Skip to content
Snippets Groups Projects
aer_monitorn.f90 22.8 KiB
Newer Older
!ORILAM_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!ORILAM_LIC This is part of the ORILAM software governed by the CeCILL-C licence
!ORILAM_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!ORILAM_LIC for details.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
!!    ########################
      MODULE MODI_AER_MONITOR_n
!!    ########################
!!
!
INTERFACE
!!
SUBROUTINE AER_MONITOR_n(KTCOUNT,PTSTEP, KLUOUT, KVERB, KCLD)
IMPLICIT NONE
INTEGER, INTENT(IN) :: KTCOUNT    ! iteration count
REAL,  INTENT(IN)   :: PTSTEP     ! Double timestep 
INTEGER, INTENT(IN) :: KLUOUT     ! unit for output listing count
INTEGER, INTENT(IN) :: KVERB      ! verbosity level
LOGICAL, INTENT(IN) :: KCLD       ! conditionnal call for dust wet deposition
END SUBROUTINE AER_MONITOR_n
!!
END INTERFACE
!!
END MODULE MODI_AER_MONITOR_n
!!
!!    ####################################################### 
      SUBROUTINE AER_MONITOR_n(KTCOUNT,PTSTEP, KLUOUT, KVERB, KCLD)
!!    #######################################################
!!
!!*** *AER_MONITOR_n*  monitor of the dust sea salt module
!!
!!    PURPOSE
!!    -------
!!       The purpose of this subroutine is to control the aerosol module
!!    i.e. to pass the meteorological parameters from MesoNH to its chemical
!!    part and to call the different subroutines (calculation of rate constants,
!!    photolysis rates, stiff solver,..)
!!
!!    METHOD
!!    ------
!!       The calculation  of the aerosols terms is performed using a loop
!!    over all spatial dimensions. 
!!
!!       For each single grid point, all necessary meteorological parameters are
!!    passed into the chemical core system (variable TZM). This variable is
!!    then passed on to the subroutines that calculate the reaction and
!!    photolysis rates. Then the chemical solver is called. As the chemistry
!!    part works with different units than MesoNH (MesoNH uses mixing ratio,
!!    the chemisty part uses molec/cm3) some unit conversion is also performed.
!!
!!       Temporal integration is performed over a double timestep 2*TSTEP
!!    (except in the case of a cold start). If the timestep of MesoNH
!!    is too large for the chemical solver, several smaller steps can
!!    be taken using the NCH_SUBSTEPS parameter.
!!    One option of temporal discretization is implemented:
!!    "SPLIT"  : from XRSVS the scalar variable at t+dt is calculated and
!!               given as input to the solver; the result is rewritten 
!!               into XRSVS; this corresponds to applying first only dynamics
!!               and then only chemistry; this option assures positivity, but
!!               degrades the order of the temporal integration.
!!               In fact, an overhead of a factor two is produced here.
!!               A future solution will be to calculate the dynamics
!!               of the scalar variables not using leapfrog, but forward
!!               temporal integration.
!!
!!    REFERENCE
!!    ---------
!!    Book 1, 2, 3 of MesoNH-chemistry
!!
!!    AUTHOR
!!    ------
!!    P. Tulet from ch_monitorn.f90
!!
!!    MODIFICATIONS
!!    -------------
!!
!!    EXTERNAL
!!    --------
!
USE MODD_LUNIT_n
USE MODD_NSV
USE MODD_CH_MNHC_n, ONLY : NCH_VEC_LENGTH
USE MODE_ll
USE MODE_DUST_PSD
USE MODE_SALT_PSD
USE MODE_MODELN_HANDLER
!!
!!    IMPLICIT ARGUMENTS
!!    ------------------
USE MODD_FIELD_n,   ONLY: XSVT,      &! scalar variable at t
                          XPABST,    &! pressure
                          XRSVS       ! source of scalar variable
!!
USE MODD_REF_n,     ONLY: XRHODREF,  &! dry density for ref. state
                          XRHODJ      ! ( rhod J ) = dry density
!!
USE MODD_PARAMETERS,ONLY: JPHEXT,    &! number of horizontal External points
                          JPVEXT      ! number of vertical External points
!!
USE MODD_CST,       ONLY: XMD,       &! Molar mass of dry air
                          XPI
                          
! parameters of the namelist to come
!
USE MODD_VAR_ll
USE MODD_DUST
USE MODD_SALT
USE MODD_FIELD_n,   ONLY: XTHT, XPABST, XRRS, XRT
USE MODD_GRID_n,    ONLY: XZZ
USE MODD_LBC_n, ONLY: CLBCX, &!X-direction LBC type at left(1)
                              ! and right(2) boundaries
                      CLBCY   ! Y-direction LBC type at left(1)
                              ! and right(2) boundaries
USE MODD_CLOUDPAR_n, ONLY: NSPLITR  ! Nb of required small time step integration
                                    ! for rain sedimentation computation
USE MODD_CONF,      ONLY: L1D, L2D
USE MODD_CONF_n,    ONLY: LUSERC,&    ! Logical to use clouds
                          LUSERV,&    ! Logical to use wapor water
                          LUSERR,&    ! Logical to use rain water
                          NRR         ! Total number of water variables
USE MODD_PARAM_n,    ONLY: CCLOUD
USE MODD_PRECIP_n, ONLY: XEVAP3D
USE MODI_SUM_ll
USE MODI_SEDIM_DUST
USE MODI_SEDIM_SALT
USE MODI_DUST_FILTER
USE MODI_SALT_FILTER
USE MODI_AER_WET_DEP_KMT_WARM
USE MODI_MNHGET_SURF_PARAM_n

!-------------------------------------------------------------------------------
!
!*       0.     DECLARATIONS
!               ------------
IMPLICIT NONE
!
!*      0.1    declarations of arguments
!
INTEGER, INTENT(IN) :: KTCOUNT    ! iteration count
REAL,  INTENT(IN)   ::  PTSTEP    ! Double timestep except 
                                  ! for the first time step (single one)
INTEGER, INTENT(IN) :: KLUOUT     ! unit for output listing count
INTEGER, INTENT(IN) :: KVERB      ! verbosity level
LOGICAL, INTENT(IN) :: KCLD       ! conditionnal call for dust wet deposition
!
!*      0.2    declarations of local variables
!
INTEGER :: JI,JJ,JK,JL,JM,JN,JKAQ   ! loop counters
!
REAL, DIMENSION(:,:,:,:), ALLOCATABLE  :: ZSVT, ZRGDST,ZSIGDST,ZSVDST,ZNDST, ZVMASSMIN
REAL, DIMENSION(:,:,:,:), ALLOCATABLE  :: ZRGSLT,ZSIGSLT,ZSVSLT,ZNSLT
REAL, DIMENSION(:,:),     ALLOCATABLE  :: ZSEA, ZTOWN
REAL, DIMENSION(:,:,:),   ALLOCATABLE  :: ZRCS, ZRRS
REAL, DIMENSION(:,:,:,:), ALLOCATABLE  :: ZDENSITY
REAL, DIMENSION(:),       ALLOCATABLE  :: ZMASSMIN, ZINIRADIUS
REAL    :: ZSIGMIN 
INTEGER :: IMODEIDX
!

INTEGER             :: IIU  ! Upper dimension in x direction
INTEGER             :: IJU  ! Upper dimension in y direction
INTEGER             :: IKU  ! Upper dimension in z direction
INTEGER             :: IIB  ! indice I Beginning in x direction
INTEGER             :: IJB  ! indice J Beginning in y direction
INTEGER             :: IKB  ! indice K Beginning in z direction
INTEGER             :: IIE  ! indice I End       in x direction
INTEGER             :: IJE  ! indice J End       in y direction
INTEGER             :: IKE  ! indice K End       in z direction
INTEGER             :: JSV  ! loop index for SV
INTEGER             :: IMI  ! model index
!-------------------------------------------------------------------------------
!
!
!*       1.    Prepare monitor
!              ---------------
!
!*       1.1   compute dimensions of arrays
!
CALL GET_DIM_EXT_ll ('B',IIU,IJU)
CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
IMI = GET_CURRENT_MODEL_INDEX()
!
IKU = SIZE(XRSVS,3)
IKB = 1 + JPVEXT
IKE = IKU - JPVEXT
!
!*       1.2   calculate timestep variables
!
!
  XRSVS(:,:,:,NSV_DSTBEG:NSV_DSTEND) = &
                      MAX(XRSVS(:,:,:,NSV_DSTBEG:NSV_DSTEND), 0.)  
!
!*       2.   Sedimentation of aerosols 
!              ------------------------
!*       2.1   Sedimentation of  dusts
IF (LDUST.AND.LSEDIMDUST) THEN
!
  ALLOCATE(ZSVT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NSV_DSTEND-NSV_DSTBEG+1))
  DO JSV = NSV_DSTBEG, NSV_DSTEND
    ZSVT(:,:,:,JSV-NSV_DSTBEG+1) = XRSVS(:,:,:,JSV) * PTSTEP / XRHODJ(:,:,:)
  ENDDO
  CALL DUST_FILTER(ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,:),&
                   XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE)) 
  CALL SEDIM_DUST(XTHT(IIB:IIE,IJB:IJE,IKB:IKE), PTSTEP,&
                  XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), &
                  XPABST(IIB:IIE,IJB:IJE,IKB:IKE), &
                  XZZ(IIB:IIE,IJB:IJE,IKB:IKE+1),    &
                  ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,:)) !ppp (concentration)
!
DO JSV = NSV_DSTBEG, NSV_DSTEND
    XRSVS(IIB:IIE,IJB:IJE,IKB:IKE,JSV) = ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,JSV-NSV_DSTBEG+1)  *&
                                         XRHODJ(IIB:IIE,IJB:IJE,IKB:IKE) /  PTSTEP
END DO
!
  DEALLOCATE(ZSVT)
END IF 
!
!*       2.1   Sedimentation of  Sea salt
IF ((LSALT).AND.(LSEDIMSALT)) THEN
!
  ALLOCATE(ZSVT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NSV_SLTEND-NSV_SLTBEG+1))
  DO JSV = NSV_SLTBEG, NSV_SLTEND
    ZSVT(:,:,:,JSV-NSV_SLTBEG+1) = XRSVS(:,:,:,JSV) * PTSTEP / XRHODJ(:,:,:)
  ENDDO

  CALL SALT_FILTER(ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,:),&
                   XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE)) 
  CALL SEDIM_SALT(XTHT(IIB:IIE,IJB:IJE,IKB:IKE),PTSTEP,&
                  XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), &
                  XPABST(IIB:IIE,IJB:IJE,IKB:IKE), &
                  XZZ(IIB:IIE,IJB:IJE,IKB:IKE+1),    &
                  ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,:))  !ppp (concentration)
!
DO JSV = NSV_SLTBEG, NSV_SLTEND
 XRSVS(IIB:IIE,IJB:IJE,IKB:IKE,JSV) = &
             ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,JSV-NSV_SLTBEG+1)  *&
             XRHODJ(IIB:IIE,IJB:IJE,IKB:IKE) /  PTSTEP
END DO
!
  DEALLOCATE(ZSVT)
END IF 

IF (LDUST .AND. LDEPOS_DST(IMI) .AND. KCLD) THEN
!-------------------------------------------------------------------------------
!*       3.    Dust / Cloud / Rain interactions 
!              ------------------------------------
!        


ALLOCATE(ZSIGDST(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_DST))
ALLOCATE(ZRGDST(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_DST))  
ALLOCATE(ZSVDST(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_DST*3))
ALLOCATE(ZNDST(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_DST))
ALLOCATE(ZSEA(SIZE(XSVT,1),SIZE(XSVT,2)))
ALLOCATE(ZTOWN(SIZE(XSVT,1),SIZE(XSVT,2)))
ALLOCATE(ZMASSMIN(NMODE_DST))
ALLOCATE(ZINIRADIUS(NMODE_DST))
ALLOCATE(ZVMASSMIN(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_DST))
ALLOCATE(ZSVT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),SIZE(XSVT,4)))
ALLOCATE(ZRCS(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3)))
ALLOCATE(ZRRS(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3)))
ALLOCATE(ZDENSITY(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_DST))
!

ZSVDST(:,:,:,:) = 0.
ZSVT(:,:,:,:) = 0.
ZSEA(:,:) = 0.
ZTOWN(:,:) = 0.
ZRCS(:,:,:) = XRRS(:,:,:,2) * PTSTEP / XRHODJ(:,:,:) 
ZRRS(:,:,:) = XRRS(:,:,:,3) * PTSTEP / XRHODJ(:,:,:)
ZDENSITY(:,:,:,:) = XDENSITY_DUST

!
!     3.1 Minimum mass to transfer between dry mass or in-cloud droplets

DO JN=1,NMODE_DST
  IMODEIDX = JPDUSTORDER(JN)
   IF (CRGUNITD=="MASS") THEN
    ZINIRADIUS(JN) = XINIRADIUS(IMODEIDX) * EXP(-3.*(LOG(XINISIG(IMODEIDX)))**2)
   ELSE
    ZINIRADIUS(JN) = XINIRADIUS(IMODEIDX)
   END IF
   IF (LVARSIG) THEN
    ZSIGMIN = XSIGMIN
   ELSE
    ZSIGMIN = XINISIG(IMODEIDX)
   ENDIF
   ZMASSMIN(JN) = XN0MIN(IMODEIDX) * (ZINIRADIUS(JN)**3)*EXP(4.5 * LOG(ZSIGMIN)**2)
! volume/um3 =>  #/molec_{air}
   ZVMASSMIN(:,:,:,JN)=  ZMASSMIN(JN) * XMD * XPI * 4./3. * XDENSITY_DUST  / &
                 (XMOLARWEIGHT_DUST*XM3TOUM3*XRHODREF(:,:,:))
ENDDO
  
!

!     3.2 Derive moment from aerosol moments sources
!         from moments

  DO JSV=1,SIZE(XRSVS,4)
    ZSVT(:,:,:,JSV) = XRSVS(:,:,:,JSV) * PTSTEP / XRHODJ(:,:,:) 
  ENDDO    

!     3.3 Compute and store Standard deviation and mean radius 
!         from moments
  CALL PPP2DUST(ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_DSTBEG:NSV_DSTEND), &
                XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),                   &
                PSIG3D=ZSIGDST(IIB:IIE,IJB:IJE,IKB:IKE,:),           &
                PRG3D=ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:),             &
                PN3D=ZNDST(IIB:IIE,IJB:IJE,IKB:IKE,:))

!     3.4 Compute acquous aerosol mass vector from moment scalar vector
!
  DO JSV= 1, NMODE_DST
   IF (LVARSIG) THEN
    ZSVDST(:,:,:,JSV) = ZSVT(:,:,:,NSV_DSTBEG+1+(JSV-1)*3)
   ELSE IF (LRGFIX_DST) THEN
    ZSVDST(:,:,:,JSV) = ZSVT(:,:,:,NSV_DSTBEG+JSV-1)
   ELSE
    ZSVDST(:,:,:,JSV) = ZSVT(:,:,:,NSV_DSTBEG+1+(JSV-1)*2)
   ENDIF
  ENDDO    
  DO JSV=1,NSV_DSTDEP
    ZSVDST(:,:,:,NMODE_DST+JSV) = ZSVT(:,:,:,NSV_DSTDEPBEG-1+JSV)
  ENDDO
  ZSVDST(:,:,:,:) = MAX(ZSVDST(:,:,:,:), 0.)
  ZSVT(:,:,:,:) = MAX(ZSVT(:,:,:,:), 0.)

!     3.5 Mass transfer between dry mass and in-cloud mass aerosols
SELECT CASE (CCLOUD)
  
  CASE ('KESS','REVE','ICE3','ICE4')
! One moment cloud scheme
  CALL AER_WET_DEP_KMT_WARM  (NSPLITR, PTSTEP,                     &
                              XZZ(IIB:IIE,IJB:IJE,IKB:IKE),        &
                              XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),   &
                              XRT(IIB:IIE,IJB:IJE,IKB:IKE,2),      &
                              XRT(IIB:IIE,IJB:IJE,IKB:IKE,3),      &
                              ZRCS(IIB:IIE,IJB:IJE,IKB:IKE),       &
                              ZRRS(IIB:IIE,IJB:IJE,IKB:IKE),       &
                              ZSVDST(IIB:IIE,IJB:IJE,IKB:IKE,:),   &
                              XTHT(IIB:IIE,IJB:IJE,IKB:IKE),       &
                              XPABST(IIB:IIE,IJB:IJE,IKB:IKE),     &
                              ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:),   &
                              XEVAP3D(IIB:IIE,IJB:IJE,IKB:IKE),    &
                              NMODE_DST,                           &
                              ZDENSITY(IIB:IIE,IJB:IJE,IKB:IKE,:), &
                              ZVMASSMIN(IIB:IIE,IJB:IJE,IKB:IKE,:),&
                              PSEA=ZSEA(IIB:IIE,IJB:IJE),          &
                              PTOWN=ZTOWN(IIB:IIE,IJB:IJE))
  CASE ('KHKO','C2R2','C3R5')
! Two moment cloud scheme
  CALL AER_WET_DEP_KMT_WARM  (NSPLITR, PTSTEP,                     &
                              XZZ(IIB:IIE,IJB:IJE,IKB:IKE),        &
                              XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),   &
                              XRT(IIB:IIE,IJB:IJE,IKB:IKE,2),      &
                              XRT(IIB:IIE,IJB:IJE,IKB:IKE,3),      &
                              ZRCS(IIB:IIE,IJB:IJE,IKB:IKE),       &
                              ZRRS(IIB:IIE,IJB:IJE,IKB:IKE),       &
                              ZSVDST(IIB:IIE,IJB:IJE,IKB:IKE,:),   &
                              XTHT(IIB:IIE,IJB:IJE,IKB:IKE),       &
                              XPABST(IIB:IIE,IJB:IJE,IKB:IKE),     &
                              ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:),   &
                              XEVAP3D(IIB:IIE,IJB:IJE,IKB:IKE),    &
                              NMODE_DST,                           &
                              ZDENSITY(IIB:IIE,IJB:IJE,IKB:IKE,:), &
                              ZVMASSMIN(IIB:IIE,IJB:IJE,IKB:IKE,:),&
                              PCCT=ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_C2R2BEG+1),&
                              PCRT=ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_C2R2BEG+2) )

END SELECT

!     3.5 Compute return to moment vector
  DO JSV=1,NMODE_DST
   IF (LVARSIG) THEN
    ZSVT(:,:,:,NSV_DSTBEG+1+(JSV-1)*3) = ZSVDST(:,:,:,JSV)
   ELSE IF (LRGFIX_DST) THEN
    ZSVT(:,:,:,NSV_DSTBEG+JSV-1) = ZSVDST(:,:,:,JSV)
   ELSE
    ZSVT(:,:,:,NSV_DSTBEG+1+(JSV-1)*2) = ZSVDST(:,:,:,JSV)
   ENDIF
  ENDDO    
                             
!     3.5 Return to lognormal distribution (compute M0 and M6 using RG, SIG and
!     new mass from M3)
  CALL DUST2PPP(ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_DSTBEG:NSV_DSTEND), &
                XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),                   &
                ZSIGDST(IIB:IIE,IJB:IJE,IKB:IKE,:),                  &
                ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:))
!  
!     3.6 Return to source term
  DO JSV=NSV_DSTBEG,NSV_DSTEND
     XRSVS(IIB:IIE,IJB:IJE,IKB:IKE,JSV) =  ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,JSV) * &
                                           XRHODJ(IIB:IIE,IJB:IJE,IKB:IKE) / PTSTEP
  ENDDO
  DO JSV=1,NSV_DSTDEP
    XRSVS(IIB:IIE,IJB:IJE,IKB:IKE,NSV_DSTDEPBEG-1+JSV)=ZSVDST(IIB:IIE,IJB:IJE,IKB:IKE,NMODE_DST+JSV) *&
                                              XRHODJ(IIB:IIE,IJB:IJE,IKB:IKE) / PTSTEP
  ENDDO

  DEALLOCATE(ZSIGDST)
  DEALLOCATE(ZRGDST)  
  DEALLOCATE(ZSVDST)
  DEALLOCATE(ZNDST)
  DEALLOCATE(ZSEA)
  DEALLOCATE(ZTOWN)
  DEALLOCATE(ZMASSMIN)
  DEALLOCATE(ZINIRADIUS)
  DEALLOCATE(ZVMASSMIN)
  DEALLOCATE(ZSVT)
  DEALLOCATE(ZRCS)
  DEALLOCATE(ZRRS)
  DEALLOCATE(ZDENSITY)
END IF
IF (LSALT .AND. LDEPOS_SLT(IMI) .AND. KCLD) THEN

!-------------------------------------------------------------------------------

!*       4.    Sea Salt / Cloud / Rain interactions 
!              ------------------------------------
ALLOCATE(ZSIGSLT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_SLT))
ALLOCATE(ZRGSLT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_SLT))  
ALLOCATE(ZSVSLT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_SLT*3))
ALLOCATE(ZNSLT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_SLT))
ALLOCATE(ZSEA(SIZE(XSVT,1),SIZE(XSVT,2)))
ALLOCATE(ZTOWN(SIZE(XSVT,1),SIZE(XSVT,2)))
ALLOCATE(ZMASSMIN(NMODE_SLT))
ALLOCATE(ZINIRADIUS(NMODE_SLT))
ALLOCATE(ZVMASSMIN(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_SLT))
ALLOCATE(ZSVT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),SIZE(XSVT,4)))
ALLOCATE(ZRCS(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3)))
ALLOCATE(ZRRS(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3)))
ALLOCATE(ZDENSITY(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_SLT))
!

ZSVSLT(:,:,:,:) = 0.
ZSVT(:,:,:,:) = 0.
ZSEA(:,:) = 0.
ZTOWN(:,:) = 0.
ZRCS(:,:,:) = XRRS(:,:,:,2) * PTSTEP / XRHODJ(:,:,:) 
ZRRS(:,:,:) = XRRS(:,:,:,3) * PTSTEP / XRHODJ(:,:,:)
ZDENSITY(:,:,:,:) = XDENSITY_SALT

!
!     4.1 Minimum mass to transfer between dry mass or in-cloud droplets

DO JN=1,NMODE_SLT
  IMODEIDX = JPSALTORDER(JN)
   IF (CRGUNITD=="MASS") THEN
    ZINIRADIUS(JN) = XINIRADIUS(IMODEIDX) * EXP(-3.*(LOG(XINISIG(IMODEIDX)))**2)
   ELSE
    ZINIRADIUS(JN) = XINIRADIUS(IMODEIDX)
   END IF
   IF (LVARSIG) THEN
    ZSIGMIN = XSIGMIN
   ELSE
    ZSIGMIN = XINISIG(IMODEIDX)
   ENDIF
   ZMASSMIN(JN) = XN0MIN(IMODEIDX) * (ZINIRADIUS(JN)**3)*EXP(4.5 * LOG(ZSIGMIN)**2)
! volume/um3 =>  #/molec_{air}
   ZVMASSMIN(:,:,:,JN)=  ZMASSMIN(JN) * XMD * XPI * 4./3. * XDENSITY_SALT  / &
                 (XMOLARWEIGHT_SALT*XM3TOUM3*XRHODREF(:,:,:))
ENDDO
  
!

!     4.2 Derive moment from aerosol moments sources
!         from moments
  XRSVS(:,:,:,NSV_SLTDEPBEG:NSV_SLTDEPEND) = &
                      MAX(XRSVS(:,:,:,NSV_SLTDEPBEG:NSV_SLTDEPEND), 0.)

  DO JSV=1,SIZE(XRSVS,4)
    ZSVT(:,:,:,JSV) = XRSVS(:,:,:,JSV) * PTSTEP / XRHODJ(:,:,:) 
  ENDDO    

!     4.3 Compute and store Standard deviation and mean radius 
!         from moments
  CALL PPP2SALT(ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_SLTBEG:NSV_SLTEND), &
                XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),                   &
                PSIG3D=ZSIGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:),           &
                PRG3D=ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:),             &
                PN3D=ZNSLT(IIB:IIE,IJB:IJE,IKB:IKE,:))

!     4.4 Compute acquous aerosol mass vector from moment scalar vector
!
  DO JSV= 1, NMODE_SLT
   IF (LVARSIG) THEN
    ZSVSLT(:,:,:,JSV) = ZSVT(:,:,:,NSV_SLTBEG+1+(JSV-1)*3)
   ELSE IF (LRGFIX_SLT) THEN
    ZSVSLT(:,:,:,JSV) = ZSVT(:,:,:,NSV_SLTBEG+JSV-1)
   ELSE
    ZSVSLT(:,:,:,JSV) = ZSVT(:,:,:,NSV_SLTBEG+1+(JSV-1)*2)
   ENDIF
  ENDDO    
  DO JSV=1,NSV_SLTDEP
    ZSVSLT(:,:,:,NMODE_SLT+JSV) = XRSVS(:,:,:,NSV_SLTDEPBEG-1+JSV) *&
                                            PTSTEP / XRHODJ(:,:,:)
  ENDDO

!     4.5 Mass transfer between dry mass and in-cloud mass aerosols
SELECT CASE (CCLOUD)
  
  CASE ('KESS','REVE','ICE3','ICE4')
! One moment cloud scheme
  CALL AER_WET_DEP_KMT_WARM  (NSPLITR, PTSTEP,                    &
                              XZZ(IIB:IIE,IJB:IJE,IKB:IKE),       &
                              XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),  &
                              XRT(IIB:IIE,IJB:IJE,IKB:IKE,2),     &
                              XRT(IIB:IIE,IJB:IJE,IKB:IKE,3),     &
                              ZRCS(IIB:IIE,IJB:IJE,IKB:IKE),      &
                              ZRRS(IIB:IIE,IJB:IJE,IKB:IKE),      &
                              ZSVSLT(IIB:IIE,IJB:IJE,IKB:IKE,:),  &
                              XTHT(IIB:IIE,IJB:IJE,IKB:IKE),      &
                              XPABST(IIB:IIE,IJB:IJE,IKB:IKE),    &
                              ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:),  &
                              XEVAP3D(IIB:IIE,IJB:IJE,IKB:IKE),   &
                              NMODE_SLT,                           &
                              ZDENSITY(IIB:IIE,IJB:IJE,IKB:IKE,:), &
                              ZVMASSMIN(IIB:IIE,IJB:IJE,IKB:IKE,:),&
                              PSEA=ZSEA(IIB:IIE,IJB:IJE),          &
                              PTOWN=ZTOWN(IIB:IIE,IJB:IJE))
  CASE ('KHKO','C2R2','C3R5')
! Two moment cloud scheme
  CALL AER_WET_DEP_KMT_WARM  (NSPLITR, PTSTEP,                     &
                              XZZ(IIB:IIE,IJB:IJE,IKB:IKE),        &
                              XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),   &
                              XRT(IIB:IIE,IJB:IJE,IKB:IKE,2),      &
                              XRT(IIB:IIE,IJB:IJE,IKB:IKE,3),      &
                              ZRCS(IIB:IIE,IJB:IJE,IKB:IKE),       &
                              ZRRS(IIB:IIE,IJB:IJE,IKB:IKE),       &
                              ZSVSLT(IIB:IIE,IJB:IJE,IKB:IKE,:),   &
                              XTHT(IIB:IIE,IJB:IJE,IKB:IKE),       &
                              XPABST(IIB:IIE,IJB:IJE,IKB:IKE),     &
                              ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:),   &
                              XEVAP3D(IIB:IIE,IJB:IJE,IKB:IKE),    &
                              NMODE_SLT,                           &
                              ZDENSITY(IIB:IIE,IJB:IJE,IKB:IKE,:), &
                              ZVMASSMIN(IIB:IIE,IJB:IJE,IKB:IKE,:),&
                              PCCT=ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_C2R2BEG+1),&
                              PCRT=ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_C2R2BEG+2) )

END SELECT

!     4.5 Compute return to moment vector
  DO JSV=1,NMODE_SLT
   IF (LVARSIG) THEN
    ZSVT(:,:,:,NSV_SLTBEG+1+(JSV-1)*3) = ZSVSLT(:,:,:,JSV)
   ELSE IF (LRGFIX_SLT) THEN
    ZSVT(:,:,:,NSV_SLTBEG+JSV-1) = ZSVSLT(:,:,:,JSV)
   ELSE
    ZSVT(:,:,:,NSV_SLTBEG+1+(JSV-1)*2) = ZSVSLT(:,:,:,JSV)
   ENDIF
  ENDDO    
                             
!     4.5 Return to lognormal distribution (compute M0 and M6 using RG, SIG and
!     new mass from M3)
  CALL SALT2PPP(ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_SLTBEG:NSV_SLTEND), &
                XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),                   &
                ZSIGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:),                  &
                ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:))
!  
!     4.6 Return to source term
  DO JSV=NSV_SLTBEG,NSV_SLTEND
     XRSVS(:,:,:,JSV) =  ZSVT(:,:,:,JSV) * XRHODJ(:,:,:) / PTSTEP
  ENDDO
  DO JSV=1,NSV_SLTDEP
     XRSVS(:,:,:,NSV_SLTDEPBEG-1+JSV) =  ZSVSLT(:,:,:,NMODE_SLT+JSV) *&
                                              XRHODJ(:,:,:) / PTSTEP
  ENDDO

  DEALLOCATE(ZSIGSLT)
  DEALLOCATE(ZRGSLT)  
  DEALLOCATE(ZSVSLT)
  DEALLOCATE(ZNSLT)
  DEALLOCATE(ZSEA)
  DEALLOCATE(ZTOWN)
  DEALLOCATE(ZMASSMIN)
  DEALLOCATE(ZINIRADIUS)
  DEALLOCATE(ZVMASSMIN)
  DEALLOCATE(ZSVT)
  DEALLOCATE(ZRCS)
  DEALLOCATE(ZRRS)
  DEALLOCATE(ZDENSITY)
END IF

!
!-------------------------------------------------------------------------------
!
END SUBROUTINE AER_MONITOR_n