Newer
Older
!MNH_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
MODULE MODE_ICE4_FAST_RG
IMPLICIT NONE
CONTAINS
SUBROUTINE ICE4_FAST_RG(KPROMA,KSIZE, LDSOFT, PCOMPUTE, KRR, &
&PRHODREF, PLVFACT, PLSFACT, PPRES, &
&PDV, PKA, PCJ, PCIT, &
&PLBDAR, PLBDAS, PLBDAG, &
&PT, PRVT, PRCT, PRRT, PRIT, PRST, PRGT, &
&PRGSI, PRGSI_MR, &
&PWETG, &
&PRICFRRG, PRRCFRIG, PRICFRR, PRCWETG, PRIWETG, PRRWETG, PRSWETG, &
&PRCDRYG, PRIDRYG, PRRDRYG, PRSDRYG, PRWETGH, PRWETGH_MR, PRGMLTR, &
&PRG_TEND, &
&PA_TH, PA_RC, PA_RR, PA_RI, PA_RS, PA_RG, PA_RH, PB_RG, PB_RH)
!!
!!** PURPOSE
!! -------
!! Computes the fast rg processes
!!
!! AUTHOR
!! ------
!! S. Riette from the splitting of rain_ice source code (nov. 2014)
!!
!! MODIFICATIONS
!! -------------
!!
! P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
! P. Wautelet 29/05/2019: remove PACK/UNPACK intrinsics (to get more performance and better OpenACC support)
!! R. El Khatib 24-Aug-2021 Optimizations
!
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST, ONLY: XALPI, XALPW, XBETAI, XBETAW, XGAMW, XCI, XCL, XCPV, XESTT, XGAMI, &
& XLMTT, XLVTT, XMD, XMV, XRV, XTT, XEPSILO
USE MODD_PARAM_ICE, ONLY: LCRFLIMIT, LEVLIMIT, LNULLWETG, LWETGPOST
USE MODD_RAIN_ICE_DESCR, ONLY: XBS, XCEXVT, XCXG, XCXS, XDG, XRTMIN
USE MODD_RAIN_ICE_PARAM, ONLY: NDRYLBDAG, NDRYLBDAR, NDRYLBDAS, X0DEPG, X1DEPG, XCOLEXIG, XCOLEXSG, XCOLIG, &
& XCOLSG, XDRYINTP1G, XDRYINTP1R, XDRYINTP1S, XDRYINTP2G, XDRYINTP2R, XDRYINTP2S, &
& XEX0DEPG, XEX1DEPG, XEXICFRR, XEXRCFRI, XFCDRYG, XFIDRYG, XFRDRYG, &
& XFSDRYG, XICFRR, XKER_RDRYG, XKER_SDRYG, XLBRDRYG1, XLBRDRYG2, XLBRDRYG3, &
& XLBSDRYG1, XLBSDRYG2, XLBSDRYG3, XRCFRI
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
INTEGER, INTENT(IN) :: KPROMA,KSIZE
LOGICAL, INTENT(IN) :: LDSOFT
REAL, DIMENSION(KSIZE), INTENT(IN) :: PCOMPUTE
INTEGER, INTENT(IN) :: KRR ! Number of moist variable
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRHODREF ! Reference density
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLVFACT
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLSFACT
REAL, DIMENSION(KSIZE), INTENT(IN) :: PPRES ! absolute pressure at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PDV ! Diffusivity of water vapor in the air
REAL, DIMENSION(KSIZE), INTENT(IN) :: PKA ! Thermal conductivity of the air
REAL, DIMENSION(KSIZE), INTENT(IN) :: PCJ ! Function to compute the ventilation coefficient
REAL, DIMENSION(KSIZE), INTENT(IN) :: PCIT ! Pristine ice conc. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLBDAR ! Slope parameter of the raindrop distribution
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLBDAS ! Slope parameter of the aggregate distribution
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLBDAG ! Slope parameter of the graupel distribution
REAL, DIMENSION(KSIZE), INTENT(IN) :: PT ! Temperature
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRIT ! Pristine ice m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRGT ! Graupel m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRGSI ! Graupel tendency by other processes
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRGSI_MR ! Graupel mr change by other processes
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PWETG ! 1. where graupel grows in wet mode, 0. elsewhere
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRICFRRG ! Rain contact freezing
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRRCFRIG ! Rain contact freezing
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRICFRR ! Rain contact freezing
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRCWETG ! Graupel wet growth
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRIWETG ! Graupel wet growth
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRRWETG ! Graupel wet growth
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRSWETG ! Graupel wet growth
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRCDRYG ! Graupel dry growth
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRIDRYG ! Graupel dry growth
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRRDRYG ! Graupel dry growth
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRSDRYG ! Graupel dry growth
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRWETGH ! Conversion of graupel into hail
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRWETGH_MR ! Conversion of graupel into hail, mr change
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRGMLTR ! Melting of the graupel
REAL, DIMENSION(KPROMA, 8), INTENT(INOUT) :: PRG_TEND ! Individual tendencies
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_TH
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RC
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RR
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RI
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RS
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RG
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RH
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PB_RG
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PB_RH
!
!* 0.2 declaration of local variables
!
INTEGER, PARAMETER :: IRCDRYG=1, IRIDRYG=2, IRIWETG=3, IRSDRYG=4, IRSWETG=5, IRRDRYG=6, &
& IFREEZ1=7, IFREEZ2=8
LOGICAL, DIMENSION(KSIZE) :: GDRY
INTEGER, DIMENSION(KSIZE) :: I1
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
REAL, DIMENSION(KSIZE) :: ZDRY, ZDRYG, ZMASK
INTEGER :: IGDRY
REAL, DIMENSION(KSIZE) :: ZVEC1, ZVEC2, ZVEC3
INTEGER, DIMENSION(KSIZE) :: IVEC1, IVEC2
REAL, DIMENSION(KSIZE) :: ZZW, &
ZRDRYG_INIT, & !Initial dry growth rate of the graupeln
ZRWETG_INIT !Initial wet growth rate of the graupeln
INTEGER :: JJ, JL
REAL(KIND=JPRB) :: ZHOOK_HANDLE
!-------------------------------------------------------------------------------
!
IF (LHOOK) CALL DR_HOOK('ICE4_FAST_RG', 0, ZHOOK_HANDLE)
!
!-------------------------------------------------------------------------------
!
!* 6.1 rain contact freezing
!
DO JL=1, KSIZE
ZMASK(JL)=MAX(0., -SIGN(1., XRTMIN(4)-PRIT(JL))) * & ! WHERE(PRIT(:)>XRTMIN(4))
&MAX(0., -SIGN(1., XRTMIN(3)-PRRT(JL))) * & ! WHERE(PRRT(:)>XRTMIN(3))
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRICFRRG(JL)=ZMASK(JL) * PRICFRRG(JL)
PRRCFRIG(JL)=ZMASK(JL) * PRRCFRIG(JL)
PRICFRR(JL)=ZMASK(JL) * PRICFRR(JL)
ENDDO
ELSE
PRICFRRG(:)=0.
PRRCFRIG(:)=0.
WHERE(ZMASK(:)==1.)
PRICFRRG(:) = XICFRR*PRIT(:) & ! RICFRRG
*PLBDAR(:)**XEXICFRR &
*PRHODREF(:)**(-XCEXVT)
PRRCFRIG(:) = XRCFRI*PCIT(:) & ! RRCFRIG
* PLBDAR(:)**XEXRCFRI &
* PRHODREF(:)**(-XCEXVT-1.)
END WHERE
IF(LCRFLIMIT) THEN
DO JL=1, KSIZE
!Comparison between heat to be released (to freeze rain) and heat sink (rain and ice temperature change)
!ZZW is the proportion of process that can take place
ZZW(JL)=(1.-ZMASK(JL)) + & ! 1. outside of mask
ZMASK(JL) * MAX(0., MIN(1., (PRICFRRG(JL)*XCI+PRRCFRIG(JL)*XCL)*(XTT-PT(JL)) / &
MAX(1.E-20, XLVTT*PRRCFRIG(JL))))
ENDDO
ELSE
ZZW(:)=1.
ENDIF
DO JL=1, KSIZE
PRRCFRIG(JL) = ZZW(JL) * PRRCFRIG(JL) !Part of rain that can be freezed
PRICFRR(JL) = (1.-ZZW(JL)) * PRICFRRG(JL) !Part of collected pristine ice converted to rain
PRICFRRG(JL) = ZZW(JL) * PRICFRRG(JL) !Part of collected pristine ice that lead to graupel
ENDDO
ENDIF
!
!
!* 6.3 compute the graupel growth
!
! Wet and dry collection of rc and ri on graupel
DO JL=1, KSIZE
ZMASK(JL)=MAX(0., -SIGN(1., XRTMIN(6)-PRGT(JL))) * & ! WHERE(PRGT(:)>XRTMIN(6))
&MAX(0., -SIGN(1., XRTMIN(2)-PRCT(JL))) * & ! WHERE(PRCT(:)>XRTMIN(2))
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRG_TEND(JL, IRCDRYG)=ZMASK(JL)*PRG_TEND(JL, IRCDRYG)
ENDDO
ELSE
ZZW(:)=0.
WHERE(ZMASK(:)==1.)
ZZW(:)=PLBDAG(:)**(XCXG-XDG-2.) * PRHODREF(:)**(-XCEXVT)
END WHERE
DO JL=1, KSIZE
PRG_TEND(JL, IRCDRYG)=ZMASK(JL)*XFCDRYG * PRCT(JL) * ZZW(JL)
ENDDO
ENDIF
DO JL=1, KSIZE
ZMASK(JL)=MAX(0., -SIGN(1., XRTMIN(6)-PRGT(JL))) * & ! WHERE(PRGT(:)>XRTMIN(6))
&MAX(0., -SIGN(1., XRTMIN(4)-PRIT(JL))) * & ! WHERE(PRIT(:)>XRTMIN(4))
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRG_TEND(JL, IRIDRYG)=ZMASK(JL) * PRG_TEND(JL, IRIDRYG)
PRG_TEND(JL, IRIWETG)=ZMASK(JL) * PRG_TEND(JL, IRIWETG)
ENDDO
ELSE
PRG_TEND(:, IRIDRYG)=0.
PRG_TEND(:, IRIWETG)=0.
WHERE(ZMASK(1:KSIZE)==1.)
ZZW(1:KSIZE)=PLBDAG(1:KSIZE)**(XCXG-XDG-2.) * PRHODREF(1:KSIZE)**(-XCEXVT)
PRG_TEND(1:KSIZE, IRIDRYG)=XFIDRYG*EXP(XCOLEXIG*(PT(1:KSIZE)-XTT))*PRIT(1:KSIZE)*ZZW(1:KSIZE)
PRG_TEND(1:KSIZE, IRIWETG)=PRG_TEND(1:KSIZE, IRIDRYG) / (XCOLIG*EXP(XCOLEXIG*(PT(1:KSIZE)-XTT)))
END WHERE
ENDIF
! Wet and dry collection of rs on graupel (6.2.1)
IGDRY = 0
DO JJ = 1, KSIZE
ZDRY(JJ)=MAX(0., -SIGN(1., XRTMIN(5)-PRST(JJ))) * & ! WHERE(PRST(:)>XRTMIN(5))
&MAX(0., -SIGN(1., XRTMIN(6)-PRGT(JJ))) * & ! WHERE(PRGT(:)>XRTMIN(6))
&PCOMPUTE(JJ)
IF (ZDRY(JJ)>0) THEN
IGDRY = IGDRY + 1
I1(IGDRY) = JJ
GDRY(JJ) = .TRUE.
ELSE
GDRY(JJ) = .FALSE.
END IF
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRG_TEND(JL, IRSDRYG)=ZDRY(JL) * PRG_TEND(JL, IRSDRYG)
PRG_TEND(JL, IRSWETG)=ZDRY(JL) * PRG_TEND(JL, IRSWETG)
ENDDO
ELSE
PRG_TEND(:, IRSDRYG)=0.
PRG_TEND(:, IRSWETG)=0.
IF(IGDRY>0)THEN
!
!* 6.2.3 select the (PLBDAG,PLBDAS) couplet
!
DO JJ = 1, IGDRY
ZVEC1(JJ) = PLBDAG(I1(JJ))
ZVEC2(JJ) = PLBDAS(I1(JJ))
END DO
!
!* 6.2.4 find the next lower indice for the PLBDAG and for the PLBDAS
! in the geometrical set of (Lbda_g,Lbda_s) couplet use to
! tabulate the SDRYG-kernel
!
ZVEC1(1:IGDRY)=MAX(1.00001, MIN(REAL(NDRYLBDAG)-0.00001, &
XDRYINTP1G*LOG(ZVEC1(1:IGDRY))+XDRYINTP2G))
IVEC1(1:IGDRY)=INT(ZVEC1(1:IGDRY) )
ZVEC1(1:IGDRY)=ZVEC1(1:IGDRY)-REAL(IVEC1(1:IGDRY))
!
ZVEC2(1:IGDRY)=MAX(1.00001, MIN( REAL(NDRYLBDAS)-0.00001, &
XDRYINTP1S*LOG(ZVEC2(1:IGDRY))+XDRYINTP2S))
IVEC2(1:IGDRY)=INT(ZVEC2(1:IGDRY))
ZVEC2(1:IGDRY)=ZVEC2(1:IGDRY)-REAL(IVEC2(1:IGDRY))
!
!* 6.2.5 perform the bilinear interpolation of the normalized
! SDRYG-kernel
!
DO JJ=1, IGDRY
ZVEC3(JJ) = ( XKER_SDRYG(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_SDRYG(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_SDRYG(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_SDRYG(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
*(ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = 0.
DO JJ = 1, IGDRY
ZZW(I1(JJ)) = ZVEC3(JJ)
END DO
!
WHERE(GDRY(1:KSIZE))
PRG_TEND(1:KSIZE, IRSWETG)=XFSDRYG*ZZW(1:KSIZE) & ! RSDRYG
/ XCOLSG &
*(PLBDAS(1:KSIZE)**(XCXS-XBS))*( PLBDAG(1:KSIZE)**XCXG ) &
*(PRHODREF(1:KSIZE)**(-XCEXVT-1.)) &
*( XLBSDRYG1/( PLBDAG(1:KSIZE)**2 ) + &
XLBSDRYG2/( PLBDAG(1:KSIZE) * PLBDAS(1:KSIZE) ) + &
XLBSDRYG3/( PLBDAS(1:KSIZE)**2))
PRG_TEND(1:KSIZE, IRSDRYG)=PRG_TEND(1:KSIZE, IRSWETG)*XCOLSG*EXP(XCOLEXSG*(PT(1:KSIZE)-XTT))
END WHERE
ENDIF
ENDIF
!
!* 6.2.6 accretion of raindrops on the graupeln
!
IGDRY = 0
DO JJ = 1, KSIZE
ZDRY(JJ)=MAX(0., -SIGN(1., XRTMIN(3)-PRRT(JJ))) * & ! WHERE(PRRT(:)>XRTMIN(3))
&MAX(0., -SIGN(1., XRTMIN(6)-PRGT(JJ))) * & ! WHERE(PRGT(:)>XRTMIN(6))
&PCOMPUTE(JJ)
IF (ZDRY(JJ)>0) THEN
IGDRY = IGDRY + 1
I1(IGDRY) = JJ
GDRY(JJ) = .TRUE.
ELSE
GDRY(JJ) = .FALSE.
ENDIF
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRG_TEND(JL, IRRDRYG)=ZDRY(JL) * PRG_TEND(JL, IRRDRYG)
ENDDO
ELSE
PRG_TEND(:, IRRDRYG)=0.
!
IF(IGDRY>0) THEN
!
!* 6.2.8 select the (PLBDAG,PLBDAR) couplet
!
DO JJ = 1, IGDRY
ZVEC1(JJ) = PLBDAG(I1(JJ))
ZVEC2(JJ) = PLBDAR(I1(JJ))
ENDDO
!
!* 6.2.9 find the next lower indice for the PLBDAG and for the PLBDAR
! in the geometrical set of (Lbda_g,Lbda_r) couplet use to
! tabulate the RDRYG-kernel
!
ZVEC1(1:IGDRY)=MAX(1.00001, MIN( REAL(NDRYLBDAG)-0.00001, &
XDRYINTP1G*LOG(ZVEC1(1:IGDRY))+XDRYINTP2G))
IVEC1(1:IGDRY)=INT(ZVEC1(1:IGDRY))
ZVEC1(1:IGDRY)=ZVEC1(1:IGDRY)-REAL(IVEC1(1:IGDRY))
!
ZVEC2(1:IGDRY)=MAX(1.00001, MIN( REAL(NDRYLBDAR)-0.00001, &
XDRYINTP1R*LOG(ZVEC2(1:IGDRY))+XDRYINTP2R))
IVEC2(1:IGDRY)=INT(ZVEC2(1:IGDRY))
ZVEC2(1:IGDRY)=ZVEC2(1:IGDRY)-REAL(IVEC2(1:IGDRY))
!
!* 6.2.10 perform the bilinear interpolation of the normalized
! RDRYG-kernel
!
DO JJ=1, IGDRY
ZVEC3(JJ)= ( XKER_RDRYG(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RDRYG(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_RDRYG(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RDRYG(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
*(ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = 0.
DO JJ = 1, IGDRY
ZZW(I1(JJ)) = ZVEC3(JJ)
END DO
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
!
WHERE(GDRY(1:KSIZE))
PRG_TEND(1:KSIZE, IRRDRYG) = XFRDRYG*ZZW(1:KSIZE) & ! RRDRYG
*( PLBDAR(1:KSIZE)**(-4) )*( PLBDAG(1:KSIZE)**XCXG ) &
*( PRHODREF(1:KSIZE)**(-XCEXVT-1.) ) &
*( XLBRDRYG1/( PLBDAG(1:KSIZE)**2 ) + &
XLBRDRYG2/( PLBDAG(1:KSIZE) * PLBDAR(1:KSIZE) ) + &
XLBRDRYG3/( PLBDAR(1:KSIZE)**2) )
END WHERE
ENDIF
ENDIF
DO JL=1, KSIZE
ZRDRYG_INIT(JL)=PRG_TEND(JL, IRCDRYG)+PRG_TEND(JL, IRIDRYG)+ &
&PRG_TEND(JL, IRSDRYG)+PRG_TEND(JL, IRRDRYG)
ENDDO
!Freezing rate
DO JL=1, KSIZE
ZMASK(JL)=MAX(0., -SIGN(1., XRTMIN(6)-PRGT(JL))) * & ! WHERE(PRGT(:)>XRTMIN(6))
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRG_TEND(JL, IFREEZ1)=ZMASK(JL) * PRG_TEND(JL, IFREEZ1)
PRG_TEND(JL, IFREEZ2)=ZMASK(JL) * PRG_TEND(JL, IFREEZ2)
ENDDO
ELSE
DO JL=1, KSIZE
PRG_TEND(JL, IFREEZ1)=ZMASK(JL) * PRVT(JL)*PPRES(JL)/(XEPSILO+PRVT(JL)) ! Vapor pressure
ENDDO
IF(LEVLIMIT) THEN
WHERE(ZMASK(1:KSIZE)==1.)
PRG_TEND(1:KSIZE, IFREEZ1)=MIN(PRG_TEND(1:KSIZE, IFREEZ1), EXP(XALPI-XBETAI/PT(1:KSIZE)-XGAMI*ALOG(PT(1:KSIZE)))) ! min(ev, es_i(T))
END WHERE
ENDIF
PRG_TEND(:, IFREEZ2)=0.
WHERE(ZMASK(1:KSIZE)==1.)
PRG_TEND(1:KSIZE, IFREEZ1)=PKA(1:KSIZE)*(XTT-PT(1:KSIZE)) + &
(PDV(1:KSIZE)*(XLVTT+(XCPV-XCL)*(PT(1:KSIZE)-XTT)) &
*(XESTT-PRG_TEND(1:KSIZE, IFREEZ1))/(XRV*PT(1:KSIZE)) )
PRG_TEND(1:KSIZE, IFREEZ1)=PRG_TEND(1:KSIZE, IFREEZ1)* ( X0DEPG* PLBDAG(1:KSIZE)**XEX0DEPG + &
X1DEPG*PCJ(1:KSIZE)*PLBDAG(1:KSIZE)**XEX1DEPG )/ &
( PRHODREF(1:KSIZE)*(XLMTT-XCL*(XTT-PT(1:KSIZE))) )
PRG_TEND(1:KSIZE, IFREEZ2)=(PRHODREF(1:KSIZE)*(XLMTT+(XCI-XCL)*(XTT-PT(1:KSIZE))) ) / &
( PRHODREF(1:KSIZE)*(XLMTT-XCL*(XTT-PT(1:KSIZE))) )
END WHERE
ENDIF
DO JL=1, KSIZE
!We must agregate, at least, the cold species
ZRWETG_INIT(JL)=ZMASK(JL) * MAX(PRG_TEND(JL, IRIWETG)+PRG_TEND(JL, IRSWETG), &
&MAX(0., PRG_TEND(JL, IFREEZ1) + &
&PRG_TEND(JL, IFREEZ2) * ( &
&PRG_TEND(JL, IRIWETG)+PRG_TEND(JL, IRSWETG) )))
ENDDO
!Growth mode
DO JL=1, KSIZE
PWETG(JL) = ZMASK(JL) * & !
& MAX(0., SIGN(1., MAX(0., ZRDRYG_INIT(JL)-PRG_TEND(JL, IRIDRYG)-PRG_TEND(JL, IRSDRYG)) - &
&MAX(0., ZRWETG_INIT(JL)-PRG_TEND(JL, IRIWETG)-PRG_TEND(JL, IRSWETG))))
ENDDO
IF(LNULLWETG) THEN
DO JL=1, KSIZE
PWETG(JL) = PWETG(JL) * MAX(0., -SIGN(1., -ZRDRYG_INIT(JL)))
ENDDO
ELSE
DO JL=1, KSIZE
PWETG(JL) = PWETG(JL) * MAX(0., -SIGN(1., -ZRWETG_INIT(JL)))
ENDDO
ENDIF
IF(.NOT. LWETGPOST) THEN
DO JL=1, KSIZE
PWETG(JL) = PWETG(JL) * MAX(0., -SIGN(1., PT(JL)-XTT))
ENDDO
ENDIF
DO JL=1, KSIZE
ZDRYG(JL) = ZMASK(JL) * & !
& MAX(0., -SIGN(1., PT(JL)-XTT)) * & ! WHERE(PT(:)<XTT)
& MAX(0., -SIGN(1., -ZRDRYG_INIT(JL))) * & ! WHERE(ZRDRYG_INIT(:)>0.)
#else
& MAX(0., -SIGN(1., 1.E-20-ZRDRYG_INIT(JL))) * & ! WHERE(ZRDRYG_INIT(:)>0.)
#endif
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
& MAX(0., -SIGN(1., MAX(0., ZRDRYG_INIT(JL)-PRG_TEND(JL, IRIDRYG)-PRG_TEND(JL, IRSDRYG)) - &
&MAX(0., ZRWETG_INIT(JL)-PRG_TEND(JL, IRIWETG)-PRG_TEND(JL, IRSWETG))))
ENDDO
! Part of ZRWETG to be converted into hail
! Graupel can be produced by other processes instantaneously (inducing a mixing ratio change, PRGSI_MR) or
! as a tendency (PRWETGH)
PRWETGH(:)=0.
PRWETGH_MR(:)=0.
IF(KRR==7) THEN
WHERE(PWETG(:)==1.)
!assume a linear percent of conversion of produced graupel into hail
PRWETGH(:)=(MAX(0., PRGSI(:)+PRICFRRG(:)+PRRCFRIG(:))+ZRWETG_INIT(:))*ZRDRYG_INIT(:)/(ZRWETG_INIT(:)+ZRDRYG_INIT(:))
PRWETGH_MR(:)=MAX(0., PRGSI_MR(:))*ZRDRYG_INIT(:)/(ZRWETG_INIT(:)+ZRDRYG_INIT(:))
END WHERE
ENDIF
DO JL=1, KSIZE
!Aggregated minus collected
PRRWETG(JL)=-PWETG(JL) * (PRG_TEND(JL, IRIWETG)+PRG_TEND(JL, IRSWETG)+&
&PRG_TEND(JL, IRCDRYG)-ZRWETG_INIT(JL))
PRCWETG(JL)=PWETG(JL) * PRG_TEND(JL, IRCDRYG)
PRIWETG(JL)=PWETG(JL) * PRG_TEND(JL, IRIWETG)
PRSWETG(JL)=PWETG(JL) * PRG_TEND(JL, IRSWETG)
PRCDRYG(JL)=ZDRYG(JL) * PRG_TEND(JL, IRCDRYG)
PRRDRYG(JL)=ZDRYG(JL) * PRG_TEND(JL, IRRDRYG)
PRIDRYG(JL)=ZDRYG(JL) * PRG_TEND(JL, IRIDRYG)
PRSDRYG(JL)=ZDRYG(JL) * PRG_TEND(JL, IRSDRYG)
ENDDO
!
!* 6.5 Melting of the graupeln
!
DO JL=1, KSIZE
ZMASK(JL)=MAX(0., -SIGN(1., XRTMIN(6)-PRGT(JL))) * & ! WHERE(PRGT(:)>XRTMIN(6))
&MAX(0., -SIGN(1., XTT-PT(JL))) * & ! WHERE(PT(:)>XTT)
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRGMLTR(JL)=ZMASK(JL) * PRGMLTR(JL)
ENDDO
ELSE
DO JL=1, KSIZE
PRGMLTR(JL)=ZMASK(JL) * PRVT(JL)*PPRES(JL)/(XEPSILO+PRVT(JL)) ! Vapor pressure
ENDDO
IF(LEVLIMIT) THEN
WHERE(ZMASK(:)==1.)
PRGMLTR(:)=MIN(PRGMLTR(:), EXP(XALPW-XBETAW/PT(:)-XGAMW*ALOG(PT(:)))) ! min(ev, es_w(T))
END WHERE
ENDIF
DO JL=1, KSIZE
PRGMLTR(JL)=ZMASK(JL) * (PKA(JL)*(XTT-PT(JL)) + &
( PDV(JL)*(XLVTT + ( XCPV - XCL ) * ( PT(JL) - XTT )) &
*(XESTT-PRGMLTR(JL))/(XRV*PT(JL)) ))
ENDDO
WHERE(ZMASK(1:KSIZE)==1.)
!
! compute RGMLTR
!
PRGMLTR(1:KSIZE) = MAX( 0.0,( -PRGMLTR(1:KSIZE) * &
( X0DEPG* PLBDAG(1:KSIZE)**XEX0DEPG + &
X1DEPG*PCJ(1:KSIZE)*PLBDAG(1:KSIZE)**XEX1DEPG ) - &
( PRG_TEND(1:KSIZE, IRCDRYG)+PRG_TEND(1:KSIZE, IRRDRYG) ) * &
( PRHODREF(1:KSIZE)*XCL*(XTT-PT(1:KSIZE))) ) / &
( PRHODREF(1:KSIZE)*XLMTT ) )
END WHERE
ENDIF
DO JL=1, KSIZE
PA_RI(JL) = PA_RI(JL) - PRICFRRG(JL) - PRICFRR(JL)
PA_RR(JL) = PA_RR(JL) - PRRCFRIG(JL) + PRICFRR(JL)
PA_RG(JL) = PA_RG(JL) + PRICFRRG(JL) + PRRCFRIG(JL)
PA_TH(JL) = PA_TH(JL) + (PRRCFRIG(JL) - PRICFRR(JL))*(PLSFACT(JL)-PLVFACT(JL))
PA_RC(JL) = PA_RC(JL) - PRCWETG(JL)
PA_RI(JL) = PA_RI(JL) - PRIWETG(JL)
PA_RS(JL) = PA_RS(JL) - PRSWETG(JL)
PA_RG(JL) = PA_RG(JL) + PRCWETG(JL) + PRIWETG(JL) + PRSWETG(JL) + PRRWETG(JL)
PA_RR(JL) = PA_RR(JL) - PRRWETG(JL)
PA_TH(JL) = PA_TH(JL) + (PRCWETG(JL) + PRRWETG(JL))*(PLSFACT(JL)-PLVFACT(JL))
PA_RG(JL) = PA_RG(JL) - PRWETGH(JL)
PB_RG(JL) = PB_RG(JL) - PRWETGH_MR(JL)
IF (KRR==7) THEN
PA_RH(JL) = PA_RH(JL) + PRWETGH(JL)
PB_RH(JL) = PB_RH(JL) + PRWETGH_MR(JL)
ENDIF
PA_RC(JL) = PA_RC(JL) - PRCDRYG(JL)
PA_RI(JL) = PA_RI(JL) - PRIDRYG(JL)
PA_RS(JL) = PA_RS(JL) - PRSDRYG(JL)
PA_RR(JL) = PA_RR(JL) - PRRDRYG(JL)
PA_RG(JL) = PA_RG(JL) + PRCDRYG(JL) + PRIDRYG(JL) + PRSDRYG(JL) + PRRDRYG(JL)
PA_TH(JL) = PA_TH(JL) + (PRCDRYG(JL)+PRRDRYG(JL))*(PLSFACT(JL)-PLVFACT(JL))
PA_RR(JL) = PA_RR(JL) + PRGMLTR(JL)
PA_RG(JL) = PA_RG(JL) - PRGMLTR(JL)
PA_TH(JL) = PA_TH(JL) - PRGMLTR(JL)*(PLSFACT(JL)-PLVFACT(JL))
ENDDO
!
IF (LHOOK) CALL DR_HOOK('ICE4_FAST_RG', 1, ZHOOK_HANDLE)
END SUBROUTINE ICE4_FAST_RG
END MODULE MODE_ICE4_FAST_RG