Newer
Older
!ORILAM_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!ORILAM_LIC This is part of the ORILAM software governed by the CeCILL-C licence
!ORILAM_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!ORILAM_LIC for details.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
!-----------------------------------------------------------------
!--------------- special set of characters for RCS information
!-----------------------------------------------------------------
! $Source$ $Revision$
! MASDEV4_7 chimie 2006/05/18 13:07:25
!-----------------------------------------------------------------
!! #########################
MODULE MODI_CH_AER_GROWTH
!! #########################
!!
INTERFACE
!!
SUBROUTINE CH_AER_GROWTH(PM,PSIG0, PRG0, PDMCOND,PDENAIR,PGASMW,PPGAS,PTGAS,PRH, POM,&
PSO4RAT, PDT)
IMPLICIT NONE
REAL, DIMENSION(:,:), INTENT(INOUT) :: PM
REAL, DIMENSION(:,:), INTENT(INOUT) :: PDMCOND, POM
REAL, DIMENSION(:), INTENT(IN) :: PDENAIR,PPGAS,PTGAS
REAL, DIMENSION(:), INTENT(INOUT) :: PRH, PSO4RAT
REAL, DIMENSION(:,:), INTENT(INOUT) :: PSIG0, PRG0
REAL, INTENT(INOUT) :: PGASMW
REAL, INTENT(IN) :: PDT
END SUBROUTINE CH_AER_GROWTH
!!
END INTERFACE
!!
END MODULE MODI_CH_AER_GROWTH
!!
!! ##############################################
SUBROUTINE CH_AER_GROWTH(PM,PSIG0, PRG0, PDMCOND,PDENAIR,&
PGASMW,PPGAS,PTGAS,PRH, POM,&
PSO4RAT, PDT)
!! ##############################################
!!
!! PURPOSE
!! -------
!!
!! This routine computes the rate of change due to condensation
!! and homogene nucleation
!!
!!*************************************************************
!!
!! Sans test pour savoir si toute la vapeur est utilisee
!!
!! REFERENCE
!! ---------
!! none
!!
!! AUTHOR
!! ------
!! Vincent Crassier (LA)
!!
!! MODIFICATIONS
!! -------------
!! Tulet P. ajout nucleation Kulmala, 1998
!!
!*************************************************************
! Entry variables:
!
! PM(JPIN) -Array of moments
! ZT -Present time in the scheme
!
!*************************************************************
! Exit variables:
!
! ZCOEFM(JPIN) -Array of moment variation due to condensation
! and homogeneous nucleation
!
!*************************************************************
! Variables used during the condensation calculation
!
! ZALPHA - accomodation coefficient
! ZCBAR - kinetic velocity of vapor molecules (m/s)
! ZDV - vapor diffusivity (m2/s)
! ZPSIT - size-independant component of the growth law
! ZSATUR - saturation ratio of condensed species
!*************************************************************
! Variables used during nucleation calculation
!
! ZCCRIT -Critical concentration for production of new
! particles (kg/m3)
! ZC0 -Initial monomer concentration (kg/m3)
! ZG0 -Critical cluster number
! ZP -Rate of gas phase production of sulfuric acid
! concentration C (kg/m3)
! ZSURTEN -Surface tension (N/m)
! ZTHETA -Dimensionless surface energy
! ZW0 -Dimensionless energy barrier to nucleation
! ************************************************************
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
USE MODD_CH_AEROSOL
USE MODI_CH_AER_NUCL
USE MODD_CST, ONLY : XPI
!!
IMPLICIT NONE
!
!
!* 0.1 Declarations of arguments
!
REAL, DIMENSION(:,:), INTENT(INOUT) :: PM
REAL, DIMENSION(:,:), INTENT(INOUT) :: PDMCOND, POM
REAL, DIMENSION(:), INTENT(IN) :: PDENAIR,PPGAS,PTGAS
REAL, DIMENSION(:), INTENT(INOUT) :: PRH, PSO4RAT
REAL, DIMENSION(:,:), INTENT(INOUT) :: PSIG0, PRG0
REAL, INTENT(INOUT) :: PGASMW
REAL, INTENT(IN) :: PDT
!
!* 0.2 Declarations of local variables
!
INTEGER :: JI,JJ
REAL, DIMENSION(SIZE(PM,1),JPMODE,2) :: ZRIK
REAL, DIMENSION(SIZE(PM,1)) :: ZRG,ZLN2S
REAL, DIMENSION(SIZE(PM,1)) :: ZRIKNC,ZRIKFM
REAL, DIMENSION(SIZE(PM,1)) :: ZSIGGAS,ZSIGAIR
REAL, DIMENSION(SIZE(PM,1)) :: ZSIG
REAL, DIMENSION(SIZE(PM,1)) :: ZCBAR
REAL, DIMENSION(SIZE(PM,1),(JPMODE)*3) :: ZMOM
REAL, DIMENSION(SIZE(PM,1)) :: ZCCRIT
REAL, DIMENSION(SIZE(PM,1)) :: ZDTD,ZTINF,ZCSO4SS
REAL, DIMENSION(SIZE(PM,1)) :: ZDMDT,ZDNDT,ZDM3DT,ZDM6DT
REAL, DIMENSION(SIZE(PM,1)) :: ZAL, ZJA, ZSULF
REAL :: ZDV,ZALPHA
REAL :: ZMSO4
ZALPHA=0.05
ZMSO4 = 98.
PDMCOND(:,:)=0.d0
!
!-------------------------------------------------------------------------------
!
! Pour l'instant seul H2SO4 peut nucleer, d'une part
! de facon homogene (creation de nouvelles particules)
! d'autre part de facon heterogene (sur les particules
! d'aerosol deja existante)
!*******************************************************
! Compute the binary diffusivity of the gaseous species
!*******************************************************
ZSIGAIR(:)=(PGASMW/1000.*3./(6.023e23*4.*XPI*PDENAIR(:)))**(1./3.)
ZSIGGAS(:)=(ZMSO4/1000.*3./(6.023e23*4.*XPI*XRHOI(2)))**(1./3.)
ZSIG(:)=(ZSIGGAS(:)+ZSIGAIR(:))/2.
ZCBAR(:)=SQRT(8.*PTGAS(:)*8.31441/(XPI*ZMSO4*1.e-3))
ZDV=0.08e-4
!*************************
! Compute the Omega terms
!*************************
DO JI=1,JPMODE
ZRG(:)=PRG0(:,JI)*1.e-6
ZLN2S(:)=PSIG0(:,JI)**2
DO JJ=1,6
ZMOM(:,JJ)=PM(:,NM0(JI))*ZRG(:)**JJ*exp(real(JJ)**2*ZLN2S(:)/2.)
ENDDO
ZRIKFM(:)=XPI*ZALPHA*ZCBAR(:)/8.*ZMOM(:,2)
ZRIKNC(:)=XPI*ZDV/2.*ZMOM(:,1)
ZRIK(:,JI,1)=ZRIKFM(:)*(ZRIKNC(:)/(ZRIKFM(:)+ZRIKNC(:)))
ZRIKFM(:)=XPI*ZALPHA*ZCBAR(:)/8.*ZMOM(:,5)
ZRIKNC(:)=XPI*ZDV/2.*ZMOM(:,4)
ZRIK(:,JI,2)=ZRIKFM(:)*(ZRIKNC(:)/(ZRIKFM(:)+ZRIKNC(:)))
ENDDO
POM(:,1)=(ZRIK(:,1,1)/(ZRIK(:,1,1)+ZRIK(:,2,1)))
POM(:,2)=(ZRIK(:,2,1)/(ZRIK(:,1,1)+ZRIK(:,2,1)))
!
IF (CNUCLEATION=='KERMINEN') THEN
!******************************************************************
! Debut de la partie nucleation homogene en utilisant l'approche de
! Kerminen et Wexler (1994)
!******************************************************************
ZCCRIT(:)=0.16*exp(0.1*PTGAS(:)-3.5*PRH(:)-27.7)
!KS: suppress nucleation
! ZCCRIT(:)=1E20
! ZTINF, the time constant for particles to condense onto
! existing particles is given by Tinf=1/(dM3i/dt+dm3j/dt)
! where M3i and M3j are in third moment par CM3
ZDTD(:)=8.*(ZRIK(:,1,1)+ZRIK(:,2,1))
ZTINF(:)=1./ZDTD(:)
ZCSO4SS(:)=PSO4RAT(:)*(ZMSO4/6.0221367E+11)*ZTINF(:)
DO JI = 1,SIZE(PM,1)
IF (ZCSO4SS(JI) <= ZCCRIT(JI)) THEN !No nucleation
ZDNDT(JI)=0.
ZDMDT(JI)=0.
ZDM6DT(JI)=0.
ELSE !Calculate nucleation
! Nucleation of particles from excess mass concentration of sulfuric acid
! above critical mass concentration of sulfuric acid
! and condensation of the remaining mass
ZDMDT(JI)=ZDTD(JI)*(ZCSO4SS(JI)-ZCCRIT(JI))
! Les nouvelles particules fraichement crees sont inclues dans le mode
! d'aitken avec les parametres d'initialisation au niveau de la distribution
ZDNDT(JI)=ZDMDT(JI)*1.e-18/XFAC(JP_AER_SO4)/((0.0025e-6)**3*exp(9./2.*log(1.5)**2))
ZDM6DT(JI)=ZDNDT(JI)*(0.0025)**6*exp(18.*log(1.5)**2)
! write(*,*) 'Nucleation: ','DNDT= ',ZDNDT,' DM6DT= ',ZDM6DT
ENDIF
ENDDO
ELSE
ZDNDT(:)=0.
ZDMDT(:)=0.
ZDM6DT(:)=0.
ENDIF
!
IF (CNUCLEATION=='KULMALA') THEN
! compute nucleation rate
!
ZSULF(:) = PSO4RAT(:) * PDT
!
CALL CH_AER_NUCL(PRH,PTGAS,ZSULF,ZJA,ZAL,SIZE(PSO4RAT,1))
!
! new mass in molec.cm-3.s-1
ZDMDT(:)= ZAL(:)*ZJA(:)
! convert into microgram.m-3.s-1
ZDMDT(:)= ZDMDT(:) * ZMSO4/6.0221367E+11
!
! Les nouvelles particules fraichement crees sont inclues dans le mode
! d'aitken avec les parametres d'initialisation au niveau de la distribution
!
ZDNDT(:) = ZDMDT(:)/(XFAC(JP_AER_SO4)*(PRG0(:,1)**3)*EXP(4.5 * PSIG0(:,1)**2))
ZDM6DT(:) = ZDNDT(:)*(PRG0(:,1)**6*EXP(18.*PSIG0(:,1)**2))
ELSE
ZDNDT(:)=0.
ZDMDT(:)=0.
ZDM6DT(:)=0.
ENDIF
!
! condensation des sulfates
ZDM3DT(:)=PSO4RAT(:)*(ZMSO4/6.0221367E+11)/XFAC(JP_AER_SO4)*1.e-18
!
! Enlever la quantite de 3e moment deja consommee pour la nucleation homogene
ZDM3DT(:)=ZDM3DT(:)-ZDMDT(:)/XFAC(JP_AER_SO4)*1.e-18
!
!
PDMCOND(:,1)=ZDNDT(:)
PDMCOND(:,2)=ZDMDT(:)/XFAC(JP_AER_SO4)
PDMCOND(:,3)=ZDM6DT(:)
!
DO JI=1,JPMODE
PDMCOND(:,NM3(JI))=PDMCOND(:,NM3(JI))+ZDM3DT(:)*POM(:,JI)*1.e18
PDMCOND(:,NM6(JI))=PDMCOND(:,NM6(JI))+ZDM3DT(:)*POM(:,JI)*ZRIK(:,JI,2)/ZRIK(:,JI,1)*1.e36
ENDDO
!
END SUBROUTINE CH_AER_GROWTH