Newer
Older
!ORILAM_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier
!ORILAM_LIC This is part of the ORILAM software governed by the CeCILL-C licence
!ORILAM_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!ORILAM_LIC for details.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
!-----------------------------------------------------------------
!! ########################
MODULE MODI_CH_AER_EQM_INIT_n
!! ########################
!!
INTERFACE
!!
SUBROUTINE CH_AER_EQM_INIT_n(PCHEM, PAERO, PM3D, PRHOP3D, PSIG3D, PRG3D, &
PN3D, PRHODREF, PCTOTA)
IMPLICIT NONE
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PCHEM, PAERO
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PM3D, PRHOP3D, PSIG3D, PRG3D, PN3D
REAL, DIMENSION(:,:,:,:,:),INTENT(INOUT) :: PCTOTA
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF
END SUBROUTINE CH_AER_EQM_INIT_n
!!
END INTERFACE
!!
END MODULE MODI_CH_AER_EQM_INIT_n
!!
!!
!! ############################################################
SUBROUTINE CH_AER_EQM_INIT_n(PCHEM,PAERO, PM3D, PRHOP3D, PSIG3D, PRG3D, &
PN3D, PRHODREF, PCTOTA)
!! ############################################################
!!
!! PURPOSE
!! -------
!! Realise l'equilibre entre les moments via la masse contenue
!! dans les aerosols, les diametres moyens et la dispersion.
!!
!! REFERENCE
!! ---------
!! none
!!
!! AUTHOR
!! ------
!! Pierre TULET (LA)
!!
!! MODIFICATIONS
!! -------------
!! M.Leriche 2015 : masse molaire Black carbon 12 g/mol
! P. Wautelet 05/03/2019: modify allocation procedure for XMI and XSOLORG
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
!!
!! EXTERNAL
!! --------
!! None
!!
USE MODD_CH_AEROSOL
USE MODD_CSTS_DUST, ONLY : XDENSITY_DUST
USE MODD_CH_AERO_n
USE MODD_CH_M9_n, ONLY : CNAMES
USE MODD_CH_MNHC_n, ONLY : LCH_INIT_FIELD
USE MODD_NSV
USE MODD_CONF
USE MODE_ll
USE MODD_PARAMETERS, ONLY : JPVEXT
USE MODD_CST, ONLY : &
XMNH_TINY &
,XAVOGADRO & ![molec/mol] avogadros number
,XMD ![kg/mol] molar weight of air
!!
IMPLICIT NONE
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
!* 0.1 declarations of arguments
!
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PCHEM, PAERO
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PM3D, PRHOP3D, PSIG3D, PRG3D, PN3D
REAL, DIMENSION(:,:,:,:,:), INTENT(INOUT) :: PCTOTA
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF
!
!
!* 0.2 declarations local variables
!
REAL,DIMENSION(SIZE(PCHEM,1),SIZE(PCHEM,2),SIZE(PCHEM,3),NSP+NCARB+NSOA,JPMODE) :: ZCCTOT
REAL,DIMENSION(SIZE(PCHEM,1),SIZE(PCHEM,2),SIZE(PCHEM,3)) :: ZSUM
REAL,DIMENSION(SIZE(PCHEM,1),SIZE(PCHEM,2),SIZE(PCHEM,3)) :: ZSIGMA
REAL,DIMENSION(SIZE(PCHEM,1),SIZE(PCHEM,2),SIZE(PCHEM,3)) :: ZBCMINI, ZBCMINJ, ZOCMINI, ZOCMINJ, ZDSTMINI, ZDSTMINJ
REAL,DIMENSION(SIZE(PCHEM,1),SIZE(PCHEM,2),SIZE(PCHEM,3),JPMODE*3) :: ZPM
REAL,DIMENSION(SIZE(PCHEM,1),SIZE(PCHEM,2),SIZE(PCHEM,3)) :: ZPOIDS, ZWORK
REAL :: ZMASS, ZM6MIN
INTEGER :: JN, JJ, JK ! loop counter
INTEGER :: IINFO_ll
REAL :: ZDEN2MOL, ZRHODREFMIN, ZCOEFAEROBC, ZCOEFAEROOC, ZCOEFAERODST
REAL :: ZVALBC, ZVALOC, ZMINRGI, ZMINRGJ, ZVALDST
REAL :: ZSUMAEROCO, ZSUMRHOD
REAL :: ZINIRADIUSI, ZINIRADIUSJ
!
!-------------------------------------------------------------------------------
!
!* 1. TRANSFER FROM GAS TO AEROSOL MODULE
! ------------------------------------
! 1.1 initialisation
! Index gas scheme <=> Index Orilam
DO JJ=1,SIZE(CNAMES)
IF (CNAMES(JJ) == "CO") JP_CH_CO = JJ
END DO
ZDEN2MOL = 1E-6 * XAVOGADRO / XMD
IF ( ASSOCIATED(XMI) ) THEN
IF ( SIZE(XMI) == 0 ) THEN
DEALLOCATE( XMI )
XMI => NULL()
END IF
END IF
IF (.NOT.(ASSOCIATED(XMI))) THEN
ALLOCATE(XMI(SIZE(PCHEM,1),SIZE(PCHEM,2),SIZE(PCHEM,3),NSP+NCARB+NSOA))
END IF
IF ( ASSOCIATED(XSOLORG) ) THEN
IF ( SIZE(XSOLORG) == 0 ) THEN
DEALLOCATE( XSOLORG )
XSOLORG => NULL()
END IF
END IF
IF (.NOT.(ASSOCIATED(XSOLORG))) THEN
ALLOCATE(XSOLORG(SIZE(PCHEM,1),SIZE(PCHEM,2),SIZE(PCHEM,3),10))
XSOLORG(:,:,:,:) = 0.
END IF
!
! Default values of molar mass
XMI(:,:,:,:) = 250.
XMI(:,:,:,JP_AER_SO4) = 98.
XMI(:,:,:,JP_AER_NO3) = 63.
XMI(:,:,:,JP_AER_NH3) = 17.
XMI(:,:,:,JP_AER_H2O) = 18.
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
XMI(:,:,:,JP_AER_DST) = 100.
IF (NSOA .EQ. 10) THEN
XMI(:,:,:,JP_AER_SOA1) = 88.
XMI(:,:,:,JP_AER_SOA2) = 180.
XMI(:,:,:,JP_AER_SOA3) = 1.5374857E+02
XMI(:,:,:,JP_AER_SOA4) = 1.9586780E+02
XMI(:,:,:,JP_AER_SOA5) = 195.
XMI(:,:,:,JP_AER_SOA6) = 195.
XMI(:,:,:,JP_AER_SOA7) = 165.
XMI(:,:,:,JP_AER_SOA8) = 195.
XMI(:,:,:,JP_AER_SOA9) = 270.
XMI(:,:,:,JP_AER_SOA10) = 210.
END IF
! Moments index
NM0(1) = 1
NM3(1) = 2
NM6(1) = 3
NM0(2) = 4
NM3(2) = 5
NM6(2) = 6
IF (CRGUNIT=="MASS") THEN
ZINIRADIUSI = XINIRADIUSI * EXP(-3.*(LOG(XINISIGI))**2)
ZINIRADIUSJ = XINIRADIUSJ * EXP(-3.*(LOG(XINISIGJ))**2)
ELSE
ZINIRADIUSI = XINIRADIUSI
ZINIRADIUSJ = XINIRADIUSJ
END IF
ZMINRGI = ZINIRADIUSI * XCOEFRADIMIN
ZMINRGJ = ZINIRADIUSJ * XCOEFRADJMIN
! Aerosol Density
! Cf Ackermann (all to black carbon except water)
XRHOI(:) = 1.8e3
XRHOI(JP_AER_H2O) = 1.0e3 ! water
XRHOI(JP_AER_DST) = XDENSITY_DUST ! dusts
PCHEM(:,:,:,:) = MAX(PCHEM(:,:,:,:), 0.)
PAERO(:,:,:,:) = MAX(PAERO(:,:,:,:), XMNH_TINY )
!
DO JJ=1,NSP+NCARB+NSOA
XFAC(JJ)=(4./3.)*3.14292654*XRHOI(JJ)*1.e-9
ENDDO
!
!
!* 1.n transfer aerosol mass from gas to aerosol variables
! (and conversion of part/part --> microgram/m3)
!
DO JJ=1,NSV_AER
PAERO(:,:,:,JJ) = PAERO(:,:,:,JJ) * ZDEN2MOL * PRHODREF(:,:,:)
ENDDO
!
PCTOTA(:,:,:,:,:) =0.
! mineral phase
PCTOTA(:,:,:,JP_AER_SO4,1) = PAERO(:,:,:,JP_CH_SO4i)*XMI(:,:,:,JP_AER_SO4)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SO4,2) = PAERO(:,:,:,JP_CH_SO4j)*XMI(:,:,:,JP_AER_SO4)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_NO3,1) = PAERO(:,:,:,JP_CH_NO3i)*XMI(:,:,:,JP_AER_NO3)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_NO3,2) = PAERO(:,:,:,JP_CH_NO3j)*XMI(:,:,:,JP_AER_NO3)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_NH3,1) = PAERO(:,:,:,JP_CH_NH3i)*XMI(:,:,:,JP_AER_NH3)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_NH3,2) = PAERO(:,:,:,JP_CH_NH3j)*XMI(:,:,:,JP_AER_NH3)/6.0221367E+11
! water
PCTOTA(:,:,:,JP_AER_H2O,1) = PAERO(:,:,:,JP_CH_H2Oi)*XMI(:,:,:,JP_AER_H2O)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_H2O,2) = PAERO(:,:,:,JP_CH_H2Oj)*XMI(:,:,:,JP_AER_H2O)/6.0221367E+11
!
! primary organic carbon
PCTOTA(:,:,:,JP_AER_OC,1) = PAERO(:,:,:,JP_CH_OCi)*XMI(:,:,:,JP_AER_OC)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_OC,2) = PAERO(:,:,:,JP_CH_OCj)*XMI(:,:,:,JP_AER_OC)/6.0221367E+11
! primary black carbon
PCTOTA(:,:,:,JP_AER_BC,1) = PAERO(:,:,:,JP_CH_BCi)*XMI(:,:,:,JP_AER_BC)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_BC,2) = PAERO(:,:,:,JP_CH_BCj)*XMI(:,:,:,JP_AER_BC)/6.0221367E+11
!dust
PCTOTA(:,:,:,JP_AER_DST,1) = PAERO(:,:,:,JP_CH_DSTi)*XMI(:,:,:,JP_AER_DST)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_DST,2) = PAERO(:,:,:,JP_CH_DSTj)*XMI(:,:,:,JP_AER_DST)/6.0221367E+11
!
IF (NSOA .EQ. 10) THEN
PCTOTA(:,:,:,JP_AER_SOA1,1) = PAERO(:,:,:,JP_CH_SOA1i)*XMI(:,:,:,JP_AER_SOA1)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA1,2) = PAERO(:,:,:,JP_CH_SOA1j)*XMI(:,:,:,JP_AER_SOA1)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA2,1) = PAERO(:,:,:,JP_CH_SOA2i)*XMI(:,:,:,JP_AER_SOA2)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA2,2) = PAERO(:,:,:,JP_CH_SOA2j)*XMI(:,:,:,JP_AER_SOA2)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA3,1) = PAERO(:,:,:,JP_CH_SOA3i)*XMI(:,:,:,JP_AER_SOA3)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA3,2) = PAERO(:,:,:,JP_CH_SOA3j)*XMI(:,:,:,JP_AER_SOA3)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA4,1) = PAERO(:,:,:,JP_CH_SOA4i)*XMI(:,:,:,JP_AER_SOA4)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA4,2) = PAERO(:,:,:,JP_CH_SOA4j)*XMI(:,:,:,JP_AER_SOA4)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA5,1) = PAERO(:,:,:,JP_CH_SOA5i)*XMI(:,:,:,JP_AER_SOA5)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA5,2) = PAERO(:,:,:,JP_CH_SOA5j)*XMI(:,:,:,JP_AER_SOA5)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA6,1) = PAERO(:,:,:,JP_CH_SOA6i)*XMI(:,:,:,JP_AER_SOA6)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA6,2) = PAERO(:,:,:,JP_CH_SOA6j)*XMI(:,:,:,JP_AER_SOA6)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA7,1) = PAERO(:,:,:,JP_CH_SOA7i)*XMI(:,:,:,JP_AER_SOA7)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA7,2) = PAERO(:,:,:,JP_CH_SOA7j)*XMI(:,:,:,JP_AER_SOA7)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA8,1) = PAERO(:,:,:,JP_CH_SOA8i)*XMI(:,:,:,JP_AER_SOA8)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA8,2) = PAERO(:,:,:,JP_CH_SOA8j)*XMI(:,:,:,JP_AER_SOA8)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA9,1) = PAERO(:,:,:,JP_CH_SOA9i)*XMI(:,:,:,JP_AER_SOA9)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA9,2) = PAERO(:,:,:,JP_CH_SOA9j)*XMI(:,:,:,JP_AER_SOA9)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA10,1) = PAERO(:,:,:,JP_CH_SOA10i)*XMI(:,:,:,JP_AER_SOA10)/6.0221367E+11
PCTOTA(:,:,:,JP_AER_SOA10,2) = PAERO(:,:,:,JP_CH_SOA10j)*XMI(:,:,:,JP_AER_SOA10)/6.0221367E+11
END IF
!* 1.1 calculate moment 3 from mass
PM3D(:,:,:,2) = 0.
PM3D(:,:,:,5) = 0.
PCTOTA(:,:,:,:,:) = MAX(PCTOTA(:,:,:,:,:), 0.)
DO JJ = 1,NSP+NCARB+NSOA
PM3D(:,:,:,2) = PM3D(:,:,:,2)+PCTOTA(:,:,:,JJ,1)/XFAC(JJ)
PM3D(:,:,:,5) = PM3D(:,:,:,5)+PCTOTA(:,:,:,JJ,2)/XFAC(JJ)
ENDDO
!
!
!
IF ((CCONF=="START").AND.(CPROGRAM/='DIAG ')) THEN
!* 1.2 calculate moment 0 from dispersion and mean radius
PM3D(:,:,:,1)= PM3D(:,:,:,2) / &
((ZINIRADIUSI**3)*EXP(4.5 * (LOG(XINISIGI))**2))
PM3D(:,:,:,4)= PM3D(:,:,:,5) / &
((ZINIRADIUSJ**3)*EXP(4.5 * (LOG(XINISIGJ))**2))
!* 1.3 calculate moment 6 from dispersion and mean radius
PM3D(:,:,:,3) = PM3D(:,:,:,1) * (ZINIRADIUSI**6) *EXP(18 *(LOG(XINISIGI))**2)
PM3D(:,:,:,6) = PM3D(:,:,:,4) * (ZINIRADIUSJ**6) *EXP(18 *(LOG(XINISIGJ))**2)
ELSE
!* 1.2 give moment 0
PM3D(:,:,:,1)= MAX(PAERO(:,:,:,JP_CH_M0i) * 1E+6 , 0.)
PM3D(:,:,:,4)= MAX(PAERO(:,:,:,JP_CH_M0j) * 1E+6 , 0.)
!
!* 1.3 give moment 6
IF (LVARSIGI) THEN ! set M6 variable standard deviation
PM3D(:,:,:,3) = MAX(PAERO(:,:,:,JP_CH_M6i), XMNH_TINY)
ELSE ! fixed standard deviation
PM3D(:,:,:,3) = PM3D(:,:,:,1) &
* ( (PM3D(:,:,:,2)/PM3D(:,:,:,1))**(1./3.) &
* exp(-(3./2.)*log(XINISIGI)**2))**6 &
* exp(18.*log(XINISIGI)**2)
END IF
IF (LVARSIGJ) THEN ! set M6 variable standard deviation
PM3D(:,:,:,6) = MAX(PAERO(:,:,:,JP_CH_M6j), XMNH_TINY)
ELSE ! fixed standard deviation
PM3D(:,:,:,6) = PM3D(:,:,:,4) &
* ( (PM3D(:,:,:,5)/PM3D(:,:,:,4))**(1./3.) &
* exp(-(3./2.)*log(XINISIGJ)**2))**6 &
* exp(18.*log(XINISIGJ)**2)
END IF
!
!
ENDIF
!
!**********************************************
! Calcul de XRHOP3D
!**********************************************
PRHOP3D(:,:,:,:)=0.
DO JN=1,JPMODE
ZSUM(:,:,:)=0.
DO JJ=1,NSP+NCARB+NSOA
ZSUM(:,:,:)=ZSUM(:,:,:)+PCTOTA(:,:,:,JJ,JN)/XRHOI(JJ)
ENDDO
DO JJ=1,NSP+NCARB+NSOA
ZCCTOT(:,:,:,JJ,JN)=PCTOTA(:,:,:,JJ,JN)/XRHOI(JJ)/ZSUM(:,:,:)
PRHOP3D(:,:,:,JN)=PRHOP3D(:,:,:,JN)+ZCCTOT(:,:,:,JJ,JN)*XRHOI(JJ)
ENDDO
ENDDO
DO JN=1,JPMODE
IF (JN .EQ. 1) THEN
IF (LVARSIGI) THEN ! variable dispersion for mode 1
ZSIGMA(:,:,:)=PM3D(:,:,:,NM3(JN))**2/(PM3D(:,:,:,NM0(JN))*PM3D(:,:,:,NM6(JN)))
ZSIGMA(:,:,:)=MIN(1-1E-10,ZSIGMA(:,:,:))
ZSIGMA(:,:,:)=MAX(1E-10,ZSIGMA(:,:,:))
ZSIGMA(:,:,:)= LOG(ZSIGMA(:,:,:))
ZSIGMA(:,:,:)= EXP(1./3.*SQRT(-ZSIGMA(:,:,:)))
WHERE (ZSIGMA(:,:,:) > XSIGIMAX)
ZSIGMA(:,:,:) = XSIGIMAX
END WHERE
WHERE (ZSIGMA(:,:,:) < XSIGIMIN)
ZSIGMA(:,:,:) = XSIGIMIN
END WHERE
ELSE ! fixed dispersion for mode 1
ZSIGMA(:,:,:) = XINISIGI
END IF
END IF
!
IF (JN .EQ. 2) THEN
IF (LVARSIGJ) THEN ! variable dispersion for mode 2
ZSIGMA(:,:,:)=PM3D(:,:,:,NM3(JN))**2/(PM3D(:,:,:,NM0(JN))*PM3D(:,:,:,NM6(JN)))
ZSIGMA(:,:,:)=MIN(1-1E-10,ZSIGMA(:,:,:))
ZSIGMA(:,:,:)=MAX(1E-10,ZSIGMA(:,:,:))
ZSIGMA(:,:,:)= LOG(ZSIGMA(:,:,:))
ZSIGMA(:,:,:)= EXP(1./3.*SQRT(-ZSIGMA(:,:,:)))
WHERE (ZSIGMA(:,:,:) > XSIGJMAX)
ZSIGMA(:,:,:) = XSIGJMAX
END WHERE
WHERE (ZSIGMA(:,:,:) < XSIGJMIN)
ZSIGMA(:,:,:) = XSIGJMIN
END WHERE
ELSE ! fixed dispersion for mode 2
ZSIGMA(:,:,:) = XINISIGJ
END IF
END IF
!
!* 1.4 calculate modal parameters from moments
PSIG3D(:,:,:,JN) = ZSIGMA(:,:,:)
PN3D(:,:,:,JN) = PM3D(:,:,:,NM0(JN))
ZSIGMA(:,:,:)=LOG(PSIG3D(:,:,:,JN))**2
PRG3D(:,:,:,JN)=(PM3D(:,:,:,NM3(JN))/PN3D(:,:,:,JN))**(1./3.)*EXP(-1.5*ZSIGMA(:,:,:))
PM3D(:,:,:,NM6(JN))=PN3D(:,:,:,JN)*PRG3D(:,:,:,JN)**6*EXP(18.*ZSIGMA(:,:,:))
!
ENDDO
!
!
PAERO(:,:,:,JP_CH_M0i) = PM3D(:,:,:,1) * 1E-6
PAERO(:,:,:,JP_CH_M0j) = PM3D(:,:,:,4) * 1E-6
IF (LVARSIGI) PAERO(:,:,:,JP_CH_M6i) = PM3D(:,:,:,3)
IF (LVARSIGJ) PAERO(:,:,:,JP_CH_M6j) = PM3D(:,:,:,6)
!
DO JJ=1,NSV_AER
PAERO(:,:,:,JJ) = PAERO(:,:,:,JJ) / (ZDEN2MOL * PRHODREF(:,:,:))
ENDDO
XSEDA(:,:,:,:)=0. ! no sedimentation for the first time step
!* 0.3 dfinition of minimum values
!Minimum values for gaseous (interact with aerosol phase)
XSVMIN(NSV_AERBEG:NSV_AEREND) = XMNH_TINY
XSVMIN(NSV_CHEMBEG-1+JP_CH_CO) = 1E-10
! For i mode
ZRHODREFMIN = MAX_ll( PRHODREF(:,:,:), IINFO_ll)
ZMASS = XN0IMIN * ((ZMINRGI**3)*EXP(4.5 * (LOG(XSIGIMIN))**2))
ZM6MIN = XN0IMIN * ((ZMINRGI**6)*EXP(18. * (LOG(XSIGIMIN))**2))
XSVMIN(NSV_AERBEG-1+JP_CH_BCi) = ZMASS * XFAC(JP_AER_BC) * 6.0221367E+11/(ZDEN2MOL*12.*ZRHODREFMIN)
XSVMIN(NSV_AERBEG-1+JP_CH_DSTi) = ZMASS * XFAC(JP_AER_DST) * 6.0221367E+11/(ZDEN2MOL*12.*ZRHODREFMIN)
XSVMIN(NSV_AERBEG-1+JP_CH_M0i) = XN0IMIN * 1E-6 / (ZDEN2MOL*ZRHODREFMIN)
IF (LVARSIGI) XSVMIN(NSV_AERBEG-1+JP_CH_M6i) = ZM6MIN / (ZDEN2MOL*ZRHODREFMIN)
!
! For j mode
ZMASS = XN0JMIN * ((ZMINRGJ**3)*EXP(4.5 * (LOG(XSIGJMIN))**2))
ZM6MIN = XN0JMIN * ((ZMINRGJ**6)*EXP(18. * (LOG(XSIGJMIN))**2))
XSVMIN(NSV_AERBEG-1+JP_CH_BCj) = ZMASS * XFAC(JP_AER_BC) * 6.0221367E+11/(ZDEN2MOL*12.*ZRHODREFMIN)
XSVMIN(NSV_AERBEG-1+JP_CH_DSTj) = ZMASS * XFAC(JP_AER_DST) * 6.0221367E+11/(ZDEN2MOL*12.*ZRHODREFMIN)
XSVMIN(NSV_AERBEG-1+JP_CH_M0j) = XN0JMIN * 1E-6 / (ZDEN2MOL*ZRHODREFMIN)
IF (LVARSIGJ) XSVMIN(NSV_AERBEG-1+JP_CH_M6j) = ZM6MIN / (ZDEN2MOL*ZRHODREFMIN)
!
XSVMIN(NSV_AERBEG:NSV_AEREND) = 0.
!
END SUBROUTINE CH_AER_EQM_INIT_n