Newer
Older

WAUTELET Philippe
committed
!MNH_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence

WAUTELET Philippe
committed
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! ################
MODULE MODI_TURB
! ################
!
INTERFACE
!
SUBROUTINE TURB(KKA, KKU, KKL, KMI,KRR,KRRL,KRRI,HLBCX,HLBCY, &

WAUTELET Philippe
committed
KSPLIT,KMODEL_CL, &
OTURB_FLX,OTURB_DIAG,OSUBG_COND,ORMC01, &
HTURBDIM,HTURBLEN,HTOM,HTURBLEN_CL,HCLOUD,PIMPL, &

WAUTELET Philippe
committed
PTSTEP,TPFILE,PDXX,PDYY,PDZZ,PDZX,PDZY,PZZ, &
PDIRCOSXW,PDIRCOSYW,PDIRCOSZW,PCOSSLOPE,PSINSLOPE, &

WAUTELET Philippe
committed
PRHODJ,PTHVREF, &
PCEI,PCEI_MIN,PCEI_MAX,PCOEF_AMPL_SAT, &
PTHLT,PRT, &
PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS,PRTKES,PRTKEMS,PSIGS,&
PFLXZTHVMF,PWTH,PWRC,PWSV,PDYP,PTHP,PTR,PDISS,PLEM )

WAUTELET Philippe
committed
!

WAUTELET Philippe
committed
USE MODD_IO, ONLY: TFILEDATA
!
INTEGER, INTENT(IN) :: KKA !near ground array index
INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=AR
INTEGER, INTENT(IN) :: KMI ! model index number
INTEGER, INTENT(IN) :: KRR ! number of moist var.
INTEGER, INTENT(IN) :: KRRL ! number of liquid water var.
INTEGER, INTENT(IN) :: KRRI ! number of ice water var.
CHARACTER(LEN=*),DIMENSION(:),INTENT(IN):: HLBCX, HLBCY ! X- and Y-direc LBC
INTEGER, INTENT(IN) :: KSPLIT ! number of time-splitting
INTEGER, INTENT(IN) :: KMODEL_CL ! model number for cloud mixing length
LOGICAL, INTENT(IN) :: OTURB_FLX ! switch to write the
! turbulent fluxes in the syncronous FM-file
LOGICAL, INTENT(IN) :: OTURB_DIAG ! switch to write some
! diagnostic fields in the syncronous FM-file
LOGICAL, INTENT(IN) :: OSUBG_COND ! switch for SUBGrid
! CONDensation
LOGICAL, INTENT(IN) :: ORMC01 ! switch for RMC01 lengths in SBL

WAUTELET Philippe
committed
CHARACTER(len=4), INTENT(IN) :: HTURBDIM ! dimensionality of the
! turbulence scheme
CHARACTER(len=4), INTENT(IN) :: HTURBLEN ! kind of mixing length
CHARACTER(len=4), INTENT(IN) :: HTOM ! kind of Third Order Moment
CHARACTER(len=4), INTENT(IN) :: HTURBLEN_CL ! kind of cloud mixing length
! surface friction flux
REAL, INTENT(IN) :: PIMPL ! degree of implicitness
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Kind of microphysical scheme

WAUTELET Philippe
committed
TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Output file
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDXX,PDYY,PDZZ,PDZX,PDZY
! metric coefficients
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ ! physical distance
! between 2 succesive grid points along the K direction
REAL, DIMENSION(:,:), INTENT(IN) :: PDIRCOSXW, PDIRCOSYW, PDIRCOSZW
! Director Cosinus along x, y and z directions at surface w-point
REAL, DIMENSION(:,:), INTENT(IN) :: PCOSSLOPE ! cosinus of the angle
! between i and the slope vector
REAL, DIMENSION(:,:), INTENT(IN) :: PSINSLOPE ! sinus of the angle
! between i and the slope vector
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! dry density * Grid size
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHVREF ! Virtual Potential
! Temperature of the reference state
!
REAL, DIMENSION(:,:), INTENT(IN) :: PSFTH,PSFRV, &
! normal surface fluxes of theta and Rv
PSFU,PSFV
! normal surface fluxes of (u,v) parallel to the orography
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSFSV
! normal surface fluxes of Scalar var.
!
! prognostic variables at t- deltat
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! Pressure at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PUT,PVT,PWT ! wind components
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTKET ! TKE
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PSVT ! passive scal. var.
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSRCT ! Second-order flux
! s'rc'/2Sigma_s2 at time t-1 multiplied by Lambda_3
REAL, DIMENSION(:,:), INTENT(INOUT) :: PBL_DEPTH ! BL depth for TOMS
REAL, DIMENSION(:,:), INTENT(INOUT) :: PSBL_DEPTH ! SBL depth for RMC01
!
!
! variables for cloud mixing length
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCEI ! Cloud Entrainment instability
! index to emphasize localy
! turbulent fluxes
REAL, INTENT(IN) :: PCEI_MIN ! minimum threshold for the instability index CEI
REAL, INTENT(IN) :: PCEI_MAX ! maximum threshold for the instability index CEI
REAL, INTENT(IN) :: PCOEF_AMPL_SAT ! saturation of the amplification coefficient
! thermodynamical variables which are transformed in conservative var.
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTHLT ! conservative pot. temp.
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRT ! water var. where
! PRT(:,:,:,1) is the conservative mixing ratio
!
! sources of momentum, conservative potential temperature, Turb. Kin. Energy,
! TKE dissipation
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRUS,PRVS,PRWS,PRTHLS,PRTKES
! Source terms for all water kinds, PRRS(:,:,:,1) is used for the conservative
! mixing ratio
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRRS
! Source terms for all passive scalar variables
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRSVS
! Sigma_s at time t+1 : square root of the variance of the deviation to the
! saturation
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PSIGS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PFLXZTHVMF
! MF contribution for vert. turb. transport
! used in the buoy. prod. of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PWTH ! heat flux
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PWRC ! cloud water flux
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PWSV ! scalar flux

WAUTELET Philippe
committed
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PDYP ! Dynamical production of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTHP ! Thermal production of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTR ! Transport production of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PDISS ! Dissipation of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLEM ! Mixing length
!
!-------------------------------------------------------------------------------
!
END SUBROUTINE TURB
!
END INTERFACE
!
END MODULE MODI_TURB
!
! #################################################################

WAUTELET Philippe
committed
SUBROUTINE TURB(KKA, KKU, KKL, KMI,KRR,KRRL,KRRI,HLBCX,HLBCY, &
KSPLIT,KMODEL_CL, &
OTURB_FLX,OTURB_DIAG,OSUBG_COND,ORMC01, &
HTURBDIM,HTURBLEN,HTOM,HTURBLEN_CL,HCLOUD,PIMPL, &

WAUTELET Philippe
committed
PTSTEP,TPFILE,PDXX,PDYY,PDZZ,PDZX,PDZY,PZZ, &
PDIRCOSXW,PDIRCOSYW,PDIRCOSZW,PCOSSLOPE,PSINSLOPE, &

WAUTELET Philippe
committed
PRHODJ,PTHVREF, &

WAUTELET Philippe
committed
PBL_DEPTH, PSBL_DEPTH, &
PCEI,PCEI_MIN,PCEI_MAX,PCOEF_AMPL_SAT, &
PTHLT,PRT, &
PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS,PRTKES,PRTKEMS,PSIGS,&
PFLXZTHVMF,PWTH,PWRC,PWSV,PDYP,PTHP,PTR,PDISS,PLEM )
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
! #################################################################
!
!
!!**** *TURB* - computes the turbulent source terms for the prognostic
!! variables.
!!
!! PURPOSE
!! -------
!!**** The purpose of this routine is to compute the source terms in
!! the evolution equations due to the turbulent mixing.
!! The source term is computed as the divergence of the turbulent fluxes.
!! The cartesian fluxes are obtained by a one and a half order closure, based
!! on a prognostic equation for the Turbulence Kinetic Energy( TKE ). The
!! system is closed by prescribing a turbulent mixing length. Different
!! choices are available for this length.
!
!!** METHOD
!! ------
!!
!! The dimensionality of the turbulence parameterization can be chosen by
!! means of the parameter HTURBDIM:
!! * HTURBDIM='1DIM' the parameterization is 1D but can be used in
!! 3D , 2D or 1D simulations. Only the sources associated to the vertical
!! turbulent fluxes are taken into account.
!! * HTURBDIM='3DIM' the parameterization is fully 2D or 3D depending
!! on the model dimensionality. Of course, it does not make any sense to
!! activate this option with a 1D model.
!!
!! The following steps are made:
!! 1- Preliminary computations.
!! 2- The metric coefficients are recovered from the grid knowledge.
!! 3- The mixing length is computed according to its choice:
!! * HTURBLEN='BL89' the Bougeault and Lacarrere algorithm is used.
!! The mixing length is given by the vertical displacement from its
!! original level of an air particule having an initial internal
!! energy equal to its TKE and stopped by the buoyancy forces.
!! The discrete formulation is second order accurate.
!! * HTURBLEN='DELT' the mixing length is given by the mesh size
!! depending on the model dimensionality, this length is limited
!! with the ground distance.
!! * HTURBLEN='DEAR' the mixing length is given by the mesh size
!! depending on the model dimensionality, this length is limited
!! with the ground distance and also by the Deardorff mixing length
!! pertinent in the stable cases.
!! * HTURBLEN='KEPS' the mixing length is deduced from the TKE
!! dissipation, which becomes a prognostic variable of the model (
!! Duynkerke formulation).
!! 3'- The cloud mixing length is computed according to HTURBLEN_CLOUD
!! and emphasized following the CEI index
!! 4- The conservative variables are computed along with Lv/Cp.
!! 5- The turbulent Prandtl numbers are computed from the resolved fields
!! and TKE
!! 6- The sources associated to the vertical turbulent fluxes are computed
!! with a temporal scheme allowing a degree of implicitness given by
!! PIMPL, varying from PIMPL=0. ( purely explicit scheme) to PIMPL=1.
!! ( purely implicit scheme)
!! The sources associated to the horizontal fluxes are computed with a
!! purely explicit temporal scheme. These sources are only computed when
!! the turbulence parameterization is 2D or 3D( HTURBDIM='3DIM' ).
!! 7- The sources for TKE are computed, along with the dissipation of TKE
!! if HTURBLEN='KEPS'.
!! 8- Some turbulence-related quantities are stored in the synchronous
!! FM-file.
!! 9- The non-conservative variables are retrieved.
!!
!!
!! The saving of the fields in the synchronous FM-file is controlled by:
!! * OTURB_FLX => saves all the turbulent fluxes and correlations
!! * OTURB_DIAG=> saves the turbulent Prandtl and Schmidt numbers, the
!! source terms of TKE and dissipation of TKE
!!
!! EXTERNAL
!! --------
!! SUBROUTINE PRANDTL : computes the turbulent Prandtl number
!! SUBROUTINE TURB_VER : computes the sources from the vertical fluxes
!! SUBROUTINE TURB_HOR : computes the sources from the horizontal fluxes
!! SUBROUTINE TKE_EPS_SOURCES : computes the sources for TKE and its
!! dissipation
!! SUBROUTINE BUDGET : computes and stores the budgets
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
!! MODD_PARAMETERS : JPVEXT number of marginal vertical points
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
!!
!! MODD_CONF : CCONF model configuration (start/restart)
!! L1D switch for 1D model version
!! L2D switch for 2D model version
!!
!! MODD_CST : contains physical constants
!! XG gravity constant
!! XRD Gas constant for dry air
!! XRV Gas constant for vapor
!!
!! MODD_CTURB : contains turbulence scheme constants
!! XCMFS,XCED to compute the dissipation mixing length
!! XTKEMIN minimum values for the TKE
!! XLINI,XLINF to compute Bougeault-Lacarrere mixing
!! length
!! Module MODD_BUDGET:
!! NBUMOD
!! CBUTYPE
!! LBU_RU
!! LBU_RV
!! LBU_RW
!! LBU_RTH
!! LBU_RSV1
!! LBU_RRV
!! LBU_RRC
!! LBU_RRR
!! LBU_RRI
!! LBU_RRS
!! LBU_RRG
!! LBU_RRH
!!
!! REFERENCE
!! ---------
!! Book 2 of documentation (routine TURB)
!! Book 1 of documentation (Chapter: Turbulence)
!!
!! AUTHOR
!! ------
!! Joan Cuxart * INM and Meteo-France *
!!
!! MODIFICATIONS
!! -------------
!! Original 05/10/94
!! Modifications: Feb 14, 1995 (J.Cuxart and J.Stein)
!! Doctorization and Optimization
!! Modifications: March 21, 1995 (J.M. Carriere)
!! Introduction of cloud water
!! Modifications: June 1, 1995 (J.Cuxart )
!! take min(Kz,delta)
!! Modifications: June 1, 1995 (J.Stein J.Cuxart)
!! remove unnecessary arrays and change Prandtl
!! and Schmidt numbers localizations
!! Modifications: July 20, 1995 (J.Stein) remove MODI_ground_ocean +
!! TZDTCUR + MODD_TIME because they are not used
!! change RW in RNP for the outputs
!! Modifications: August 21, 1995 (Ph. Bougeault)
!! take min(K(z-zsol),delta)
!! Modifications: Sept 14, 1995 (Ph Bougeault, J. Cuxart)
!! second order BL89 mixing length computations + add Deardorff length
!! in the Delta case for stable cases
!! Modifications: Sept 19, 1995 (J. Stein, J. Cuxart)
!! define a DEAR case for the mixing length, add MODI_BUDGET and change
!! some BUDGET calls, add LES tools
!! Modifications: Oct 16, 1995 (J. Stein) change the budget calls
!! Modifications: Feb 28, 1996 (J. Stein) optimization +
!! remove min(K(z-zsol),delta)+
!! bug in the tangential fluxes
!! Modifications: Oct 16, 1996 (J. Stein) change the subgrid condensation
!! scheme + temporal discretization
!! Modifications: Dec 19, 1996 (J.-P. Pinty) update the budget calls
!! Jun 22, 1997 (J. Stein) use the absolute pressure and
!! change the Deardorf length at the surface
!! Modifications: Apr 27, 1997 (V. Masson) BL89 mix. length computed in
!! a separate routine
!! Oct 13, 1999 (J. Stein) switch for the tgt fluxes
!! Jun 24, 1999 (P Jabouille) Add routine UPDATE_ROTATE_WIND
!! Feb 15, 2001 (J. Stein) remove tgt fluxes
!! Mar 8, 2001 (V. Masson) forces the same behaviour near the surface
!! for all mixing lengths
!! Nov 06, 2002 (V. Masson) LES budgets
!! Nov, 2002 (V. Masson) implement modifications of
!! mixing and dissipative lengths
!! near the surface (according
!! Redelsperger et al 2001)
!! Apr, 2003 (V. Masson) bug in Blackadar length
!! bug in LES in 1DIM case
!! Feb 20, 2003 (J.-P. Pinty) Add reversible ice processes
!! May,26 2004 (P Jabouille) coef for computing dissipative heating
!! Sept 2004 (M.Tomasini) Cloud Mixing length modification
!! following the instability
!! criterium CEI calculated in modeln
!! May 2006 Remove KEPS
!! Sept.2006 (I.Sandu): Modification of the stability criterion for
!! DEAR (theta_v -> theta_l)
!! Oct 2007 (J.Pergaud) Add MF contribution for vert. turb. transport
!! Oct.2009 (C.Lac) Introduction of different PTSTEP according to the
!! advection schemes
!! October 2009 (G. Tanguy) add ILENCH=LEN(YCOMMENT) after
!! change of YCOMMENT
!! 06/2011 (J.escobar ) Bypass Bug with ifort11/12 on HLBCX,HLBC
!! 2012-02 Y. Seity, add possibility to run with reversed
!! vertical levels
!! 10/2012 (J. Colin) Correct bug in DearDoff for dry simulations
!! 10/2012 J.Escobar Bypass PGI bug , redefine some allocatable array inplace of automatic
!! 04/2016 (C.Lac) correction of negativity for KHKO

WAUTELET Philippe
committed
! P. Wautelet 05/2016-04/2018: new data structures and calls for I/O
! Q. Rodier 01/2018: introduction of RM17

WAUTELET Philippe
committed
! P. Wautelet 20/05/2019: add name argument to ADDnFIELD_ll + new ADD4DFIELD_ll subroutine

WAUTELET Philippe
committed
! P. Wautelet 02/2020: use the new data structures and subroutines for budgets
! B. Vie 03/2020: LIMA negativity checks after turbulence, advection and microphysics budgets
! P. Wautelet 11/06/2020: bugfix: correct PRSVS array indices

WAUTELET Philippe
committed
! P. Wautelet + Benoit Vié 06/2020: improve removal of negative scalar variables + adapt the corresponding budgets
! P. Wautelet 30/06/2020: move removal of negative scalar variables to Sources_neg_correct

WAUTELET Philippe
committed
! R. Honnert/V. Masson 02/2021: new mixing length in the grey zone

WAUTELET Philippe
committed
! J.L. Redelsperger 03/2021: add Ocean LES case

WAUTELET Philippe
committed
! --------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
use modd_budget, only: lbudget_u, lbudget_v, lbudget_w, lbudget_th, lbudget_rv, lbudget_rc, &
lbudget_rr, lbudget_ri, lbudget_rs, lbudget_rg, lbudget_rh, lbudget_sv, &
NBUDGET_U, NBUDGET_V, NBUDGET_W, NBUDGET_TH, NBUDGET_RV, NBUDGET_RC, &
NBUDGET_RR, NBUDGET_RI, NBUDGET_RS, NBUDGET_RG, NBUDGET_RH, NBUDGET_SV1, &

WAUTELET Philippe
committed
tbudgets

WAUTELET Philippe
committed
USE MODD_CONF

RODIER Quentin
committed
USE MODD_DYN_n, ONLY : LOCEAN

WAUTELET Philippe
committed
use modd_field, only: tfielddata, TYPEREAL

WAUTELET Philippe
committed
USE MODD_IO, ONLY: TFILEDATA

WAUTELET Philippe
committed
USE MODD_PARAMETERS, ONLY: JPVEXT_TURB

RODIER Quentin
committed
USE MODD_PARAM_LIMA

RODIER Quentin
committed
USE MODD_TURB_n, ONLY: XCADAP
USE MODI_GRADIENT_M
USE MODI_GRADIENT_U
USE MODI_GRADIENT_V
USE MODI_BL89
USE MODI_TURB_VER
USE MODI_ROTATE_WIND
USE MODI_TURB_HOR_SPLT
USE MODI_TKE_EPS_SOURCES
USE MODI_SHUMAN
USE MODI_GRADIENT_M
USE MODI_LES_MEAN_SUBGRID
USE MODI_RMC01
USE MODI_GRADIENT_W
USE MODI_TM06
USE MODI_UPDATE_LM
USE MODI_GET_HALO

WAUTELET Philippe
committed
use mode_budget, only: Budget_store_init, Budget_store_end

WAUTELET Philippe
committed
USE MODE_IO_FIELD_WRITE, only: IO_Field_write

WAUTELET Philippe
committed
USE MODE_SBL

WAUTELET Philippe
committed
use mode_sources_neg_correct, only: Sources_neg_correct
!
USE MODI_EMOIST
USE MODI_ETHETA
!
USE MODI_SECOND_MNH
!

WAUTELET Philippe
committed
USE MODD_IBM_PARAM_n, ONLY: LIBM, XIBM_LS, XIBM_XMUT

RODIER Quentin
committed
USE MODI_IBM_MIXINGLENGTH
!
IMPLICIT NONE
!
!
!* 0.1 declarations of arguments
!
!
!
INTEGER, INTENT(IN) :: KKA !near ground array index
INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO
INTEGER, INTENT(IN) :: KMI ! model index number
INTEGER, INTENT(IN) :: KRR ! number of moist var.
INTEGER, INTENT(IN) :: KRRL ! number of liquid water var.
INTEGER, INTENT(IN) :: KRRI ! number of ice water var.
CHARACTER(LEN=*),DIMENSION(:),INTENT(IN):: HLBCX, HLBCY ! X- and Y-direc LBC
INTEGER, INTENT(IN) :: KSPLIT ! number of time-splitting
INTEGER, INTENT(IN) :: KMODEL_CL ! model number for cloud mixing length
LOGICAL, INTENT(IN) :: OTURB_FLX ! switch to write the
! turbulent fluxes in the syncronous FM-file
LOGICAL, INTENT(IN) :: OTURB_DIAG ! switch to write some
! diagnostic fields in the syncronous FM-file
LOGICAL, INTENT(IN) :: OSUBG_COND ! switch for SUBGrid
! CONDensation
LOGICAL, INTENT(IN) :: ORMC01 ! switch for RMC01 lengths in SBL

WAUTELET Philippe
committed
CHARACTER(len=4), INTENT(IN) :: HTURBDIM ! dimensionality of the
! turbulence scheme
CHARACTER(len=4), INTENT(IN) :: HTURBLEN ! kind of mixing length
CHARACTER(len=4), INTENT(IN) :: HTOM ! kind of Third Order Moment
CHARACTER(len=4), INTENT(IN) :: HTURBLEN_CL ! kind of cloud mixing length
REAL, INTENT(IN) :: PIMPL ! degree of implicitness
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Kind of microphysical scheme

WAUTELET Philippe
committed
TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Output file
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDXX,PDYY,PDZZ,PDZX,PDZY
! metric coefficients
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ ! physical distance
! between 2 succesive grid points along the K direction
REAL, DIMENSION(:,:), INTENT(IN) :: PDIRCOSXW, PDIRCOSYW, PDIRCOSZW
! Director Cosinus along x, y and z directions at surface w-point
REAL, DIMENSION(:,:), INTENT(IN) :: PCOSSLOPE ! cosinus of the angle
! between i and the slope vector
REAL, DIMENSION(:,:), INTENT(IN) :: PSINSLOPE ! sinus of the angle
! between i and the slope vector
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! dry density * Grid size
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHVREF ! Virtual Potential
! Temperature of the reference state
!
REAL, DIMENSION(:,:), INTENT(IN) :: PSFTH,PSFRV, &
! normal surface fluxes of theta and Rv
PSFU,PSFV

WAUTELET Philippe
committed
! normal surface fluxes of (u,v) parallel to the orography
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSFSV
! normal surface fluxes of Scalar var.
!
! prognostic variables at t- deltat
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! Pressure at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PUT,PVT,PWT ! wind components
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTKET ! TKE
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PSVT ! passive scal. var.
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSRCT ! Second-order flux
! s'rc'/2Sigma_s2 at time t-1 multiplied by Lambda_3
REAL, DIMENSION(:,:), INTENT(INOUT) :: PBL_DEPTH ! BL height for TOMS
REAL, DIMENSION(:,:), INTENT(INOUT) :: PSBL_DEPTH ! SBL depth for RMC01
!
! variables for cloud mixing length
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCEI ! Cloud Entrainment instability
! index to emphasize localy
! turbulent fluxes
REAL, INTENT(IN) :: PCEI_MIN ! minimum threshold for the instability index CEI
REAL, INTENT(IN) :: PCEI_MAX ! maximum threshold for the instability index CEI
REAL, INTENT(IN) :: PCOEF_AMPL_SAT ! saturation of the amplification coefficient
!
! thermodynamical variables which are transformed in conservative var.
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTHLT ! conservative pot. temp.
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRT ! water var. where
! PRT(:,:,:,1) is the conservative mixing ratio

RODIER Quentin
committed
!
! sources of momentum, conservative potential temperature, Turb. Kin. Energy,
! TKE dissipation
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRUS,PRVS,PRWS,PRTHLS,PRTKES
! Source terms for all water kinds, PRRS(:,:,:,1) is used for the conservative
! mixing ratio
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRRS
! Source terms for all passive scalar variables
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRSVS
! Sigma_s at time t+1 : square root of the variance of the deviation to the
! saturation
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PSIGS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PFLXZTHVMF
! MF contribution for vert. turb. transport
! used in the buoy. prod. of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PWTH ! heat flux
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PWRC ! cloud water flux
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PWSV ! scalar flux

WAUTELET Philippe
committed
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PDYP ! Dynamical production of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTHP ! Thermal production of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTR ! Transport production of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PDISS ! Dissipation of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLEM ! Mixing length
!
!
!-------------------------------------------------------------------------------
!
! 0.2 declaration of local variables
!
REAL, ALLOCATABLE, DIMENSION(:,:,:) ::&
ZCP, & ! Cp at t-1
ZEXN, & ! EXN at t-1
ZT, & ! T at t-1
ZLOCPEXNM, & ! Lv/Cp/EXNREF at t-1

RODIER Quentin
committed
ZLMW, & ! Turbulent mixing length (work array)
ZTRH, & ! Dynamic and Thermal Production of TKE
ZATHETA,ZAMOIST, & ! coefficients for s = f (Thetal,Rnp)
ZCOEF_DISS, & ! 1/(Cph*Exner) for dissipative heating
ZFRAC_ICE, & ! ri fraction of rc+ri
ZMWTH,ZMWR,ZMTH2,ZMR2,ZMTHR,& ! 3rd order moments
ZFWTH,ZFWR,ZFTH2,ZFR2,ZFTHR,& ! opposite of verticale derivate of 3rd order moments
ZTHLM, ZTR, ZDISS ! initial potential temp.
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
REAL, ALLOCATABLE, DIMENSION(:,:,:,:) :: &
ZRM ! initial mixing ratio
REAL, ALLOCATABLE, DIMENSION(:,:) :: ZTAU11M,ZTAU12M, &
ZTAU22M,ZTAU33M, &
! tangential surface fluxes in the axes following the orography
ZUSLOPE,ZVSLOPE, &
! wind components at the first mass level parallel
! to the orography
ZCDUEFF, &
! - Cd*||u|| where ||u|| is the module of the wind tangential to
! orography (ZUSLOPE,ZVSLOPE) at the surface.
ZUSTAR, ZLMO, &
ZRVM, ZSFRV
! friction velocity, Monin Obuhkov length, work arrays for vapor
!
! Virtual Potential Temp. used
! in the Deardorff mixing length computation
REAL, DIMENSION(:,:,:), ALLOCATABLE :: &
ZLVOCPEXNM,ZLSOCPEXNM, & ! Lv/Cp/EXNREF and Ls/Cp/EXNREF at t-1
ZATHETA_ICE,ZAMOIST_ICE ! coefficients for s = f (Thetal,Rnp)
!
REAL :: ZEXPL ! 1-PIMPL deg of expl.
REAL :: ZRVORD ! RV/RD
!
INTEGER :: IKB,IKE ! index value for the
! Beginning and the End of the physical domain for the mass points
INTEGER :: IKT ! array size in k direction
INTEGER :: IKTB,IKTE ! start, end of k loops in physical domain
INTEGER :: JRR,JK,JSV ! loop counters
INTEGER :: JI,JJ ! loop counters
REAL :: ZL0 ! Max. Mixing Length in Blakadar formula

RODIER Quentin
committed
REAL :: ZALPHA ! work coefficient :
! - proportionnality constant between Dz/2 and
! ! BL89 mixing length near the surface

RODIER Quentin
committed
REAL, DIMENSION(SIZE(PUT,1),SIZE(PUT,2),SIZE(PUT,3)):: ZTT,ZEXNE,ZLV,ZLS,ZCPH,ZCOR
REAL, DIMENSION(SIZE(PUT,1),SIZE(PUT,2),SIZE(PUT,3)):: ZSHEAR, ZDUDZ, ZDVDZ

WAUTELET Philippe
committed
TYPE(TFIELDDATA) :: TZFIELD
!Do not change rain, snow, graupel and hail concentrations (mixing ratio is not changed)
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3),SIZE(PSVT,4)):: ZRSVS
!
!------------------------------------------------------------------------------------------
ALLOCATE ( &
ZCP(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZEXN(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZT(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZLOCPEXNM(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &

RODIER Quentin
committed
ZLMW(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZLEPS(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZTRH(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZATHETA(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZAMOIST(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZCOEF_DISS(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZFRAC_ICE(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZMWTH(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZMWR(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZMTH2(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZMR2(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZMTHR(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZFWTH(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZFWR(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZFTH2(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZFR2(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZFTHR(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)), &
ZTHLM(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)) )
ALLOCATE ( ZRM(SIZE(PRT,1),SIZE(PRT,2),SIZE(PRT,3),SIZE(PRT,4)) )
ZTAU11M(SIZE(PTHLT,1),SIZE(PTHLT,2)), &
ZTAU12M(SIZE(PTHLT,1),SIZE(PTHLT,2)), &
ZTAU22M(SIZE(PTHLT,1),SIZE(PTHLT,2)), &
ZTAU33M(SIZE(PTHLT,1),SIZE(PTHLT,2)), &
ZUSLOPE(SIZE(PTHLT,1),SIZE(PTHLT,2)), &
ZVSLOPE(SIZE(PTHLT,1),SIZE(PTHLT,2)), &
ZCDUEFF(SIZE(PTHLT,1),SIZE(PTHLT,2)), &
ZUSTAR(SIZE(PTHLT,1),SIZE(PTHLT,2)), &
ZLMO(SIZE(PTHLT,1),SIZE(PTHLT,2)), &
ZRVM(SIZE(PTHLT,1),SIZE(PTHLT,2)), &
ZSFRV(SIZE(PTHLT,1),SIZE(PTHLT,2)) )
!------------------------------------------------------------------------------------------
!
!* 1.PRELIMINARIES
! -------------
!
!* 1.1 Set the internal domains, ZEXPL
!
!
IKTB=1+JPVEXT_TURB
IKTE=IKT-JPVEXT_TURB
IKB=KKA+JPVEXT_TURB*KKL
IKE=KKU-JPVEXT_TURB*KKL
!
ZEXPL = 1.- PIMPL
ZRVORD= XRV / XRD
!
!
!Copy data into ZTHLM and ZRM only if needed
IF (HTURBLEN=='BL89' .OR. HTURBLEN=='RM17' .OR. HTURBLEN=='ADAP' .OR. ORMC01) THEN
ZTHLM(:,:,:) = PTHLT(:,:,:)
ZRM(:,:,:,:) = PRT(:,:,:,:)
END IF
!Save LIMA scalar variables sources
ZRSVS(:,:,:,:)=PRSVS(:,:,:,:)
!
!
!----------------------------------------------------------------------------
!
!* 2. COMPUTE CONSERVATIVE VARIABLES AND RELATED QUANTITIES
! -----------------------------------------------------
!
!* 2.1 Cph at t
!

WAUTELET Philippe
committed
ZCP(:,:,:)=XCPD
IF (KRR > 0) ZCP(:,:,:) = ZCP(:,:,:) + XCPV * PRT(:,:,:,1)
DO JRR = 2,1+KRRL ! loop on the liquid components
ZCP(:,:,:) = ZCP(:,:,:) + XCL * PRT(:,:,:,JRR)
END DO
!
DO JRR = 2+KRRL,1+KRRL+KRRI ! loop on the solid components
ZCP(:,:,:) = ZCP(:,:,:) + XCI * PRT(:,:,:,JRR)
END DO
!
!* 2.2 Exner function at t
!

RODIER Quentin
committed
IF (LOCEAN) THEN
ZEXN(:,:,:) = 1.
ELSE
ZEXN(:,:,:) = (PPABST(:,:,:)/XP00) ** (XRD/XCPD)
END IF
!
!* 2.3 dissipative heating coeff a t
!
ZCOEF_DISS(:,:,:) = 1/(ZCP(:,:,:) * ZEXN(:,:,:))
!
!
ZFRAC_ICE(:,:,:) = 0.0
ZATHETA(:,:,:) = 0.0
ZAMOIST(:,:,:) = 0.0
!
IF (KRRL >=1) THEN
!
!* 2.4 Temperature at t
!
!
!* 2.5 Lv/Cph/Exn
!
IF ( KRRI >= 1 ) THEN
ALLOCATE(ZLVOCPEXNM(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)))
ALLOCATE(ZLSOCPEXNM(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)))
ALLOCATE(ZAMOIST_ICE(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)))
ALLOCATE(ZATHETA_ICE(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)))
!
CALL COMPUTE_FUNCTION_THERMO(XALPW,XBETAW,XGAMW,XLVTT,XCL,ZT,ZEXN,ZCP, &
ZLVOCPEXNM,ZAMOIST,ZATHETA)
CALL COMPUTE_FUNCTION_THERMO(XALPI,XBETAI,XGAMI,XLSTT,XCI,ZT,ZEXN,ZCP, &
ZLSOCPEXNM,ZAMOIST_ICE,ZATHETA_ICE)
!
WHERE(PRT(:,:,:,2)+PRT(:,:,:,4)>0.0)
ZFRAC_ICE(:,:,:) = PRT(:,:,:,4) / ( PRT(:,:,:,2)+PRT(:,:,:,4) )
END WHERE
!
ZLOCPEXNM(:,:,:) = (1.0-ZFRAC_ICE(:,:,:))*ZLVOCPEXNM(:,:,:) &
+ZFRAC_ICE(:,:,:) *ZLSOCPEXNM(:,:,:)
ZAMOIST(:,:,:) = (1.0-ZFRAC_ICE(:,:,:))*ZAMOIST(:,:,:) &
+ZFRAC_ICE(:,:,:) *ZAMOIST_ICE(:,:,:)
ZATHETA(:,:,:) = (1.0-ZFRAC_ICE(:,:,:))*ZATHETA(:,:,:) &
+ZFRAC_ICE(:,:,:) *ZATHETA_ICE(:,:,:)
DEALLOCATE(ZAMOIST_ICE)
DEALLOCATE(ZATHETA_ICE)
ELSE
CALL COMPUTE_FUNCTION_THERMO(XALPW,XBETAW,XGAMW,XLVTT,XCL,ZT,ZEXN,ZCP, &
ZLOCPEXNM,ZAMOIST,ZATHETA)
END IF
!
!

WAUTELET Philippe
committed
IF ( tpfile%lopened .AND. OTURB_DIAG ) THEN

WAUTELET Philippe
committed
TZFIELD%CMNHNAME = 'ATHETA'
TZFIELD%CSTDNAME = ''

WAUTELET Philippe
committed
TZFIELD%CLONGNAME = 'ATHETA'

WAUTELET Philippe
committed
TZFIELD%CUNITS = 'm'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'X_Y_Z_ATHETA'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.

WAUTELET Philippe
committed
CALL IO_Field_write(TPFILE,TZFIELD,ZATHETA)

WAUTELET Philippe
committed
TZFIELD%CMNHNAME = 'AMOIST'
TZFIELD%CSTDNAME = ''

WAUTELET Philippe
committed
TZFIELD%CLONGNAME = 'AMOIST'

WAUTELET Philippe
committed
TZFIELD%CUNITS = 'm'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'X_Y_Z_AMOIST'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.

WAUTELET Philippe
committed
CALL IO_Field_write(TPFILE,TZFIELD,ZAMOIST)
END IF
!
ELSE
ZLOCPEXNM=0.
END IF ! loop end on KRRL >= 1
!
! computes conservative variables
!
IF ( KRRL >= 1 ) THEN

WAUTELET Philippe
committed
IF ( KRRI >= 1 ) THEN
! Rnp at t
PRT(:,:,:,1) = PRT(:,:,:,1) + PRT(:,:,:,2) + PRT(:,:,:,4)
PRRS(:,:,:,1) = PRRS(:,:,:,1) + PRRS(:,:,:,2) + PRRS(:,:,:,4)
! Theta_l at t
PTHLT(:,:,:) = PTHLT(:,:,:) - ZLVOCPEXNM(:,:,:) * PRT(:,:,:,2) &
- ZLSOCPEXNM(:,:,:) * PRT(:,:,:,4)
PRTHLS(:,:,:) = PRTHLS(:,:,:) - ZLVOCPEXNM(:,:,:) * PRRS(:,:,:,2) &
- ZLSOCPEXNM(:,:,:) * PRRS(:,:,:,4)
ELSE
! Rnp at t
PRT(:,:,:,1) = PRT(:,:,:,1) + PRT(:,:,:,2)
PRRS(:,:,:,1) = PRRS(:,:,:,1) + PRRS(:,:,:,2)
! Theta_l at t
PTHLT(:,:,:) = PTHLT(:,:,:) - ZLOCPEXNM(:,:,:) * PRT(:,:,:,2)
PRTHLS(:,:,:) = PRTHLS(:,:,:) - ZLOCPEXNM(:,:,:) * PRRS(:,:,:,2)
END IF
END IF
!
!----------------------------------------------------------------------------
!
!* 3. MIXING LENGTH : SELECTION AND COMPUTATION
! -----------------------------------------
!
!
SELECT CASE (HTURBLEN)
!
!* 3.1 BL89 mixing length
! ------------------
CASE ('BL89')
ZSHEAR=0.
CALL BL89(KKA,KKU,KKL,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,PLEM)
!* 3.2 RM17 mixing length
! ------------------
CASE ('RM17')

WAUTELET Philippe
committed
ZDUDZ = MXF(MZF(GZ_U_UW(PUT,PDZZ)))
ZDVDZ = MYF(MZF(GZ_V_VW(PVT,PDZZ)))
ZSHEAR = SQRT(ZDUDZ*ZDUDZ + ZDVDZ*ZDVDZ)
CALL BL89(KKA,KKU,KKL,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,PLEM)
!

RODIER Quentin
committed
!* 3.3 Grey-zone combined RM17 & Deardorff mixing lengths
! --------------------------------------------------
CASE ('ADAP')
ZDUDZ = MXF(MZF(GZ_U_UW(PUT,PDZZ)))
ZDVDZ = MYF(MZF(GZ_V_VW(PVT,PDZZ)))
ZSHEAR = SQRT(ZDUDZ*ZDUDZ + ZDVDZ*ZDVDZ)
CALL BL89(KKA,KKU,KKL,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,PLEM)
CALL DELT(ZLMW,ODZ=.FALSE.)
! The minimum mixing length is chosen between Horizontal grid mesh (not taking into account the vertical grid mesh) and RM17.
! For large horizontal grid meshes, this is equal to RM17
! For LES grid meshes, this is equivalent to Deardorff : the base mixing lentgh is the horizontal grid mesh,
! and it is limited by a stability-based length (RM17), as was done in Deardorff length (but taking into account shear as well)
! For grid meshes in the grey zone, then this is the smaller of the two.

RODIER Quentin
committed
PLEM = MIN(PLEM,XCADAP*ZLMW)

RODIER Quentin
committed
!
!* 3.4 Delta mixing length
! -------------------
!
CASE ('DELT')

RODIER Quentin
committed
CALL DELT(PLEM,ODZ=.TRUE.)

RODIER Quentin
committed
!* 3.5 Deardorff mixing length
! -----------------------
!
CASE ('DEAR')
CALL DEAR(PLEM)

RODIER Quentin
committed
!* 3.6 Blackadar mixing length
! -----------------------
!
CASE ('BLKR')
ZL0 = 100.
PLEM(:,:,:) = ZL0
ZALPHA=0.5**(-1.5)
!
DO JK=IKTB,IKTE
PLEM(:,:,JK) = ( 0.5*(PZZ(:,:,JK)+PZZ(:,:,JK+KKL)) - &
& PZZ(:,:,KKA+JPVEXT_TURB*KKL) ) * PDIRCOSZW(:,:)
PLEM(:,:,JK) = ZALPHA * PLEM(:,:,JK) * ZL0 / ( ZL0 + ZALPHA*PLEM(:,:,JK) )
PLEM(:,:,IKTB-1) = PLEM(:,:,IKTB)
PLEM(:,:,IKTE+1) = PLEM(:,:,IKTE)
!
!
!
END SELECT
!
!
!
!* 3.5 Mixing length modification for cloud
! -----------------------
IF (KMODEL_CL==KMI .AND. HTURBLEN_CL/='NONE') CALL CLOUD_MODIF_LM
!
!* 3.6 Dissipative length
! ------------------
!
ZLEPS(:,:,:)=PLEM(:,:,:)
!
!* 3.7 Correction in the Surface Boundary Layer (Redelsperger 2001)
! ----------------------------------------
!
ZLMO=XUNDEF
IF (ORMC01) THEN
ZUSTAR=(PSFU**2+PSFV**2)**(0.25)
IF (KRR>0) THEN
ZLMO=LMO(ZUSTAR,ZTHLM(:,:,IKB),ZRM(:,:,IKB,1),PSFTH,PSFRV)
ELSE
ZRVM=0.
ZSFRV=0.
ZLMO=LMO(ZUSTAR,ZTHLM(:,:,IKB),ZRVM,PSFTH,ZSFRV)
END IF
CALL RMC01(HTURBLEN,KKA,KKU,KKL,PZZ,PDXX,PDYY,PDZZ,PDIRCOSZW,PSBL_DEPTH,ZLMO,PLEM,ZLEPS)

RODIER Quentin
committed
!RMC01 is only applied on RM17 in ADAP
IF (HTURBLEN=='ADAP') ZLEPS = MIN(ZLEPS,ZLMW*XCADAP)
!
!* 3.8 Mixing length in external points (used if HTURBDIM="3DIM")
! ----------------------------------------------------------
!
IF (HTURBDIM=="3DIM") THEN
CALL UPDATE_LM(HLBCX,HLBCY,PLEM,ZLEPS)

RODIER Quentin
committed
!
!* 3.9 Mixing length correction if immersed walls
! ------------------------------------------
!
IF (LIBM) THEN
CALL IBM_MIXINGLENGTH(PLEM,ZLEPS,XIBM_XMUT,XIBM_LS(:,:,:,1),PTKET)
ENDIF
!----------------------------------------------------------------------------
!
!* 4. GO INTO THE AXES FOLLOWING THE SURFACE
! --------------------------------------
!
!
!* 4.1 rotate the wind at time t
!
!
!
IF (CPROGRAM/='AROME ') THEN
CALL ROTATE_WIND(PUT,PVT,PWT, &
PDIRCOSXW, PDIRCOSYW, PDIRCOSZW, &
PCOSSLOPE,PSINSLOPE, &
PDXX,PDYY,PDZZ, &
ZUSLOPE,ZVSLOPE )
CALL UPDATE_ROTATE_WIND(ZUSLOPE,ZVSLOPE)
ELSE
ZUSLOPE=PUT(:,:,KKA)
ZVSLOPE=PVT(:,:,KKA)
END IF
!
!
!* 4.2 compute the proportionality coefficient between wind and stress
!
ZCDUEFF(:,:) =-SQRT ( (PSFU(:,:)**2 + PSFV(:,:)**2) / &
(XMNH_TINY + ZUSLOPE(:,:)**2 + ZVSLOPE(:,:)**2 ) )
!
!* 4.6 compute the surface tangential fluxes
!
ZTAU11M(:,:) =2./3.*( (1.+ (PZZ (:,:,IKB+KKL)-PZZ (:,:,IKB)) &
/(PDZZ(:,:,IKB+KKL)+PDZZ(:,:,IKB)) &
) *PTKET(:,:,IKB) &
-0.5 *PTKET(:,:,IKB+KKL) &
)
ZTAU12M(:,:) =0.0
ZTAU22M(:,:) =ZTAU11M(:,:)
ZTAU33M(:,:) =ZTAU11M(:,:)
!
!* 4.7 third order terms in temperature and water fluxes and correlations
! ------------------------------------------------------------------
!
!
ZMWTH = 0. ! w'2th'
ZMWR = 0. ! w'2r'
ZMTH2 = 0. ! w'th'2
ZMR2 = 0. ! w'r'2
ZMTHR = 0. ! w'th'r'

WAUTELET Philippe
committed
IF (HTOM=='TM06') THEN
CALL TM06(KKA,KKU,KKL,PTHVREF,PBL_DEPTH,PZZ,PSFTH,ZMWTH,ZMTH2)
!
ZFWTH = -GZ_M_W(KKA,KKU,KKL,ZMWTH,PDZZ) ! -d(w'2th' )/dz
!ZFWR = -GZ_M_W(KKA,KKU,KKL,ZMWR, PDZZ) ! -d(w'2r' )/dz

WAUTELET Philippe
committed
ZFTH2 = -GZ_W_M(ZMTH2,PDZZ) ! -d(w'th'2 )/dz
!ZFR2 = -GZ_W_M(ZMR2, PDZZ) ! -d(w'r'2 )/dz
!ZFTHR = -GZ_W_M(ZMTHR,PDZZ) ! -d(w'th'r')/dz

WAUTELET Philippe
committed
!
ZFWTH(:,:,IKTE:) = 0.
ZFWTH(:,:,:IKTB) = 0.
!ZFWR (:,:,IKTE:) = 0.
!ZFWR (:,:,:IKTB) = 0.
ZFWR = 0.
ZFTH2(:,:,IKTE:) = 0.
ZFTH2(:,:,:IKTB) = 0.
!ZFR2 (:,:,IKTE:) = 0.
!ZFR2 (:,:,:IKTB) = 0.
ZFR2 = 0.
!ZFTHR(:,:,IKTE:) = 0.
!ZFTHR(:,:,:IKTB) = 0.
ZFTHR = 0.
ELSE
ZFWTH = 0.
ZFWR = 0.
ZFTH2 = 0.
ZFR2 = 0.
ZFTHR = 0.
ENDIF
!
!----------------------------------------------------------------------------
!
!* 5. TURBULENT SOURCES
! -----------------
!

WAUTELET Philippe
committed
if ( lbudget_u ) call Budget_store_init( tbudgets(NBUDGET_U ), 'VTURB', prus (:, :, :) )
if ( lbudget_v ) call Budget_store_init( tbudgets(NBUDGET_V ), 'VTURB', prvs (:, :, :) )
if ( lbudget_w ) call Budget_store_init( tbudgets(NBUDGET_W ), 'VTURB', prws (:, :, :) )
if ( lbudget_th ) then
if ( krri >= 1 .and. krrl >= 1 ) then
call Budget_store_init( tbudgets(NBUDGET_TH), 'VTURB', prthls(:, :, :) + zlvocpexnm(:, :, :) * prrs(:, :, :, 2) &
+ zlsocpexnm(:, :, :) * prrs(:, :, :, 4) )
else if ( krrl >= 1 ) then
call Budget_store_init( tbudgets(NBUDGET_TH), 'VTURB', prthls(:, :, :) + zlocpexnm(:, :, :) * prrs(:, :, :, 2) )
else
call Budget_store_init( tbudgets(NBUDGET_TH), 'VTURB', prthls(:, :, :) )
end if
end if
if ( lbudget_rv ) then
if ( krri >= 1 .and. krrl >= 1 ) then
call Budget_store_init( tbudgets(NBUDGET_RV), 'VTURB', prrs(:, :, :, 1) - prrs(:, :, :, 2) - prrs(:, :, :, 4) )
else if ( krrl >= 1 ) then
call Budget_store_init( tbudgets(NBUDGET_RV), 'VTURB', prrs(:, :, :, 1) - prrs(:, :, :, 2) )
else
call Budget_store_init( tbudgets(NBUDGET_RV), 'VTURB', prrs(:, :, :, 1) )
end if
end if

WAUTELET Philippe
committed
if ( lbudget_rc ) call Budget_store_init( tbudgets(NBUDGET_RC), 'VTURB', prrs (:, :, :, 2) )
if ( lbudget_ri ) call Budget_store_init( tbudgets(NBUDGET_RI), 'VTURB', prrs (:, :, :, 4) )

WAUTELET Philippe
committed
if ( lbudget_sv ) then
do jsv = 1, nsv
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + jsv), 'VTURB', prsvs(:, :, :, jsv) )
end do
end if

WAUTELET Philippe
committed
CALL TURB_VER(KKA,KKU,KKL,KRR, KRRL, KRRI, &

WAUTELET Philippe
committed
OTURB_FLX, &

WAUTELET Philippe
committed
PTSTEP,TPFILE, &
PDXX,PDYY,PDZZ,PDZX,PDZY,PDIRCOSZW,PZZ, &