Newer
Older
!ORILAM_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!ORILAM_LIC This is part of the ORILAM software governed by the CeCILL-C licence
!ORILAM_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!ORILAM_LIC for details.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
!! ########################
MODULE MODI_AER_MONITOR_n
!! ########################
!!
!
INTERFACE
!!
SUBROUTINE AER_MONITOR_n(KTCOUNT,PTSTEP, KLUOUT, KVERB, KCLD)
IMPLICIT NONE
INTEGER, INTENT(IN) :: KTCOUNT ! iteration count
REAL, INTENT(IN) :: PTSTEP ! Double timestep
INTEGER, INTENT(IN) :: KLUOUT ! unit for output listing count
INTEGER, INTENT(IN) :: KVERB ! verbosity level
LOGICAL, INTENT(IN) :: KCLD ! conditionnal call for dust wet deposition
END SUBROUTINE AER_MONITOR_n
!!
END INTERFACE
!!
END MODULE MODI_AER_MONITOR_n
!!
!! #######################################################
SUBROUTINE AER_MONITOR_n(KTCOUNT,PTSTEP, KLUOUT, KVERB, KCLD)
!! #######################################################
!!
!!*** *AER_MONITOR_n* monitor of the dust sea salt module
!!
!! PURPOSE
!! -------
!! The purpose of this subroutine is to control the aerosol module
!! i.e. to pass the meteorological parameters from MesoNH to its chemical
!! part and to call the different subroutines (calculation of rate constants,
!! photolysis rates, stiff solver,..)
!!
!! METHOD
!! ------
!! The calculation of the aerosols terms is performed using a loop
!! over all spatial dimensions.
!!
!! For each single grid point, all necessary meteorological parameters are
!! passed into the chemical core system (variable TZM). This variable is
!! then passed on to the subroutines that calculate the reaction and
!! photolysis rates. Then the chemical solver is called. As the chemistry
!! part works with different units than MesoNH (MesoNH uses mixing ratio,
!! the chemisty part uses molec/cm3) some unit conversion is also performed.
!!
!! Temporal integration is performed over a double timestep 2*TSTEP
!! (except in the case of a cold start). If the timestep of MesoNH
!! is too large for the chemical solver, several smaller steps can
!! be taken using the NCH_SUBSTEPS parameter.
!! One option of temporal discretization is implemented:
!! "SPLIT" : from XRSVS the scalar variable at t+dt is calculated and
!! given as input to the solver; the result is rewritten
!! into XRSVS; this corresponds to applying first only dynamics
!! and then only chemistry; this option assures positivity, but
!! degrades the order of the temporal integration.
!! In fact, an overhead of a factor two is produced here.
!! A future solution will be to calculate the dynamics
!! of the scalar variables not using leapfrog, but forward
!! temporal integration.
!!
!! REFERENCE
!! ---------
!! Book 1, 2, 3 of MesoNH-chemistry
!!
!! AUTHOR
!! ------
!! P. Tulet from ch_monitorn.f90
!!
!! MODIFICATIONS
!! -------------
!!
!! EXTERNAL
!! --------
!
USE MODD_LUNIT_n
USE MODD_NSV
USE MODD_CH_MNHC_n, ONLY : NCH_VEC_LENGTH
USE MODE_ll
USE MODE_DUST_PSD
USE MODE_SALT_PSD
USE MODE_MODELN_HANDLER
!!
!! IMPLICIT ARGUMENTS
!! ------------------
USE MODD_FIELD_n, ONLY: XSVT, &! scalar variable at t
XPABST, &! pressure
XRSVS ! source of scalar variable
!!
USE MODD_REF_n, ONLY: XRHODREF, &! dry density for ref. state
XRHODJ ! ( rhod J ) = dry density
!!
USE MODD_PARAMETERS,ONLY: JPHEXT, &! number of horizontal External points
JPVEXT ! number of vertical External points
!!
USE MODD_CST, ONLY: XMD, &! Molar mass of dry air
XPI
! parameters of the namelist to come
!
USE MODD_VAR_ll
USE MODD_DUST
USE MODD_SALT
USE MODD_FIELD_n, ONLY: XTHT, XPABST, XRRS, XRT
USE MODD_GRID_n, ONLY: XZZ
USE MODD_LBC_n, ONLY: CLBCX, &!X-direction LBC type at left(1)
! and right(2) boundaries
CLBCY ! Y-direction LBC type at left(1)
! and right(2) boundaries
USE MODD_CLOUDPAR_n, ONLY: NSPLITR ! Nb of required small time step integration
! for rain sedimentation computation
USE MODD_CONF, ONLY: L1D, L2D
USE MODD_CONF_n, ONLY: LUSERC,& ! Logical to use clouds
LUSERV,& ! Logical to use wapor water
LUSERR,& ! Logical to use rain water
NRR ! Total number of water variables
USE MODD_PARAM_n, ONLY: CCLOUD
USE MODD_PRECIP_n, ONLY: XEVAP3D
USE MODI_SUM_ll
USE MODI_SEDIM_DUST
USE MODI_SEDIM_SALT
USE MODI_DUST_FILTER
USE MODI_SALT_FILTER
USE MODI_AER_WET_DEP_KMT_WARM
USE MODI_MNHGET_SURF_PARAM_n
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
INTEGER, INTENT(IN) :: KTCOUNT ! iteration count
REAL, INTENT(IN) :: PTSTEP ! Double timestep except
! for the first time step (single one)
INTEGER, INTENT(IN) :: KLUOUT ! unit for output listing count
INTEGER, INTENT(IN) :: KVERB ! verbosity level
LOGICAL, INTENT(IN) :: KCLD ! conditionnal call for dust wet deposition
!
!* 0.2 declarations of local variables
!
INTEGER :: JI,JJ,JK,JL,JM,JN,JKAQ ! loop counters
!
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZSVT, ZRGDST,ZSIGDST,ZSVDST,ZNDST, ZVMASSMIN
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZRGSLT,ZSIGSLT,ZSVSLT,ZNSLT
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSEA, ZTOWN
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZRCS, ZRRS
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZDENSITY
REAL, DIMENSION(:), ALLOCATABLE :: ZMASSMIN, ZINIRADIUS
REAL :: ZSIGMIN
INTEGER :: IMODEIDX
!
INTEGER :: IIU ! Upper dimension in x direction
INTEGER :: IJU ! Upper dimension in y direction
INTEGER :: IKU ! Upper dimension in z direction
INTEGER :: IIB ! indice I Beginning in x direction
INTEGER :: IJB ! indice J Beginning in y direction
INTEGER :: IKB ! indice K Beginning in z direction
INTEGER :: IIE ! indice I End in x direction
INTEGER :: IJE ! indice J End in y direction
INTEGER :: IKE ! indice K End in z direction
INTEGER :: JSV ! loop index for SV
INTEGER :: IMI ! model index
!-------------------------------------------------------------------------------
!
!
!* 1. Prepare monitor
! ---------------
!
!* 1.1 compute dimensions of arrays
!
CALL GET_DIM_EXT_ll ('B',IIU,IJU)
CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
IMI = GET_CURRENT_MODEL_INDEX()
!
IKU = SIZE(XRSVS,3)
IKB = 1 + JPVEXT
IKE = IKU - JPVEXT
!
!* 1.2 calculate timestep variables
!
!
XRSVS(:,:,:,NSV_DSTBEG:NSV_DSTEND) = &
MAX(XRSVS(:,:,:,NSV_DSTBEG:NSV_DSTEND), 0.)
!
!* 2. Sedimentation of aerosols
! ------------------------
!* 2.1 Sedimentation of dusts
IF (LDUST.AND.LSEDIMDUST) THEN
!
ALLOCATE(ZSVT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NSV_DSTEND-NSV_DSTBEG+1))
DO JSV = NSV_DSTBEG, NSV_DSTEND
ZSVT(:,:,:,JSV-NSV_DSTBEG+1) = XRSVS(:,:,:,JSV) * PTSTEP / XRHODJ(:,:,:)
ENDDO
CALL DUST_FILTER(ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,:),&
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE))
CALL SEDIM_DUST(XTHT(IIB:IIE,IJB:IJE,IKB:IKE), PTSTEP,&
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), &
XPABST(IIB:IIE,IJB:IJE,IKB:IKE), &
XZZ(IIB:IIE,IJB:IJE,IKB:IKE+1), &
ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,:)) !ppp (concentration)
!
DO JSV = NSV_DSTBEG, NSV_DSTEND
XRSVS(IIB:IIE,IJB:IJE,IKB:IKE,JSV) = ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,JSV-NSV_DSTBEG+1) *&
XRHODJ(IIB:IIE,IJB:IJE,IKB:IKE) / PTSTEP
END DO
!
DEALLOCATE(ZSVT)
END IF
!
!* 2.1 Sedimentation of Sea salt
IF ((LSALT).AND.(LSEDIMSALT)) THEN
!
ALLOCATE(ZSVT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NSV_SLTEND-NSV_SLTBEG+1))
DO JSV = NSV_SLTBEG, NSV_SLTEND
ZSVT(:,:,:,JSV-NSV_SLTBEG+1) = XRSVS(:,:,:,JSV) * PTSTEP / XRHODJ(:,:,:)
ENDDO
CALL SALT_FILTER(ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,:),&
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE))
CALL SEDIM_SALT(XTHT(IIB:IIE,IJB:IJE,IKB:IKE),PTSTEP,&
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), &
XPABST(IIB:IIE,IJB:IJE,IKB:IKE), &
XZZ(IIB:IIE,IJB:IJE,IKB:IKE+1), &
ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,:)) !ppp (concentration)
!
DO JSV = NSV_SLTBEG, NSV_SLTEND
XRSVS(IIB:IIE,IJB:IJE,IKB:IKE,JSV) = &
ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,JSV-NSV_SLTBEG+1) *&
XRHODJ(IIB:IIE,IJB:IJE,IKB:IKE) / PTSTEP
END DO
!
DEALLOCATE(ZSVT)
END IF
IF (LDUST .AND. LDEPOS_DST(IMI) .AND. KCLD) THEN
!-------------------------------------------------------------------------------
!* 3. Dust / Cloud / Rain interactions
! ------------------------------------
!
ALLOCATE(ZSIGDST(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_DST))
ALLOCATE(ZRGDST(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_DST))
ALLOCATE(ZSVDST(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_DST*3))
ALLOCATE(ZNDST(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_DST))
ALLOCATE(ZSEA(SIZE(XSVT,1),SIZE(XSVT,2)))
ALLOCATE(ZTOWN(SIZE(XSVT,1),SIZE(XSVT,2)))
ALLOCATE(ZMASSMIN(NMODE_DST))
ALLOCATE(ZINIRADIUS(NMODE_DST))
ALLOCATE(ZVMASSMIN(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_DST))
ALLOCATE(ZSVT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),SIZE(XSVT,4)))
ALLOCATE(ZRCS(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3)))
ALLOCATE(ZRRS(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3)))
ALLOCATE(ZDENSITY(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_DST))
!
ZSVDST(:,:,:,:) = 0.
ZSVT(:,:,:,:) = 0.
ZSEA(:,:) = 0.
ZTOWN(:,:) = 0.
ZRCS(:,:,:) = XRRS(:,:,:,2) * PTSTEP / XRHODJ(:,:,:)
ZRRS(:,:,:) = XRRS(:,:,:,3) * PTSTEP / XRHODJ(:,:,:)
ZDENSITY(:,:,:,:) = XDENSITY_DUST
!
! 3.1 Minimum mass to transfer between dry mass or in-cloud droplets
DO JN=1,NMODE_DST
IMODEIDX = JPDUSTORDER(JN)
IF (CRGUNITD=="MASS") THEN
ZINIRADIUS(JN) = XINIRADIUS(IMODEIDX) * EXP(-3.*(LOG(XINISIG(IMODEIDX)))**2)
ELSE
ZINIRADIUS(JN) = XINIRADIUS(IMODEIDX)
END IF
IF (LVARSIG) THEN
ZSIGMIN = XSIGMIN
ELSE
ZSIGMIN = XINISIG(IMODEIDX)
ENDIF
ZMASSMIN(JN) = XN0MIN(IMODEIDX) * (ZINIRADIUS(JN)**3)*EXP(4.5 * LOG(ZSIGMIN)**2)
! volume/um3 => #/molec_{air}
ZVMASSMIN(:,:,:,JN)= ZMASSMIN(JN) * XMD * XPI * 4./3. * XDENSITY_DUST / &
(XMOLARWEIGHT_DUST*XM3TOUM3*XRHODREF(:,:,:))
ENDDO
!
! 3.2 Derive moment from aerosol moments sources
! from moments
DO JSV=1,SIZE(XRSVS,4)
ZSVT(:,:,:,JSV) = XRSVS(:,:,:,JSV) * PTSTEP / XRHODJ(:,:,:)
ENDDO
! 3.3 Compute and store Standard deviation and mean radius
! from moments
CALL PPP2DUST(ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_DSTBEG:NSV_DSTEND), &
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), &
PSIG3D=ZSIGDST(IIB:IIE,IJB:IJE,IKB:IKE,:), &
PRG3D=ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:), &
PN3D=ZNDST(IIB:IIE,IJB:IJE,IKB:IKE,:))
! 3.4 Compute acquous aerosol mass vector from moment scalar vector
!
DO JSV= 1, NMODE_DST
IF (LVARSIG) THEN
ZSVDST(:,:,:,JSV) = ZSVT(:,:,:,NSV_DSTBEG+1+(JSV-1)*3)
ELSE IF (LRGFIX_DST) THEN
ZSVDST(:,:,:,JSV) = ZSVT(:,:,:,NSV_DSTBEG+JSV-1)
ELSE
ZSVDST(:,:,:,JSV) = ZSVT(:,:,:,NSV_DSTBEG+1+(JSV-1)*2)
ENDIF
ENDDO
DO JSV=1,NSV_DSTDEP
ZSVDST(:,:,:,NMODE_DST+JSV) = ZSVT(:,:,:,NSV_DSTDEPBEG-1+JSV)
ENDDO
ZSVDST(:,:,:,:) = MAX(ZSVDST(:,:,:,:), 0.)
ZSVT(:,:,:,:) = MAX(ZSVT(:,:,:,:), 0.)
! 3.5 Mass transfer between dry mass and in-cloud mass aerosols
SELECT CASE (CCLOUD)
CASE ('KESS','REVE','ICE3','ICE4')
! One moment cloud scheme
CALL AER_WET_DEP_KMT_WARM (NSPLITR, PTSTEP, &
XZZ(IIB:IIE,IJB:IJE,IKB:IKE), &
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), &
XRT(IIB:IIE,IJB:IJE,IKB:IKE,2), &
XRT(IIB:IIE,IJB:IJE,IKB:IKE,3), &
ZRCS(IIB:IIE,IJB:IJE,IKB:IKE), &
ZRRS(IIB:IIE,IJB:IJE,IKB:IKE), &
ZSVDST(IIB:IIE,IJB:IJE,IKB:IKE,:), &
XTHT(IIB:IIE,IJB:IJE,IKB:IKE), &
XPABST(IIB:IIE,IJB:IJE,IKB:IKE), &
ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:), &
XEVAP3D(IIB:IIE,IJB:IJE,IKB:IKE), &
NMODE_DST, &
ZDENSITY(IIB:IIE,IJB:IJE,IKB:IKE,:), &
ZVMASSMIN(IIB:IIE,IJB:IJE,IKB:IKE,:),&
PSEA=ZSEA(IIB:IIE,IJB:IJE), &
PTOWN=ZTOWN(IIB:IIE,IJB:IJE))
CASE ('KHKO','C2R2','C3R5')
! Two moment cloud scheme
CALL AER_WET_DEP_KMT_WARM (NSPLITR, PTSTEP, &
XZZ(IIB:IIE,IJB:IJE,IKB:IKE), &
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), &
XRT(IIB:IIE,IJB:IJE,IKB:IKE,2), &
XRT(IIB:IIE,IJB:IJE,IKB:IKE,3), &
ZRCS(IIB:IIE,IJB:IJE,IKB:IKE), &
ZRRS(IIB:IIE,IJB:IJE,IKB:IKE), &
ZSVDST(IIB:IIE,IJB:IJE,IKB:IKE,:), &
XTHT(IIB:IIE,IJB:IJE,IKB:IKE), &
XPABST(IIB:IIE,IJB:IJE,IKB:IKE), &
ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:), &
XEVAP3D(IIB:IIE,IJB:IJE,IKB:IKE), &
NMODE_DST, &
ZDENSITY(IIB:IIE,IJB:IJE,IKB:IKE,:), &
ZVMASSMIN(IIB:IIE,IJB:IJE,IKB:IKE,:),&
PCCT=ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_C2R2BEG+1),&
PCRT=ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_C2R2BEG+2) )
END SELECT
! 3.5 Compute return to moment vector
DO JSV=1,NMODE_DST
IF (LVARSIG) THEN
ZSVT(:,:,:,NSV_DSTBEG+1+(JSV-1)*3) = ZSVDST(:,:,:,JSV)
ELSE IF (LRGFIX_DST) THEN
ZSVT(:,:,:,NSV_DSTBEG+JSV-1) = ZSVDST(:,:,:,JSV)
ELSE
ZSVT(:,:,:,NSV_DSTBEG+1+(JSV-1)*2) = ZSVDST(:,:,:,JSV)
ENDIF
ENDDO
! 3.5 Return to lognormal distribution (compute M0 and M6 using RG, SIG and
! new mass from M3)
CALL DUST2PPP(ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_DSTBEG:NSV_DSTEND), &
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), &
ZSIGDST(IIB:IIE,IJB:IJE,IKB:IKE,:), &
ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:))
!
! 3.6 Return to source term
DO JSV=NSV_DSTBEG,NSV_DSTEND
XRSVS(IIB:IIE,IJB:IJE,IKB:IKE,JSV) = ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,JSV) * &
XRHODJ(IIB:IIE,IJB:IJE,IKB:IKE) / PTSTEP
ENDDO
DO JSV=1,NSV_DSTDEP
XRSVS(IIB:IIE,IJB:IJE,IKB:IKE,NSV_DSTDEPBEG-1+JSV)=ZSVDST(IIB:IIE,IJB:IJE,IKB:IKE,NMODE_DST+JSV) *&
XRHODJ(IIB:IIE,IJB:IJE,IKB:IKE) / PTSTEP
ENDDO
DEALLOCATE(ZSIGDST)
DEALLOCATE(ZRGDST)
DEALLOCATE(ZSVDST)
DEALLOCATE(ZNDST)
DEALLOCATE(ZSEA)
DEALLOCATE(ZTOWN)
DEALLOCATE(ZMASSMIN)
DEALLOCATE(ZINIRADIUS)
DEALLOCATE(ZVMASSMIN)
DEALLOCATE(ZSVT)
DEALLOCATE(ZRCS)
DEALLOCATE(ZRRS)
DEALLOCATE(ZDENSITY)
END IF
IF (LSALT .AND. LDEPOS_SLT(IMI) .AND. KCLD) THEN
!-------------------------------------------------------------------------------
!* 4. Sea Salt / Cloud / Rain interactions
! ------------------------------------
ALLOCATE(ZSIGSLT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_SLT))
ALLOCATE(ZRGSLT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_SLT))
ALLOCATE(ZSVSLT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_SLT*3))
ALLOCATE(ZNSLT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_SLT))
ALLOCATE(ZSEA(SIZE(XSVT,1),SIZE(XSVT,2)))
ALLOCATE(ZTOWN(SIZE(XSVT,1),SIZE(XSVT,2)))
ALLOCATE(ZMASSMIN(NMODE_SLT))
ALLOCATE(ZINIRADIUS(NMODE_SLT))
ALLOCATE(ZVMASSMIN(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_SLT))
ALLOCATE(ZSVT(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),SIZE(XSVT,4)))
ALLOCATE(ZRCS(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3)))
ALLOCATE(ZRRS(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3)))
ALLOCATE(ZDENSITY(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),NMODE_SLT))
!
ZSVSLT(:,:,:,:) = 0.
ZSVT(:,:,:,:) = 0.
ZSEA(:,:) = 0.
ZTOWN(:,:) = 0.
ZRCS(:,:,:) = XRRS(:,:,:,2) * PTSTEP / XRHODJ(:,:,:)
ZRRS(:,:,:) = XRRS(:,:,:,3) * PTSTEP / XRHODJ(:,:,:)
ZDENSITY(:,:,:,:) = XDENSITY_SALT
!
! 4.1 Minimum mass to transfer between dry mass or in-cloud droplets
DO JN=1,NMODE_SLT
IMODEIDX = JPSALTORDER(JN)
IF (CRGUNITD=="MASS") THEN
ZINIRADIUS(JN) = XINIRADIUS(IMODEIDX) * EXP(-3.*(LOG(XINISIG(IMODEIDX)))**2)
ELSE
ZINIRADIUS(JN) = XINIRADIUS(IMODEIDX)
END IF
IF (LVARSIG) THEN
ZSIGMIN = XSIGMIN
ELSE
ZSIGMIN = XINISIG(IMODEIDX)
ENDIF
ZMASSMIN(JN) = XN0MIN(IMODEIDX) * (ZINIRADIUS(JN)**3)*EXP(4.5 * LOG(ZSIGMIN)**2)
! volume/um3 => #/molec_{air}
ZVMASSMIN(:,:,:,JN)= ZMASSMIN(JN) * XMD * XPI * 4./3. * XDENSITY_SALT / &
(XMOLARWEIGHT_SALT*XM3TOUM3*XRHODREF(:,:,:))
ENDDO
!
! 4.2 Derive moment from aerosol moments sources
! from moments
XRSVS(:,:,:,NSV_SLTDEPBEG:NSV_SLTDEPEND) = &
MAX(XRSVS(:,:,:,NSV_SLTDEPBEG:NSV_SLTDEPEND), 0.)
DO JSV=1,SIZE(XRSVS,4)
ZSVT(:,:,:,JSV) = XRSVS(:,:,:,JSV) * PTSTEP / XRHODJ(:,:,:)
ENDDO
! 4.3 Compute and store Standard deviation and mean radius
! from moments
CALL PPP2SALT(ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_SLTBEG:NSV_SLTEND), &
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), &
PSIG3D=ZSIGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), &
PRG3D=ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), &
PN3D=ZNSLT(IIB:IIE,IJB:IJE,IKB:IKE,:))
! 4.4 Compute acquous aerosol mass vector from moment scalar vector
!
DO JSV= 1, NMODE_SLT
IF (LVARSIG) THEN
ZSVSLT(:,:,:,JSV) = ZSVT(:,:,:,NSV_SLTBEG+1+(JSV-1)*3)
ELSE IF (LRGFIX_SLT) THEN
ZSVSLT(:,:,:,JSV) = ZSVT(:,:,:,NSV_SLTBEG+JSV-1)
ELSE
ZSVSLT(:,:,:,JSV) = ZSVT(:,:,:,NSV_SLTBEG+1+(JSV-1)*2)
ENDIF
ENDDO
DO JSV=1,NSV_SLTDEP
ZSVSLT(:,:,:,NMODE_SLT+JSV) = XRSVS(:,:,:,NSV_SLTDEPBEG-1+JSV) *&
PTSTEP / XRHODJ(:,:,:)
ENDDO
! 4.5 Mass transfer between dry mass and in-cloud mass aerosols
SELECT CASE (CCLOUD)
CASE ('KESS','REVE','ICE3','ICE4')
! One moment cloud scheme
CALL AER_WET_DEP_KMT_WARM (NSPLITR, PTSTEP, &
XZZ(IIB:IIE,IJB:IJE,IKB:IKE), &
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), &
XRT(IIB:IIE,IJB:IJE,IKB:IKE,2), &
XRT(IIB:IIE,IJB:IJE,IKB:IKE,3), &
ZRCS(IIB:IIE,IJB:IJE,IKB:IKE), &
ZRRS(IIB:IIE,IJB:IJE,IKB:IKE), &
ZSVSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), &
XTHT(IIB:IIE,IJB:IJE,IKB:IKE), &
XPABST(IIB:IIE,IJB:IJE,IKB:IKE), &
ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), &
XEVAP3D(IIB:IIE,IJB:IJE,IKB:IKE), &
NMODE_SLT, &
ZDENSITY(IIB:IIE,IJB:IJE,IKB:IKE,:), &
ZVMASSMIN(IIB:IIE,IJB:IJE,IKB:IKE,:),&
PSEA=ZSEA(IIB:IIE,IJB:IJE), &
PTOWN=ZTOWN(IIB:IIE,IJB:IJE))
CASE ('KHKO','C2R2','C3R5')
! Two moment cloud scheme
CALL AER_WET_DEP_KMT_WARM (NSPLITR, PTSTEP, &
XZZ(IIB:IIE,IJB:IJE,IKB:IKE), &
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), &
XRT(IIB:IIE,IJB:IJE,IKB:IKE,2), &
XRT(IIB:IIE,IJB:IJE,IKB:IKE,3), &
ZRCS(IIB:IIE,IJB:IJE,IKB:IKE), &
ZRRS(IIB:IIE,IJB:IJE,IKB:IKE), &
ZSVSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), &
XTHT(IIB:IIE,IJB:IJE,IKB:IKE), &
XPABST(IIB:IIE,IJB:IJE,IKB:IKE), &
ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), &
XEVAP3D(IIB:IIE,IJB:IJE,IKB:IKE), &
NMODE_SLT, &
ZDENSITY(IIB:IIE,IJB:IJE,IKB:IKE,:), &
ZVMASSMIN(IIB:IIE,IJB:IJE,IKB:IKE,:),&
PCCT=ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_C2R2BEG+1),&
PCRT=ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_C2R2BEG+2) )
END SELECT
! 4.5 Compute return to moment vector
DO JSV=1,NMODE_SLT
IF (LVARSIG) THEN
ZSVT(:,:,:,NSV_SLTBEG+1+(JSV-1)*3) = ZSVSLT(:,:,:,JSV)
ELSE IF (LRGFIX_SLT) THEN
ZSVT(:,:,:,NSV_SLTBEG+JSV-1) = ZSVSLT(:,:,:,JSV)
ELSE
ZSVT(:,:,:,NSV_SLTBEG+1+(JSV-1)*2) = ZSVSLT(:,:,:,JSV)
ENDIF
ENDDO
! 4.5 Return to lognormal distribution (compute M0 and M6 using RG, SIG and
! new mass from M3)
CALL SALT2PPP(ZSVT(IIB:IIE,IJB:IJE,IKB:IKE,NSV_SLTBEG:NSV_SLTEND), &
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), &
ZSIGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), &
ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:))
!
! 4.6 Return to source term
DO JSV=NSV_SLTBEG,NSV_SLTEND
XRSVS(:,:,:,JSV) = ZSVT(:,:,:,JSV) * XRHODJ(:,:,:) / PTSTEP
ENDDO
DO JSV=1,NSV_SLTDEP
XRSVS(:,:,:,NSV_SLTDEPBEG-1+JSV) = ZSVSLT(:,:,:,NMODE_SLT+JSV) *&
XRHODJ(:,:,:) / PTSTEP
ENDDO
DEALLOCATE(ZSIGSLT)
DEALLOCATE(ZRGSLT)
DEALLOCATE(ZSVSLT)
DEALLOCATE(ZNSLT)
DEALLOCATE(ZSEA)
DEALLOCATE(ZTOWN)
DEALLOCATE(ZMASSMIN)
DEALLOCATE(ZINIRADIUS)
DEALLOCATE(ZVMASSMIN)
DEALLOCATE(ZSVT)
DEALLOCATE(ZRCS)
DEALLOCATE(ZRRS)
DEALLOCATE(ZDENSITY)
END IF
!
!-------------------------------------------------------------------------------
!
END SUBROUTINE AER_MONITOR_n