C. activated at t
    !
    REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PCLDFR     ! Precipitation fraction
    !
    
    REAL, DIMENSION(:,:,:), OPTIONAL, INTENT(INOUT) :: PTOT_RV_HENU  ! Mixing ratio change due to HENU
    !
    
    !*       0.1   Declarations of local variables :
    !
    ! Packing variables
    LOGICAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2),SIZE(PRHODREF,3)) :: GNUCT 
    INTEGER :: INUCT
    INTEGER , DIMENSION(SIZE(GNUCT))   :: I1,I2,I3 ! Used to replace the COUNT
    INTEGER                            :: JL       ! and PACK intrinsics 
    !
    ! Packed micophysical variables
    REAL, DIMENSION(:)  , ALLOCATABLE  :: ZRCT     ! cloud mr
    REAL, DIMENSION(:)  , ALLOCATABLE  :: ZCCT     ! cloud conc.
    REAL, DIMENSION(:,:), ALLOCATABLE  :: ZNFT     ! available nucleus conc.
    REAL, DIMENSION(:,:), ALLOCATABLE  :: ZNAT     ! activated nucleus conc.
    !
    ! Other packed variables
    REAL, DIMENSION(:)  , ALLOCATABLE  :: ZRHODREF ! RHO Dry REFerence
    REAL, DIMENSION(:)  , ALLOCATABLE  :: ZEXNREF  ! EXNer Pressure REFerence
    REAL, DIMENSION(:)  , ALLOCATABLE  :: ZZT      ! Temperature
    !
    ! Work arrays
    REAL, DIMENSION(:), ALLOCATABLE    :: ZZW1, ZZW2, ZZW3, ZZW4, ZZW5, ZZW6, &
                                          ZZTDT,          & ! dT/dt
                                          ZSW,            & ! real supersaturation                                      
                                          ZSMAX,          & ! Maximum supersaturation
                                          ZVEC1
    !
    REAL, DIMENSION(:,:), ALLOCATABLE  :: ZTMP, ZCHEN_MULTI
    !
    REAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2),SIZE(PRHODREF,3))   &
    
                                       :: ZTDT, ZRVSAT, ZW, ZW2, ZCLDFR  
    
    REAL, DIMENSION(SIZE(PNFT,1),SIZE(PNFT,2),SIZE(PNFT,3))               &
                                       :: ZCONC_TOT         ! total CCN C. available
    !
    INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC1             ! Vectors of indices for
                                                            ! interpolations
    
    REAL, DIMENSION(:)  , ALLOCATABLE  :: ZPABST, ZMCN, ZNATOLD
    REAL, DIMENSION(:,:), ALLOCATABLE  :: ZAERO, ZSOLORG, ZMI
    
    !
    ! 
    REAL    :: ZEPS                                ! molar mass ratio
    REAL    :: ZS1, ZS2, ZXACC 
    INTEGER :: JMOD
    INTEGER :: IIB, IIE, IJB, IJE, IKB, IKE        ! Physical domain
    !
    
    !!$INTEGER                  :: ILUOUT     ! Logical unit of output listing 
    !!$TYPE(TFIELDMETADATA) :: TZFIELD
    
    !-------------------------------------------------------------------------------
    !
    
    !ILUOUT = TLUOUT%NLU
    
    !
    !*       1.     PREPARE COMPUTATIONS - PACK
    !   	        ---------------------------
    !
    IIB=1+JPHEXT
    IIE=SIZE(PRHODREF,1) - JPHEXT
    IJB=1+JPHEXT
    IJE=SIZE(PRHODREF,2) - JPHEXT
    IKB=1+JPVEXT
    IKE=SIZE(PRHODREF,3) - JPVEXT
    !
    !  Saturation vapor mixing ratio and radiative tendency                    
    !
    
    ZEPS= CST%XMV / CST%XMD
    ZRVSAT(:,:,:) = ZEPS / (PPABST(:,:,:)*EXP(-CST%XALPW+CST%XBETAW/PT(:,:,:)+CST%XGAMW*ALOG(PT(:,:,:))) - 1.0)
    
    ZTDT(:,:,:)   = 0.
    IF (LACTIT .AND. SIZE(PDTHRAD).GT.0) ZTDT(:,:,:)   = PDTHRAD(:,:,:) * PEXNREF(:,:,:)
    !
    !  find locations where CCN are available
    !
    ZCONC_TOT(:,:,:) = 0.0
    DO JMOD = 1, NMOD_CCN 
       ZCONC_TOT(:,:,:) = ZCONC_TOT(:,:,:) + PNFT(:,:,:,JMOD) ! sum over the free CCN
    ENDDO
    !
    !  optimization by looking for locations where
    !  the updraft velocity is positive!!!
    !
    GNUCT(:,:,:) = .FALSE.
    !
    
    IF (LADJ) THEN
       GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) =      PW_NU(IIB:IIE,IJB:IJE,IKB:IKE)>XWMIN                          &
                                        .OR. PRVT(IIB:IIE,IJB:IJE,IKB:IKE)>ZRVSAT(IIB:IIE,IJB:IJE,IKB:IKE)
       IF (LACTIT) GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) =      GNUCT(IIB:IIE,IJB:IJE,IKB:IKE)      &
                                                    .OR. ZTDT(IIB:IIE,IJB:IJE,IKB:IKE)<XTMIN
    !
       GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) =       GNUCT(IIB:IIE,IJB:IJE,IKB:IKE)                       &
    
                                        .AND. PT(IIB:IIE,IJB:IJE,IKB:IKE)>(CST%XTT-22.)                &
    
                                        .AND. ZCONC_TOT(IIB:IIE,IJB:IJE,IKB:IKE)>XCTMIN(2)
    !
       IF (LSUBG_COND) GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) = GNUCT(IIB:IIE,IJB:IJE,IKB:IKE)       &
                                                  .AND. PCLDFR(IIB:IIE,IJB:IJE,IKB:IKE)>0.01
       IF (.NOT. LSUBG_COND) GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) = GNUCT(IIB:IIE,IJB:IJE,IKB:IKE)       &
                                                        .AND. PRVT(IIB:IIE,IJB:IJE,IKB:IKE).GE.ZRVSAT(IIB:IIE,IJB:IJE,IKB:IKE)
    ELSE
       GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) =       PRVT(IIB:IIE,IJB:IJE,IKB:IKE).GE.ZRVSAT(IIB:IIE,IJB:IJE,IKB:IKE) &
    
                                        .AND. PT(IIB:IIE,IJB:IJE,IKB:IKE)>(CST%XTT-22.)                            &
    
                                        .AND. ZCONC_TOT(IIB:IIE,IJB:IJE,IKB:IKE)>XCTMIN(2)
    END IF
    
    IF (.NOT. LSUBG_COND) THEN
       ZCLDFR(:,:,:) = 1.
    ELSE
       ZCLDFR(:,:,:) = PCLDFR(:,:,:)
    END IF
    
    !
    INUCT = COUNTJV( GNUCT(:,:,:),I1(:),I2(:),I3(:))
    !
    IF( INUCT >= 1 ) THEN
    !
       ALLOCATE(ZNFT(INUCT,NMOD_CCN))
       ALLOCATE(ZNAT(INUCT,NMOD_CCN))
       ALLOCATE(ZTMP(INUCT,NMOD_CCN))
       ALLOCATE(ZRCT(INUCT))
       ALLOCATE(ZCCT(INUCT))
       ALLOCATE(ZZT(INUCT)) 
       ALLOCATE(ZZTDT(INUCT)) 
       ALLOCATE(ZSW(INUCT))    
       ALLOCATE(ZZW1(INUCT))
       ALLOCATE(ZZW2(INUCT))
       ALLOCATE(ZZW3(INUCT))
       ALLOCATE(ZZW4(INUCT))
       ALLOCATE(ZZW5(INUCT))
       ALLOCATE(ZZW6(INUCT))
       ALLOCATE(ZCHEN_MULTI(INUCT,NMOD_CCN))
       ALLOCATE(ZVEC1(INUCT))
       ALLOCATE(IVEC1(INUCT))
       ALLOCATE(ZRHODREF(INUCT)) 
       ALLOCATE(ZEXNREF(INUCT)) 
    
       ALLOCATE(ZPABST(INUCT))
       ALLOCATE(ZAERO(INUCT,SIZE(PAERO,4)))
       ALLOCATE(ZSOLORG(INUCT,SIZE(PSOLORG,4)))
       ALLOCATE(ZMI(INUCT,SIZE(PMI,4)))
    
    
          ZRCT(JL) = PRCT(I1(JL),I2(JL),I3(JL))/ZCLDFR(I1(JL),I2(JL),I3(JL))
          ZCCT(JL) = PCCT(I1(JL),I2(JL),I3(JL))/ZCLDFR(I1(JL),I2(JL),I3(JL))
    
          ZZT(JL)  = PT(I1(JL),I2(JL),I3(JL))
          ZZW1(JL) = ZRVSAT(I1(JL),I2(JL),I3(JL))
          ZZW2(JL) = PW_NU(I1(JL),I2(JL),I3(JL))
          ZZTDT(JL)  = ZTDT(I1(JL),I2(JL),I3(JL))
          ZSW(JL)  = PRVT(I1(JL),I2(JL),I3(JL))/ZRVSAT(I1(JL),I2(JL),I3(JL)) - 1.
          ZRHODREF(JL) = PRHODREF(I1(JL),I2(JL),I3(JL))
          ZEXNREF(JL)  = PEXNREF(I1(JL),I2(JL),I3(JL))
    
          ZPABST(JL)  = PPABST(I1(JL),I2(JL),I3(JL))
          IF ((LORILAM).OR.(LDUST).OR.(LSALT)) THEN
            ZAERO(JL,:)  = PAERO(I1(JL),I2(JL),I3(JL),:)
          ELSE
            ZAERO(JL,:) = 0.
          END IF
    
          IF (LORILAM) THEN
             ZSOLORG(JL,:) = PSOLORG(I1(JL),I2(JL),I3(JL),:)
             ZMI(JL,:) = PMI(I1(JL),I2(JL),I3(JL),:)
          ELSE
            ZSOLORG(JL,:) = 0.
            ZMI(JL,:) = 0.
          END IF
    
    
          DO JMOD = 1,NMOD_CCN
             ZNFT(JL,JMOD)        = PNFT(I1(JL),I2(JL),I3(JL),JMOD)
             ZNAT(JL,JMOD)        = PNAT(I1(JL),I2(JL),I3(JL),JMOD)
             ZCHEN_MULTI(JL,JMOD) = (ZNFT(JL,JMOD)+ZNAT(JL,JMOD))*ZRHODREF(JL) &
                                                                 / XLIMIT_FACTOR(JMOD)
          ENDDO
       ENDDO
    !
    
    IF ((HACTCCN == 'ABRK').AND.((LORILAM).OR.(LDUST).OR.(LSALT))) THEN  ! CCN activation from Abdul-Razack (only if prognostic aerosols)
    !
         ALLOCATE(ZMCN(INUCT))
         ALLOCATE(ZNATOLD(INUCT))
         ALLOCATE(ZSMAX(INUCT))
    
         ZZW1(:) = 0.
         ZZW2(:) = 0.
         ZZW3(:) = 0.
         ZSMAX(:) = 0.
    
         ZMCN(:) = 0. !masse activée (non utilisée!!)
    
         ZNATOLD(:) = ZNAT(:,1)
       !
         !ZZW2 veetical activation velocity
    
         CALL CH_AER_ACTIVATION(ZAERO, ZZT, ZZW2, ZZTDT, ZRHODREF, ZPABST,&
                                 ZNAT(:,1), ZMCN, ZSOLORG, ZMI, ZSMAX)
    
         ZZW1(:) = MAX(ZNATOLD(:)- ZNAT(:,1) , 0.0 )
    !
         ZW(:,:,:) = UNPACK( ZZW1(:),MASK=GNUCT(:,:,:),FIELD=0.0 )
         PNAT(:,:,:,1) = PNAT(:,:,:,1) + ZW(:,:,:)
         ! Je sais pas ce que c'est:
         ZZW4(:) = 1.
         ZZW5(:) = 1.
       !
       !* prepare to update the cloud water concentration
       !
          ZZW6(:) = ZZW1(:) 
         DEALLOCATE(ZMCN)
         DEALLOCATE(ZNATOLD)
    !
    ELSE ! CCN activation from Cohard-Pinty
    
       ALLOCATE(ZSMAX(INUCT))
       IF (LADJ) THEN
          ZZW1(:) = 1.0/ZEPS + 1.0/ZZW1(:)                                   &
    
                    + (((CST%XLVTT+(CST%XCPV-CST%XCL)*(ZZT(:)-CST%XTT))/ZZT(:))**2)/(CST%XCPD*CST%XRV) ! Psi2
    
    !
    !
    !-------------------------------------------------------------------------------
    !
    !
    !*       2. compute the constant term (ZZW3) relative to smax    
    !   	 ----------------------------------------------------
    !
    !  Remark : in LIMA's nucleation parameterization, Smax=0.01 for a supersaturation of 1% !
    !
    !
    
          ZVEC1(:) = MAX( 1.0001, MIN( REAL(NAHEN)-0.0001, XAHENINTP1 * ZZT(:) + XAHENINTP2 ) )
          IVEC1(:) = INT( ZVEC1(:) )
          ZVEC1(:) = ZVEC1(:) - REAL( IVEC1(:) )
    
          IF (LACTIT) THEN ! including a cooling rate
    
    !
    !       Compute the tabulation of function of ZZW3 :
    !
    !                                                  (Psi1*w+Psi3*DT/Dt)**1.5 
    !       ZZW3 = XAHENG*(Psi1*w + Psi3*DT/Dt)**1.5 = ------------------------ 
    !                                                   2*pi*rho_l*G**(3/2)     
    !
    !
    
             ZZW4(:)=XPSI1( IVEC1(:)+1)*ZZW2(:)+XPSI3(IVEC1(:)+1)*ZZTDT(:)
             ZZW5(:)=XPSI1( IVEC1(:)  )*ZZW2(:)+XPSI3(IVEC1(:)  )*ZZTDT(:)
             WHERE (ZZW4(:) < 0. .OR. ZZW5(:) < 0.)
                ZZW4(:) = 0.
                ZZW5(:) = 0.
             END WHERE
             ZZW3(:) =   XAHENG( IVEC1(:)+1)*(ZZW4(:)**1.5)* ZVEC1(:)      &
                       - XAHENG( IVEC1(:)  )*(ZZW5(:)**1.5)*(ZVEC1(:) - 1.0)
    
                           ! Cste*((Psi1*w+Psi3*dT/dt)/(G))**1.5
    
             ZZW6(:) =   XAHENG2( IVEC1(:)+1)*(ZZW4(:)**0.5)* ZVEC1(:)      &
                       - XAHENG2( IVEC1(:)  )*(ZZW5(:)**0.5)*(ZVEC1(:) - 1.0)
    
          ELSE ! LACTIT , for clouds
    
    !
    !
    !       Compute the tabulation of function of ZZW3 :
    !
    !                                             (Psi1 * w)**1.5       
    !       ZZW3 = XAHENG * (Psi1 * w)**1.5  = -------------------------
    !                                            2 pi rho_l * G**(3/2)  
    !
    !
    
             ZZW2(:)=MAX(ZZW2(:),0.)
             ZZW3(:)=XAHENG(IVEC1(:)+1)*((XPSI1(IVEC1(:)+1)*ZZW2(:))**1.5)* ZVEC1(:)    &
                    -XAHENG(IVEC1(:)  )*((XPSI1(IVEC1(:)  )*ZZW2(:))**1.5)*(ZVEC1(:)-1.0)
    
             ZZW6(:)=XAHENG2(IVEC1(:)+1)*((XPSI1(IVEC1(:)+1)*ZZW2(:))**0.5)* ZVEC1(:)    &
                    -XAHENG2(IVEC1(:)  )*((XPSI1(IVEC1(:)  )*ZZW2(:))**0.5)*(ZVEC1(:)-1.0)
    
    !
    !
    !              (Psi1*w+Psi3*DT/Dt)**1.5   rho_air
    !       ZZW3 = ------------------------ * -------
    !                 2*pi*rho_l*G**(3/2)       Psi2
    !
    
          ZZW5(:) = 1.
          ZZW3(:) = (ZZW3(:)/ZZW1(:))*ZRHODREF(:) ! R.H.S. of Eq 9 of CPB 98 but
          ! for multiple aerosol modes
          WHERE (ZRCT(:) > XRTMIN(2) .AND. ZCCT(:) > XCTMIN(2))
             ZZW6(:) = ZZW6(:) * ZRHODREF(:) * ZCCT(:) / (XLBC*ZCCT(:)/ZRCT(:))**XLBEXC
          ELSEWHERE
             ZZW6(:)=0.
          END WHERE
    
          WHERE (ZZW3(:) == 0. .AND. .NOT.(ZSW>0.))
             ZZW5(:) = -1.
          END WHERE
    
    !
    !-------------------------------------------------------------------------------
    !
    !
    !*       3. Compute the maximum of supersaturation
    !   	 -----------------------------------------
    !
    !
    ! estimate S_max for the CPB98 parameterization with SEVERAL aerosols mode
    ! Reminder : Smax=0.01 for a 1% supersaturation
    !
    ! Interval bounds to tabulate sursaturation Smax
    ! Check with values used for tabulation in ini_lima_warm.f90
    
          ZS1 = 1.0E-5                   ! corresponds to  0.001% supersaturation
          ZS2 = 5.0E-2                   ! corresponds to 5.0% supersaturation 
          ZXACC = 1.0E-10                ! Accuracy needed for the search in [NO UNITS]
    
          ZSMAX(:) = ZRIDDR(ZS1,ZS2,ZXACC,ZZW3(:),ZZW6(:),INUCT)    ! ZSMAX(:) is in [NO UNITS]
          ZSMAX(:) = MIN(MAX(ZSMAX(:), ZSW(:)),ZS2)
          !
       ELSE
          ZSMAX(:) = ZSW(:)
          ZZW5(:) = 1.
       END IF
    
    !
    !-------------------------------------------------------------------------------
    !
    !
    !*       4. Compute the nucleus source
    !   	 -----------------------------
    !
    !
    ! Again : Smax=0.01 for a 1% supersaturation
    ! Modified values for Beta and C (see in init_aerosol_properties) account for that
    !
       WHERE (ZZW5(:) > 0. .AND. ZSMAX(:) > 0.)
          ZVEC1(:) = MAX( 1.0001, MIN( REAL(NHYP)-0.0001, XHYPINTP1*LOG(ZSMAX(:))+XHYPINTP2 ) )
          IVEC1(:) = INT( ZVEC1(:) )
          ZVEC1(:) = ZVEC1(:) - REAL( IVEC1(:) )
       END WHERE
       ZZW6(:)  = 0. ! initialize the change of cloud droplet concentration
    !
       ZTMP(:,:)=0.0
    !
    ! Compute the concentration of activable aerosols for each mode
    ! based on the max of supersaturation ( -> ZTMP )
    !
       DO JMOD = 1, NMOD_CCN                     ! iteration on mode number
          ZZW1(:) = 0.
          ZZW2(:) = 0.
          ZZW3(:) = 0.
       !
          WHERE( ZZW5(:) > 0. .AND. ZSMAX(:)>0.0 )
             ZZW2(:) =  XHYPF12( IVEC1(:)+1,JMOD )* ZVEC1(:)      & ! hypergeo function
                      - XHYPF12( IVEC1(:)  ,JMOD )*(ZVEC1(:) - 1.0) ! XHYPF12 is tabulated
       !
             ZTMP(:,JMOD) = ZCHEN_MULTI(:,JMOD)/ZRHODREF(:)*ZSMAX(:)**XKHEN_MULTI(JMOD)*ZZW2(:)
          ENDWHERE
       ENDDO
    !
    ! Compute the concentration of aerosols activated at this time step
    ! as the difference between ZTMP and the aerosols already activated at t-dt (ZZW1)
    !
       DO JMOD = 1, NMOD_CCN                     ! iteration on mode number
          ZZW1(:) = 0.
          ZZW2(:) = 0.
          ZZW3(:) = 0.
       !
          WHERE( SUM(ZTMP(:,:),DIM=2) .GT. 0.01E6/ZRHODREF(:) ) 
             ZZW1(:) = MIN( ZNFT(:,JMOD),MAX( ZTMP(:,JMOD)- ZNAT(:,JMOD) , 0.0 ) )
          ENDWHERE
       !
       !* update the concentration of activated CCN = Na
       !
    
          PNAT(:,:,:,JMOD) = PNAT(:,:,:,JMOD) + ZCLDFR(:,:,:) * UNPACK( ZZW1(:), MASK=GNUCT(:,:,:), FIELD=0.0 )
    
       !
       !* update the concentration of free CCN = Nf
       !
    
          PNFT(:,:,:,JMOD) = PNFT(:,:,:,JMOD) - ZCLDFR(:,:,:) * UNPACK( ZZW1(:), MASK=GNUCT(:,:,:), FIELD=0.0 )
    
       !
       !* prepare to update the cloud water concentration 
       !
          ZZW6(:) = ZZW6(:) + ZZW1(:)
       ENDDO
    
    END IF ! AER_ACTIVATION
    
    !
    ! Output tendencies
    !
       ZZW1(:)=0.
       WHERE (ZZW5(:)>0.0 .AND. ZSMAX(:)>0.0) ! ZZW1 is computed with ZSMAX [NO UNIT]
          ZZW1(:) = MIN(XCSTDCRIT*ZZW6(:)/(((ZZT(:)*ZSMAX(:))**3)*ZRHODREF(:)),1.E-5)
       END WHERE
    !
    
       IF(PRESENT(PTOT_RV_HENU)) PTOT_RV_HENU(:,:,:) = 0.
    
       IF (.NOT.LSUBG_COND) THEN
          ZW(:,:,:) = MIN( UNPACK( ZZW1(:),MASK=GNUCT(:,:,:),FIELD=0.0 ),PRVT(:,:,:) )
    
          IF(PRESENT(PTOT_RV_HENU)) PTOT_RV_HENU(:,:,:) = ZW(:,:,:)
    
          PTHT(:,:,:) = PTHT(:,:,:) + ZW(:,:,:) * (CST%XLVTT+(CST%XCPV-CST%XCL)*(PT(:,:,:)-CST%XTT))/                &
                (PEXNREF(:,:,:)*(CST%XCPD+CST%XCPV*PRVT(:,:,:)+CST%XCL*(PRCT(:,:,:)+PRRT(:,:,:))))
    
          PRVT(:,:,:) = PRVT(:,:,:) - ZW(:,:,:) 
          PRCT(:,:,:) = PRCT(:,:,:) + ZW(:,:,:) 
          PCCT(:,:,:) = PCCT(:,:,:) + UNPACK( ZZW6(:),MASK=GNUCT(:,:,:),FIELD=0. ) 
       ELSE
    
          ZW(:,:,:) = MIN( ZCLDFR(:,:,:) * UNPACK( ZZW1(:),MASK=GNUCT(:,:,:),FIELD=0.0 ),PRVT(:,:,:) )
          PCCT(:,:,:) = PCCT(:,:,:) + ZCLDFR(:,:,:) * UNPACK( ZZW6(:),MASK=GNUCT(:,:,:),FIELD=0. ) 
    
    !++cb-- A quoi servent ces 2 dernieres lignes ? variables locales, non sauvees, et ne servent pas 
    ! a calculer quoi que ce soit (fin de la routine)
    
       ZW(:,:,:)   = UNPACK( 100.0*ZSMAX(:),MASK=GNUCT(:,:,:),FIELD=0.0 )
    
       ZW2(:,:,:)  = ZCLDFR(:,:,:) * UNPACK( ZZW6(:),MASK=GNUCT(:,:,:),FIELD=0.0 )
    
    !
    !
    !-------------------------------------------------------------------------------
    !
    !
    !*       5. Cleaning
    !   	 -----------
    !
    !
       DEALLOCATE(IVEC1)
       DEALLOCATE(ZVEC1)
       DEALLOCATE(ZNFT)
       DEALLOCATE(ZNAT)
       DEALLOCATE(ZCCT)
       DEALLOCATE(ZRCT)
       DEALLOCATE(ZZT)
       DEALLOCATE(ZSMAX)
       DEALLOCATE(ZZW1)
       DEALLOCATE(ZZW2)
       DEALLOCATE(ZZW3)
       DEALLOCATE(ZZW4)
       DEALLOCATE(ZZW5)
       DEALLOCATE(ZZW6)
       DEALLOCATE(ZZTDT)
       DEALLOCATE(ZSW)
       DEALLOCATE(ZRHODREF)
       DEALLOCATE(ZCHEN_MULTI)
       DEALLOCATE(ZEXNREF)
    
       DEALLOCATE(ZPABST)
       DEALLOCATE(ZAERO)
       DEALLOCATE(ZSOLORG)
       DEALLOCATE(ZMI)
    
    !!$IF ( tpfile%lopened ) THEN
    !!$  IF ( INUCT == 0 ) THEN
    !!$    ZW (:,:,:) = 0.
    !!$    ZW2(:,:,:) = 0.
    !!$  END IF
    !!$
    !!$  TZFIELD%CMNHNAME   ='SMAX'
    !!$  TZFIELD%CSTDNAME   = ''
    !!$  TZFIELD%CLONGNAME  = TRIM(TZFIELD%CMNHNAME)
    !!$  TZFIELD%CUNITS     = ''
    !!$  TZFIELD%CDIR       = 'XY'
    !!$  TZFIELD%CCOMMENT   = 'X_Y_Z_SMAX'
    !!$  TZFIELD%NGRID      = 1
    !!$  TZFIELD%NTYPE      = TYPEREAL
    !!$  TZFIELD%NDIMS      = 3
    !!$  TZFIELD%LTIMEDEP   = .TRUE.
    !!$  CALL IO_Field_write(TPFILE,TZFIELD,ZW)
    !!$  !
    !!$  TZFIELD%CMNHNAME   ='NACT'
    !!$  TZFIELD%CSTDNAME   = ''
    !!$  TZFIELD%CLONGNAME  = TRIM(TZFIELD%CMNHNAME)
    !!$  TZFIELD%CUNITS     = 'kg-1'
    !!$  TZFIELD%CDIR       = 'XY'
    !!$  TZFIELD%CCOMMENT   = 'X_Y_Z_NACT'
    !!$  TZFIELD%NGRID      = 1
    !!$  TZFIELD%NTYPE      = TYPEREAL
    !!$  TZFIELD%NDIMS      = 3
    !!$  TZFIELD%LTIMEDEP   = .TRUE.
    !!$  CALL IO_Field_write(TPFILE,TZFIELD,ZW2)
    !!$END IF
    
    !
    !
    !-------------------------------------------------------------------------------
    !
    !
    !*       6. Functions used to compute the maximum of supersaturation
    !   	 -----------------------------------------------------------
    !
    !
    CONTAINS
    !------------------------------------------------------------------------------
    !
      FUNCTION ZRIDDR(PX1,PX2INIT,PXACC,PZZW3,PZZW6,NPTS)  RESULT(PZRIDDR)
    !
    !
    !!****  *ZRIDDR* - iterative algorithm to find root of a function
    !!
    !!
    !!    PURPOSE
    !!    -------
    !!       The purpose of this function is to find the root of a given function
    !!     the arguments are the brackets bounds (the interval where to find the root)
    !!     the accuracy needed and the input parameters of the given function.
    !!     Using Ridders' method, return the root of a function known to lie between 
    !!     PX1 and PX2. The root, returned as PZRIDDR, will be refined to an approximate
    !!     accuracy PXACC.
    !! 
    !!**  METHOD
    !!    ------
    !!       Ridders' method
    !!
    !!    EXTERNAL
    !!    --------
    !!       FUNCSMAX  
    !!
    !!    IMPLICIT ARGUMENTS
    !!    ------------------
    !!
    !!    REFERENCE
    !!    ---------
    !!      NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING 
    !!     (ISBN 0-521-43064-X)
    !!      Copyright (C) 1986-1992 by Cambridge University Press.
    !!      Programs Copyright (C) 1986-1992 by Numerical Recipes Software.
    !!
    !!    AUTHOR
    !!    ------
    !!      Frederick Chosson *CERFACS*
    !!
    !!    MODIFICATIONS
    !!    -------------
    !!      Original     12/07/07
    !!      S.BERTHET        2008 vectorization 
    !------------------------------------------------------------------------------
    !
    !*       0. DECLARATIONS
    !
    !
    use mode_msg
    !
    IMPLICIT NONE
    !
    !*       0.1 declarations of arguments and result
    !
    INTEGER,            INTENT(IN)     :: NPTS
    REAL, DIMENSION(:), INTENT(IN)     :: PZZW3
    REAL, DIMENSION(:), INTENT(IN)     :: PZZW6
    REAL,               INTENT(IN)     :: PX1, PX2INIT, PXACC
    REAL, DIMENSION(:), ALLOCATABLE    :: PZRIDDR
    !
    !*       0.2 declarations of local variables
    !
    !
    INTEGER, PARAMETER                 :: MAXIT=60
    REAL,    PARAMETER                 :: UNUSED=0.0 !-1.11e30
    REAL,    DIMENSION(:), ALLOCATABLE :: fh,fl, fm,fnew
    REAL                               :: s,xh,xl,xm,xnew
    REAL                               :: PX2
    INTEGER                            :: j, JL
    !
    ALLOCATE(  fh(NPTS))
    ALLOCATE(  fl(NPTS))
    ALLOCATE(  fm(NPTS))
    ALLOCATE(fnew(NPTS))
    ALLOCATE(PZRIDDR(NPTS))
    !
    PZRIDDR(:)= UNUSED
    PX2       = PX2INIT 
    fl(:)     = FUNCSMAX(PX1,PZZW3(:),PZZW6(:),NPTS)
    fh(:)     = FUNCSMAX(PX2,PZZW3(:),PZZW6(:),NPTS)
    !
    DO JL = 1, NPTS
       PX2 = PX2INIT
    100 if ((fl(JL) > 0.0 .and. fh(JL) < 0.0) .or. (fl(JL) < 0.0 .and. fh(JL) > 0.0)) then
          xl         = PX1
          xh         = PX2
          do j=1,MAXIT
             xm     = 0.5*(xl+xh)
             fm(JL) = SINGL_FUNCSMAX(xm,PZZW3(JL),PZZW6(JL),JL)
             s      = sqrt(fm(JL)**2-fl(JL)*fh(JL))
             if (s == 0.0) then
                GO TO 101
             endif
             xnew  = xm+(xm-xl)*(sign(1.0,fl(JL)-fh(JL))*fm(JL)/s)
             if (abs(xnew - PZRIDDR(JL)) <= PXACC) then
                GO TO 101 
             endif
             PZRIDDR(JL) = xnew
             fnew(JL)  = SINGL_FUNCSMAX(PZRIDDR(JL),PZZW3(JL),PZZW6(JL),JL)
             if (fnew(JL) == 0.0) then
                GO TO 101
             endif
             if (sign(fm(JL),fnew(JL)) /= fm(JL)) then
                xl    =xm
                fl(JL)=fm(JL)
                xh    =PZRIDDR(JL)
                fh(JL)=fnew(JL)
             else if (sign(fl(JL),fnew(JL)) /= fl(JL)) then
                xh    =PZRIDDR(JL)
                fh(JL)=fnew(JL)
             else if (sign(fh(JL),fnew(JL)) /= fh(JL)) then
                xl    =PZRIDDR(JL)
                fl(JL)=fnew(JL)
             else if (PX2 .lt. 0.05) then
                PX2 = PX2 + 1.0E-2
    
    !            PRINT*, 'PX2 ALWAYS too small, we put a greater one : PX2 =',PX2
    
                fh(JL)   = SINGL_FUNCSMAX(PX2,PZZW3(JL),PZZW6(JL),JL)
                go to 100
             end if
             if (abs(xh-xl) <= PXACC) then
                GO TO 101 
             endif
    !!SB
    !!$      if (j == MAXIT .and. (abs(xh-xl) > PXACC) ) then
    !!$        PZRIDDR(JL)=0.0
    !!$        go to 101
    !!$      endif   
    !!SB
          end do
          call Print_msg( NVERB_FATAL, 'GEN', 'ZRIDDR', 'exceeded maximum iterations' )
       else if (fl(JL) == 0.0) then
          PZRIDDR(JL)=PX1
       else if (fh(JL) == 0.0) then
          PZRIDDR(JL)=PX2
       else if (PX2 .lt. 0.05) then
          PX2 = PX2 + 1.0E-2
    
    !      PRINT*, 'PX2 too small, we put a greater one : PX2 =',PX2
    
          fh(JL)   = SINGL_FUNCSMAX(PX2,PZZW3(JL),PZZW6(JL),JL)
          go to 100
       else
    !!$      print*, 'PZRIDDR: root must be bracketed'
    !!$      print*,'npts ',NPTS,'jl',JL
    !!$      print*, 'PX1,PX2,fl,fh',PX1,PX2,fl(JL),fh(JL)
    !!$      print*, 'PX2 = 30 % of supersaturation, there is no solution for Smax'
    !!$      print*, 'try to put greater PX2 (upper bound for Smax research)'
    !!$      STOP
          PZRIDDR(JL)=0.0
          go to 101
       end if
    101 ENDDO
    !
    DEALLOCATE(  fh)
    DEALLOCATE(  fl)
    DEALLOCATE(  fm)
    DEALLOCATE(fnew)
    !
    END FUNCTION ZRIDDR
    !
    !------------------------------------------------------------------------------
    !
      FUNCTION FUNCSMAX(PPZSMAX,PPZZW3,PPZZW6,NPTS)  RESULT(PFUNCSMAX)
    !
    !
    !!****  *FUNCSMAX* - function describing SMAX function that you want to find the root
    !!
    !!
    !!    PURPOSE
    !!    -------
    !!       This function describe the equilibrium between Smax and two aerosol mode
    !!     acting as CCN. This function is derive from eq. (9) of CPB98 but for two
    !!     aerosols mode described by their respective parameters C, k, Mu, Beta.
    !!     the arguments are the supersaturation in "no unit" and the r.h.s. of this eq.
    !!     and the ratio of concentration of injected aerosols on maximum concentration
    !!     of injected aerosols ever.
    !!**  METHOD
    !!    ------
    !!       This function is called by zriddr.f90
    !!
    !!    EXTERNAL
    !!    --------
    !!
    !!    IMPLICIT ARGUMENTS
    !!    ------------------
    !!    Module MODD_PARAM_LIMA_WARM
    !!        XHYPF32
    !!
    !!        XHYPINTP1
    !!        XHYPINTP2
    !!
    !!    Module MODD_PARAM_C2R2
    !!        XKHEN_MULTI()
    !!        NMOD_CCN
    !!       
    !!    REFERENCE
    !!    ---------
    !!    Cohard, J.M., J.P.Pinty, K.Suhre, 2000:"On the parameterization of activation
    !!             spectra from cloud condensation nuclei microphysical properties",
    !!             J. Geophys. Res., Vol.105, N0.D9, pp. 11753-11766
    !!
    !!    AUTHOR
    !!    ------
    !!      Frederick Chosson *CERFACS*
    !!
    !!    MODIFICATIONS
    !!    -------------
    !!      Original     12/07/07
    !!      S.Berthet    19/03/08 Extension a une population multimodale d aerosols
    !
    !------------------------------------------------------------------------------
    !
    !*       0. DECLARATIONS
    !
    IMPLICIT NONE
    !
    !*       0.1 declarations of arguments and result
    !
    INTEGER,            INTENT(IN)  :: NPTS
    REAL,               INTENT(IN)  :: PPZSMAX   ! supersaturation is already in no units
    REAL, DIMENSION(:), INTENT(IN)  :: PPZZW3    ! 
    REAL, DIMENSION(:), INTENT(IN)  :: PPZZW6    ! 
    REAL, DIMENSION(:), ALLOCATABLE :: PFUNCSMAX ! 
    !
    !*       0.2 declarations of local variables
    !
    REAL                           :: ZHYPF
    !
    REAL                           :: PZVEC1
    INTEGER                        :: PIVEC1
    !
    ALLOCATE(PFUNCSMAX(NPTS))
    !
    PFUNCSMAX(:) = 0.
    
    PZVEC1 = MAX( ( 1.0 + 10.0 * CST%XMNH_EPSILON ) ,MIN( REAL(NHYP)*( 1.0 - 10.0 * CST%XMNH_EPSILON ) ,               &
    
                               XHYPINTP1*LOG(PPZSMAX)+XHYPINTP2 ) )
    PIVEC1 = INT( PZVEC1 )
    PZVEC1 = PZVEC1 - REAL( PIVEC1 )
    DO JMOD = 1, NMOD_CCN
       ZHYPF        = 0.          ! XHYPF32 is tabulated with ZSMAX in [NO UNITS]
       ZHYPF        =   XHYPF32( PIVEC1+1,JMOD ) * PZVEC1              &
                      - XHYPF32( PIVEC1  ,JMOD ) *(PZVEC1 - 1.0)
                                 ! sum of s**(ki+2) * F32 * Ci * ki * beta(ki/2,3/2)
       PFUNCSMAX(:) =  PFUNCSMAX(:) + (PPZSMAX)**(XKHEN_MULTI(JMOD) + 2) &
                     * ZHYPF* XKHEN_MULTI(JMOD) * ZCHEN_MULTI(:,JMOD)    &
                     * GAMMA_X0D( XKHEN_MULTI(JMOD)/2.0)*GAMMA_X0D(3.0/2.0)      &
                     / GAMMA_X0D((XKHEN_MULTI(JMOD)+3.0)/2.0)
    ENDDO
    ! function l.h.s. minus r.h.s. of eq. (9) of CPB98 but for NMOD_CCN aerosol mode
    PFUNCSMAX(:) = PFUNCSMAX(:) + PPZZW6(:)*PPZSMAX - PPZZW3(:)
    !
    END FUNCTION FUNCSMAX
    !
    !------------------------------------------------------------------------------
    !
      FUNCTION SINGL_FUNCSMAX(PPZSMAX,PPZZW3,PPZZW6,KINDEX)  RESULT(PSINGL_FUNCSMAX)
    !
    !
    !!****  *SINGL_FUNCSMAX* - same function as FUNCSMAX
    !!
    !!
    !!    PURPOSE
    !!    -------
    !        As for FUNCSMAX but for a scalar
    !!
    !!**  METHOD
    !!    ------
    !!       This function is called by zriddr.f90
    !!
    !------------------------------------------------------------------------------
    !
    !*       0. DECLARATIONS
    !
    IMPLICIT NONE
    !
    !*       0.1 declarations of arguments and result
    !
    INTEGER,            INTENT(IN)  :: KINDEX
    REAL,               INTENT(IN)  :: PPZSMAX   ! supersaturation is "no unit"
    REAL,               INTENT(IN)  :: PPZZW3    ! 
    REAL,               INTENT(IN)  :: PPZZW6    ! 
    REAL                            :: PSINGL_FUNCSMAX ! 
    !
    !*       0.2 declarations of local variables
    !
    REAL                           :: ZHYPF
    !
    REAL                           :: PZVEC1
    INTEGER                        :: PIVEC1
    !
    PSINGL_FUNCSMAX = 0.
    PZVEC1    = MAX( 1.0001,MIN( REAL(NHYP)-0.0001,               &
                                  XHYPINTP1*LOG(PPZSMAX)+XHYPINTP2 ) )
    PIVEC1 = INT( PZVEC1 )
    PZVEC1 = PZVEC1 - REAL( PIVEC1 )
    DO JMOD = 1, NMOD_CCN
       ZHYPF        = 0.          ! XHYPF32 is tabulated with ZSMAX in [NO UNITS]
       ZHYPF        =   XHYPF32( PIVEC1+1,JMOD ) * PZVEC1              &
                      - XHYPF32( PIVEC1  ,JMOD ) *(PZVEC1 - 1.0)
                                 ! sum of s**(ki+2) * F32 * Ci * ki * bêta(ki/2,3/2)
       PSINGL_FUNCSMAX = PSINGL_FUNCSMAX + (PPZSMAX)**(XKHEN_MULTI(JMOD) + 2)   &
                       * ZHYPF* XKHEN_MULTI(JMOD) * ZCHEN_MULTI(KINDEX,JMOD) &
                       * GAMMA_X0D( XKHEN_MULTI(JMOD)/2.0)*GAMMA_X0D(3.0/2.0)        &
                       / GAMMA_X0D((XKHEN_MULTI(JMOD)+3.0)/2.0)
    ENDDO
    ! function l.h.s. minus r.h.s. of eq. (9) of CPB98 but for NMOD_CCN aerosol mode
    PSINGL_FUNCSMAX = PSINGL_FUNCSMAX + PPZZW6*PPZSMAX - PPZZW3
    !
    END FUNCTION SINGL_FUNCSMAX
    !
    !-----------------------------------------------------------------------------
    !
    END SUBROUTINE LIMA_CCN_ACTIVATION
    
    END MODULE MODE_LIMA_CCN_ACTIVATION