Newer
Older
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
! ####################################
MODULE MODI_CH_AQUEOUS_TMICICE
! ####################################
!
INTERFACE
SUBROUTINE CH_AQUEOUS_TMICICE( PTSTEP, PRHODREF, PRHODJ, PTHT, PPABST, &
PRTMIN_AQ, OUSECHIC, OCH_RET_ICE, HNAMES, &
HICNAMES, KEQ, KEQAQ, PRVT, PRCT, PRRT, PRIT,&
PRST, PRGT, PCIT, PRCS, PRRS, PRIS, PRSS, &
PRGS, PGSVT, PGRSVS, PCSVT, PCRSVS, PRSVT, &
PRRSVS, PSGSVT, PSGRSVS )
!
REAL, INTENT(IN) :: PTSTEP ! Time step
REAL, INTENT(IN) :: PRTMIN_AQ ! LWC threshold liq. chem.
INTEGER, INTENT(IN) :: KEQ ! Number of chem. spec.
INTEGER, INTENT(IN) :: KEQAQ ! Number of liq. chem. spec.
LOGICAL, INTENT(IN) :: OUSECHIC ! flag for ice chem.
LOGICAL, INTENT(IN) :: OCH_RET_ICE ! flag for retention in ice
!
CHARACTER(LEN=32), DIMENSION(:), INTENT(IN) :: HNAMES ! name of chem. species
CHARACTER(LEN=32), DIMENSION(:), INTENT(IN) :: HICNAMES ! name of ice chem. species
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! absolute pressure at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT ! Theta at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRVT ! Vapor m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rainwater m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIT ! Pristine m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRST ! Snow m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGT ! Graupel m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCIT ! Pristine conc. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCS ! cloud water m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRS ! Rainwater m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIS ! Pristine m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRSS ! Snow m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGS ! graupel m.r. source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PGSVT ! gas species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PGRSVS ! gas species source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PCSVT ! cloud water aq. species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PCRSVS ! cloud water aq. species source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PRSVT ! Rainwater aq. species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRRSVS ! Rainwater aq. species source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PSGSVT ! ice species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PSGRSVS ! ice species source
!
END SUBROUTINE CH_AQUEOUS_TMICICE
END INTERFACE
END MODULE MODI_CH_AQUEOUS_TMICICE
!
! ################################################################################
SUBROUTINE CH_AQUEOUS_TMICICE( PTSTEP, PRHODREF, PRHODJ, PTHT, PPABST, &
PRTMIN_AQ, OUSECHIC, OCH_RET_ICE, HNAMES, &
HICNAMES, KEQ, KEQAQ, PRVT, PRCT, PRRT, PRIT,&
PRST, PRGT, PCIT, PRCS, PRRS, PRIS, PRSS, &
PRGS, PGSVT, PGRSVS, PCSVT, PCRSVS, PRSVT, &
PRRSVS, PSGSVT, PSGRSVS )
! ################################################################################
!
!!**** * - compute the explicit microphysical sources
!!
!! PURPOSE
!! -------
!! The purpose of this routine is to compute the microphysical sources
!! corresponding to collision/coalescence processes (autoconversion + accretion)
!! and to the freezing, rimin and melting processes for snow and graupel
!! for the ICE3(4) cloud microphysics parameterization (see rain_ice)
!!
!!
!!** METHOD
!! ------
!!
!! EXTERNAL
!! --------
!! None
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAMETERS
!! JPHEXT : Horizontal external points number
!! JPVEXT : Vertical external points number
!!
!! REFERENCE
!! ---------
!! Book1 of the documentation ( routine CH_AQUEOUS_TMICICE )
!!
!! AUTHOR
!! ------
!! C. Mari J.P. Pinty M. Leriche * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original 26/03/08
!! M. Leriche 19/07/2010 add riming, freezing and melting for ice phase(ICE3)
!! M. Leriche 17/09/2010 add OUSECHIC flag
!! Juan 24/09/2012: for BUG Pgi rewrite PACK function on mode_pack_pgi
!! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_PARAMETERS, ONLY : JPHEXT, &! number of horizontal External points
JPVEXT ! number of vertical External points
USE MODD_CST, ONLY : XP00, XRD, XRV, XCPD, XTT, XLMTT, XLVTT, XCPV, &
XCL, XCI, XESTT, XMV, XMD
USE MODD_RAIN_ICE_DESCR, ONLY : XLBR, XLBEXR, XCEXVT, XLBDAS_MAX, XLBS, XLBEXS, &
XLBG, XLBEXG, XCXS, XCXG, XDG, XBS
USE MODD_RAIN_ICE_PARAM, ONLY : XTIMAUTC, XCRIAUTC, XFCACCR, XEXCACCR, &
XRIMINTP1, XRIMINTP2, XCRIMSS, XCRIMSG,&
XEXCRIMSS, XEXCRIMSG, NGAMINC, XGAMINC_RIM1, &
XFRACCSS, XLBRACCS1, XLBRACCS2, XLBRACCS3, &
XACCINTP1S, XACCINTP2S, XACCINTP1R, XACCINTP2R, &
NACCLBDAS, NACCLBDAR, XKER_RACCSS, XKER_RACCS, &
XEXRCFRI, XRCFRI, X0DEPG, XEX0DEPG, X1DEPG, &
XEX1DEPG, XSCFAC, XFCDRYG, XFIDRYG, XCOLEXIG, &
XCOLEXSG, XFSDRYG, NDRYLBDAG, XDRYINTP1G, &
XDRYINTP2G, NDRYLBDAS, XDRYINTP1S, XDRYINTP2S, &
XKER_SDRYG, XLBSDRYG1, XLBSDRYG2, XLBSDRYG3, &
XFRDRYG, NDRYLBDAR, XDRYINTP1R, XDRYINTP2R, &
XKER_RDRYG, XLBRDRYG1, XLBRDRYG2, XLBRDRYG3, &
XCOLIG, XCOLEXIG, XCOLSG, XCOLEXSG
USE MODD_CH_ICE ! value of retention coefficient
USE MODD_CH_ICE_n ! index for ice phase chemistry with IC3/4
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
!
#ifdef MNH_PGI
USE MODE_PACK_PGI
#endif
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
REAL, INTENT(IN) :: PTSTEP ! Time step
REAL, INTENT(IN) :: PRTMIN_AQ ! LWC threshold liq. chem.
INTEGER, INTENT(IN) :: KEQ ! Number of chem. spec.
INTEGER, INTENT(IN) :: KEQAQ ! Number of liq. chem. spec.
LOGICAL, INTENT(IN) :: OUSECHIC ! flag for ice chem.
LOGICAL, INTENT(IN) :: OCH_RET_ICE ! flag for retention in ice
!
CHARACTER(LEN=32), DIMENSION(:), INTENT(IN) :: HNAMES ! name of chem. species
CHARACTER(LEN=32), DIMENSION(:), INTENT(IN) :: HICNAMES ! name of ice chem. species
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! absolute pressure at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT ! Theta at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRVT ! Vapor m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rainwater m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIT ! Pristine m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRST ! Snow m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGT ! Graupel m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCIT ! Pristine conc. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCS ! cloud water m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRS ! Rainwater m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIS ! Pristine m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRSS ! Snow m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGS ! graupel m.r. source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PGSVT ! gas species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PGRSVS ! gas species source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PCSVT ! cloud water aq. species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PCRSVS ! cloud water aq. species source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PRSVT ! Rainwater aq. species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRRSVS ! Rainwater aq. species source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PSGSVT ! ice species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PSGRSVS ! ice species source
!
!* 0.2 Declarations of local variables :
!
INTEGER :: JLC, JLR, JLI, JLG, JLW ! Loop index for cloud water, rainwater and ice species
INTEGER :: JJ ! Loop index
INTEGER :: IIB ! Define the domain where is
INTEGER :: IIE ! the microphysical sources have to be computed
INTEGER :: IJB
INTEGER :: IJE
INTEGER :: IKB
INTEGER :: IKE
!
INTEGER :: IMICRO ! case number of r_x>0 locations
LOGICAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: GMICRO ! where to compute mic. processes
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZT ! Temperature
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZRCS ! Cloud water m.r. source phys.tendency
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZRRS ! Rain water m.r. source phys. tendency
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZRIS ! Pristine m.r. source phys. tendency
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZRSS ! Snow m.r. source phys. tendency
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZRGS ! Graupel m.r. source phys. tendency
REAL, DIMENSION(SIZE(PGRSVS,1),SIZE(PGRSVS,2),SIZE(PGRSVS,3),SIZE(PGRSVS,4)) &
:: ZZGRSVS ! Gas species source
REAL, DIMENSION(SIZE(PCRSVS,1),SIZE(PCRSVS,2),SIZE(PCRSVS,3),SIZE(PCRSVS,4)) &
:: ZZCRSVS ! Cloud water aq. species source
REAL, DIMENSION(SIZE(PRRSVS,1),SIZE(PRRSVS,2),SIZE(PRRSVS,3),SIZE(PRRSVS,4)) &
:: ZZRRSVS ! Rain water aq. species source
REAL, DIMENSION(SIZE(PSGRSVS,1),SIZE(PSGRSVS,2),SIZE(PSGRSVS,3),SIZE(PSGRSVS,4)) &
:: ZZSGRSVS ! Ice (snow+graupel) species source
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZCW ! work array
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZRW ! work array
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZSGW ! work array
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZGW ! work array
REAL, DIMENSION(:), ALLOCATABLE :: ZZT ! Temperature
REAL, DIMENSION(:), ALLOCATABLE :: ZPRES ! Pressure
REAL, DIMENSION(:), ALLOCATABLE :: ZRVT ! Vapor m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRCT ! Cloud water m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRRT ! Rain water m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRIT ! Pristine m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRST ! Snow m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRGT ! Graupel m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZCIT ! Pristine conc. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZZRCS ! Cloud water m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZZRRS ! Rain water m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZZRIS ! Pristine m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZZRSS ! snow m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZZRGS ! graupel m.r. source
REAL, DIMENSION(:,:), ALLOCATABLE :: ZCSVT ! Cloud water aq. species at t
REAL, DIMENSION(:,:), ALLOCATABLE :: ZRSVT ! Rain water aq. species at t
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSGSVT ! Ice (snow + graupel) species at t
REAL, DIMENSION(:,:), ALLOCATABLE :: ZGRSVS ! Gas species source
REAL, DIMENSION(:,:), ALLOCATABLE :: ZCRSVS ! Cloud water aq. species source
REAL, DIMENSION(:,:), ALLOCATABLE :: ZRRSVS ! Rain water aq. species source
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSGRSVS! Ice (snow+graupel) species source
REAL, DIMENSION(:), ALLOCATABLE :: ZCJ ! Function to compute the ventilation coefficient
REAL, DIMENSION(:), ALLOCATABLE :: ZKA ! Thermal conductivity of the air
REAL, DIMENSION(:), ALLOCATABLE :: ZDV ! Diffusivity of water vapor in the air
!
REAL, DIMENSION(:), ALLOCATABLE :: ZRHODREF, & ! RHO Dry REFerence
ZZW, & ! Work array
ZLBDAR, & ! Slope parameter of the raindrop distribution
ZLBDAS, & ! Slope parameter of the snow distribution
ZLBDAG, & ! Slope parameter of the graupel distribution
ZRDRYG, & ! Dry growth rate of the graupel
ZRWETG ! Wet growth rate of the graupel
!
INTEGER :: IGRIM, IGACC ! Case number of riming, accretion
INTEGER :: IGDRY
!, IGWET ! dry growth and wet growth locations for graupels
LOGICAL, DIMENSION(:), ALLOCATABLE :: GRIM ! Test where to compute riming
LOGICAL, DIMENSION(:), ALLOCATABLE :: GACC ! Test where to compute accretion
LOGICAL, DIMENSION(:), ALLOCATABLE :: GDRY ! Test where to compute dry growth
!LOGICAL, DIMENSION(:), ALLOCATABLE :: GWET ! Test where to compute wet growt
INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC1,IVEC2 ! Vectors of indices for
! interpolations
REAL, DIMENSION(:), ALLOCATABLE :: ZVEC1,ZVEC2,ZVEC3 ! Work vectors for
! interpolations
REAL, DIMENSION(:,:), ALLOCATABLE :: ZZW1, ZZW2, ZZW3, ZZW4 ! Work arrays
!
INTEGER , DIMENSION(SIZE(GMICRO)) :: I1,I2,I3 ! Used to replace the COUNT
INTEGER :: JL ! and PACK intrinsics
!
!
! compute the temperature
!
ZT(:,:,:) = PTHT(:,:,:) * ( PPABST(:,:,:) / XP00 ) ** (XRD/XCPD)
!
!-------------------------------------------------------------------------------
!
!* 1. COMPUTE THE LOOP BOUNDS
! -----------------------
!
CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
IKB=1+JPVEXT
IKE=SIZE(PRCT,3) - JPVEXT
!
!-------------------------------------------------------------------------------
!
!!* 2. TRANSFORMATION INTO PHYSICAL TENDENCIES
! ---------------------------------------
!
ZRCS(:,:,:) = PRCS(:,:,:) / PRHODJ(:,:,:)
ZRRS(:,:,:) = PRRS(:,:,:) / PRHODJ(:,:,:)
ZRSS(:,:,:) = PRSS(:,:,:) / PRHODJ(:,:,:)
ZRIS(:,:,:) = PRIS(:,:,:) / PRHODJ(:,:,:)
ZRGS(:,:,:) = PRGS(:,:,:) / PRHODJ(:,:,:)
!
DO JLC= 1, SIZE(PCRSVS,4)
ZZCRSVS(:,:,:,JLC) = PCRSVS(:,:,:,JLC) / PRHODJ(:,:,:)
ENDDO
DO JLR= 1, SIZE(PRRSVS,4)
ZZRRSVS(:,:,:,JLR) = PRRSVS(:,:,:,JLR) / PRHODJ(:,:,:)
ENDDO
IF (OUSECHIC) THEN
DO JLG= 1, SIZE(PGRSVS,4)
ZZGRSVS(:,:,:,JLG) = PGRSVS(:,:,:,JLG) / PRHODJ(:,:,:)
ENDDO
DO JLI= 1, SIZE(PSGRSVS,4)
ZZSGRSVS(:,:,:,JLI) = PSGRSVS(:,:,:,JLI) / PRHODJ(:,:,:)
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLG= 1, SIZE(PGRSVS,4)
ZZGRSVS(:,:,:,JLG) = PGRSVS(:,:,:,JLG) / PRHODJ(:,:,:)
ENDDO
ENDIF
ENDIF
!
!-------------------------------------------------------------------------------
!
!* 3. OPTIMIZATION: looking for locations where m.r. hydro. > min value
! -----------------------------------------------------------------
!
GMICRO(:,:,:) = .FALSE.
GMICRO(IIB:IIE,IJB:IJE,IKB:IKE) = &
(PRCT(IIB:IIE,IJB:IJE,IKB:IKE)>PRTMIN_AQ*1.e3/PRHODREF(IIB:IIE,IJB:IJE,IKB:IKE)) .OR. &
(PRRT(IIB:IIE,IJB:IJE,IKB:IKE)>PRTMIN_AQ*1.e3/PRHODREF(IIB:IIE,IJB:IJE,IKB:IKE)) .OR. &
(PRST(IIB:IIE,IJB:IJE,IKB:IKE)>PRTMIN_AQ*1.e3/PRHODREF(IIB:IIE,IJB:IJE,IKB:IKE)) .OR. &
(PRGT(IIB:IIE,IJB:IJE,IKB:IKE)>PRTMIN_AQ*1.e3/PRHODREF(IIB:IIE,IJB:IJE,IKB:IKE))
!
IMICRO = COUNTJV( GMICRO(:,:,:),I1(:),I2(:),I3(:))
IF( IMICRO >= 1 ) THEN
ALLOCATE(ZZT(IMICRO))
ALLOCATE(ZPRES(IMICRO))
ALLOCATE(ZRVT(IMICRO))
ALLOCATE(ZRCT(IMICRO))
ALLOCATE(ZRRT(IMICRO))
ALLOCATE(ZRIT(IMICRO))
ALLOCATE(ZRST(IMICRO))
ALLOCATE(ZRGT(IMICRO))
ALLOCATE(ZCIT(IMICRO))
ALLOCATE(ZCSVT(IMICRO,SIZE(PCSVT,4)))
ALLOCATE(ZRSVT(IMICRO,SIZE(PRSVT,4)))
ALLOCATE(ZZRCS(IMICRO))
ALLOCATE(ZZRRS(IMICRO))
ALLOCATE(ZZRIS(IMICRO))
ALLOCATE(ZZRSS(IMICRO))
ALLOCATE(ZZRGS(IMICRO))
ALLOCATE(ZCRSVS(IMICRO,SIZE(PCRSVS,4)))
ALLOCATE(ZRRSVS(IMICRO,SIZE(PRRSVS,4)))
ALLOCATE(ZRHODREF(IMICRO))
ALLOCATE(ZZW(IMICRO))
ALLOCATE(ZZW2(IMICRO,SIZE(PCSVT,4)))
ALLOCATE(ZZW4(IMICRO,SIZE(PCSVT,4)))
ALLOCATE(ZZW1(IMICRO,6))
ALLOCATE(ZLBDAR(IMICRO))
ALLOCATE(ZLBDAS(IMICRO))
ALLOCATE(ZLBDAG(IMICRO))
ALLOCATE(ZRDRYG(IMICRO))
ALLOCATE(ZRWETG(IMICRO))
ALLOCATE(ZKA(IMICRO))
ALLOCATE(ZDV(IMICRO))
ALLOCATE(ZCJ(IMICRO))
DO JL=1,IMICRO
ZCSVT(JL,:) = PCSVT(I1(JL),I2(JL),I3(JL),:)
ZCRSVS(JL,:) = ZZCRSVS(I1(JL),I2(JL),I3(JL),:)
ZRSVT(JL,:) = PRSVT(I1(JL),I2(JL),I3(JL),:)
ZRRSVS(JL,:) = ZZRRSVS(I1(JL),I2(JL),I3(JL),:)
!
ZRVT(JL) = PRVT(I1(JL),I2(JL),I3(JL))
ZRCT(JL) = PRCT(I1(JL),I2(JL),I3(JL))
ZRRT(JL) = PRRT(I1(JL),I2(JL),I3(JL))
ZRIT(JL) = PRIT(I1(JL),I2(JL),I3(JL))
ZRST(JL) = PRST(I1(JL),I2(JL),I3(JL))
ZRGT(JL) = PRGT(I1(JL),I2(JL),I3(JL))
ZCIT(JL) = PCIT(I1(JL),I2(JL),I3(JL))
!
ZZRCS(JL) = ZRCS(I1(JL),I2(JL),I3(JL))
ZZRRS(JL) = ZRRS(I1(JL),I2(JL),I3(JL))
ZZRIS(JL) = ZRIS(I1(JL),I2(JL),I3(JL))
ZZRSS(JL) = ZRSS(I1(JL),I2(JL),I3(JL))
ZZRGS(JL) = ZRGS(I1(JL),I2(JL),I3(JL))
!
ZZT(JL) = ZT(I1(JL),I2(JL),I3(JL))
ZRHODREF(JL) = PRHODREF(I1(JL),I2(JL),I3(JL))
ZPRES(JL) = PPABST(I1(JL),I2(JL),I3(JL))
ENDDO
IF (OUSECHIC) THEN
ALLOCATE(ZSGSVT(IMICRO,SIZE(PSGSVT,4)))
ALLOCATE(ZGRSVS(IMICRO,SIZE(PGRSVS,4)))
ALLOCATE(ZSGRSVS(IMICRO,SIZE(PSGRSVS,4)))
ALLOCATE(ZZW3(IMICRO,SIZE(PSGSVT,4)))
DO JL=1,IMICRO
ZGRSVS(JL,:) = ZZGRSVS(I1(JL),I2(JL),I3(JL),:)
ZSGSVT(JL,:) = PSGSVT(I1(JL),I2(JL),I3(JL),:)
ZSGRSVS(JL,:) = ZZSGRSVS(I1(JL),I2(JL),I3(JL),:)
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
ALLOCATE(ZGRSVS(IMICRO,SIZE(PGRSVS,4)))
DO JL=1,IMICRO
ZGRSVS(JL,:) = ZZGRSVS(I1(JL),I2(JL),I3(JL),:)
ENDDO
ENDIF
ENDIF
!
!
!-------------------------------------------------------------------------------
!
!* 4. COMPUTES THE SLOW WARM PROCESS SOURCES
! --------------------------------------
!
!* 4.1 compute the slope parameter Lbda_r
!
WHERE( ZRRT(:)>0.0 )
ZLBDAR(:) = XLBR*( ZRHODREF(:)*MAX( ZRRT(:),PRTMIN_AQ*1.e3/ZRHODREF(:)) )**XLBEXR
END WHERE
!
!* 4.2 compute the autoconversion of r_c for r_r production: RCAUTR
!
ZZW(:) = 0.0
ZZW2(:,:) = 0.0
!
DO JL=1,IMICRO
IF ( (ZRCT(JL)>0.0) .AND. (ZZRCS(JL)>0.0) ) THEN
ZZW(JL) = MIN( ZZRCS(JL),XTIMAUTC*MAX( ZRCT(JL)-XCRIAUTC/ZRHODREF(JL),0.0))
!
ZZW2(JL,:) = ZZW(JL) * ZCSVT(JL,:)/ZRCT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZCSVT(JL,:)/PTSTEP)),0.0)
ZCRSVS(JL,:) = ZCRSVS(JL,:) - ZZW2(JL,:)
ZRRSVS(JL,:) = ZRRSVS(JL,:) + ZZW2(JL,:)
END IF
END DO
!
!* 4.3 compute the accretion of r_c for r_r production: RCACCR
!
ZZW(:) = 0.0
ZZW2(:,:) = 0.0
!
DO JL = 1,IMICRO
IF( (ZRCT(JL)>0.0) .AND. (ZRRT(JL)>0.0) .AND. (ZZRCS(JL)>0.0) ) THEN
ZZW(JL) = MIN( ZZRCS(JL),XFCACCR * ZRCT(JL) &
* ZLBDAR(JL)**XEXCACCR &
* ZRHODREF(JL)**(-XCEXVT) )
!
ZZW2(JL,:) = ZZW(JL) * ZCSVT(JL,:)/ZRCT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZCSVT(JL,:)/PTSTEP)),0.0)
ZCRSVS(JL,:) = ZCRSVS(JL,:) - ZZW2(JL,:)
ZRRSVS(JL,:) = ZRRSVS(JL,:) + ZZW2(JL,:)
END IF
END DO
!
!
!* 4.4 compute the evaporation of r_r: RREVAV
!
! calculated by the kinetic mass transfer equation (BASIC.f90)
!
!
!-------------------------------------------------------------------------------
!
!* 5. COMPUTES THE SLOW COLD PROCESS SOURCES
! --------------------------------------
!
!* 5.1 compute the spontaneous freezing source: RRHONG
!
ZZW(:) = 0.0
ZZW2(:,:) = 0.0
!
DO JL = 1,IMICRO
IF( (ZZT(JL)<XTT-35.0) .AND. (ZRRT(JL)>0.) .AND. (ZZRRS(JL)>0.) ) THEN
ZZW(JL) = MIN( ZZRRS(JL),ZRRT(JL)/PTSTEP )
ZZW2(JL,:) = ZZW(JL) * ZRSVT(JL,:)/ZRRT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZRSVT(JL,:)/PTSTEP)),0.0)
ZRRSVS(JL,:) = ZRRSVS(JL,:) - ZZW2(JL,:)
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_H2SO4' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. TRIM(HICNAMES(JLI)) == 'IC_HCL' &
.OR. HICNAMES(JLI)(1:4) == 'IC_A' .OR. HICNAMES(JLI)(1:4) == 'IC_B' &
.OR. NINDEXGI(JLI).EQ.0) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ZZW2(JL,NINDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETHP) * ZZW2(JL,NINDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETSU) * ZZW2(JL,NINDEXWI(JLI))
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETDF) * ZZW2(JL,NINDEXWI(JLI))
ENDIF
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PRRSVS,4)
IF (.NOT.(NINDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,NINDEXWG(JLW)) = ZGRSVS(JL,NINDEXWG(JLW)) + ZZW2(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ENDIF
ENDDO
!
!
!-------------------------------------------------------------------------------
!
!* 6. COMPUTES THE FAST COLD PROCESS SOURCES
! --------------------------------------
!
!* 6.1 compute the slope parameter Lbda_s and Lbda_g
!
WHERE ( ZRST(:)>0.0 )
ZLBDAS(:) = MIN( XLBDAS_MAX, &
XLBS*( ZRHODREF(:)*MAX( ZRST(:),PRTMIN_AQ*1.e3/ZRHODREF(:)) )**XLBEXS )
END WHERE
!
WHERE ( ZRGT(:)>0.0 )
ZLBDAG(:) = XLBG*( ZRHODREF(:)*MAX( ZRGT(:),PRTMIN_AQ*1.e3/ZRHODREF(:)))**XLBEXG
END WHERE
!
!* 6.2 cloud droplet riming of the aggregates
!
ZZW1(:,:) = 0.0
ZZW(:) = 0.0
ALLOCATE(GRIM(IMICRO))
GRIM(:) = (ZRCT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
(ZRST(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
(ZZRCS(:)>0.0) .AND. (ZZT(:)<XTT)
IGRIM = COUNT( GRIM(:) )
!
IF( IGRIM>0 ) THEN
!
!
ALLOCATE(ZVEC1(IGRIM))
ALLOCATE(ZVEC2(IGRIM))
ALLOCATE(IVEC1(IGRIM))
ALLOCATE(IVEC2(IGRIM))
!
!
ZVEC1(:) = PACK( ZLBDAS(:),MASK=GRIM(:) )
!
! 6.2.2 find the next lower indice for the ZLBDAS in the geometrical
! set of Lbda_s used to tabulate some moments of the incomplete
! gamma function
!
ZVEC2(1:IGRIM) = MAX( 1.00001, MIN( FLOAT(NGAMINC)-0.00001, &
XRIMINTP1 * LOG( ZVEC1(1:IGRIM) ) + XRIMINTP2 ) )
IVEC2(1:IGRIM) = INT( ZVEC2(1:IGRIM) )
ZVEC2(1:IGRIM) = ZVEC2(1:IGRIM) - FLOAT( IVEC2(1:IGRIM) )
!
! 6.2.3 perform the linear interpolation of the normalized
! "2+XDS"-moment of the incomplete gamma function
!
ZVEC1(1:IGRIM) = XGAMINC_RIM1( IVEC2(1:IGRIM)+1 )* ZVEC2(1:IGRIM) &
- XGAMINC_RIM1( IVEC2(1:IGRIM) )*(ZVEC2(1:IGRIM) - 1.0)
ZZW(:) = UNPACK( VECTOR=ZVEC1(:),MASK=GRIM,FIELD=0.0 )
!
! 6.2.4 riming of the small sized aggregates
!
ZZW2(:,:) = 0.0
DO JL = 1,IMICRO
IF ( GRIM(JL) ) THEN
ZZW1(JL,1) = MIN( ZZRCS(JL), XCRIMSS * ZZW(JL) * ZRCT(JL) & ! RCRIMSS
* ZLBDAS(JL)**XEXCRIMSS * ZRHODREF(JL)**(-XCEXVT) )
ZZW2(JL,:) = ZZW1(JL,1) * ZCSVT(JL,:)/ZRCT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZCSVT(JL,:)/PTSTEP)),0.0)
ZCRSVS(JL,:) = ZCRSVS(JL,:) - ZZW2(JL,:)
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_H2SO4' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. TRIM(HICNAMES(JLI)) == 'IC_HCL' &
.OR. HICNAMES(JLI)(1:4) == 'IC_A' .OR. HICNAMES(JLI)(1:4) == 'IC_B' &
.OR. NINDEXGI(JLI).EQ.0) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ZZW2(JL,NINDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETHP) * ZZW2(JL,NINDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETSU) * ZZW2(JL,NINDEXWI(JLI))
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETDF) * ZZW2(JL,NINDEXWI(JLI))
ENDIF
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PCRSVS,4)
IF (.NOT.(NINDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,NINDEXWG(JLW)) = ZGRSVS(JL,NINDEXWG(JLW)) + ZZW2(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ENDIF
ENDDO
!
! 6.2.5 riming-conversion of the large sized aggregates into graupel
!
ZZW2(:,:) = 0.0
DO JL = 1,IMICRO
IF ( GRIM(JL) .AND. (ZZRSS(JL)>0.0) ) THEN
ZZW1(JL,2) = MIN( ZZRCS(JL), XCRIMSG * ZRCT(JL) * ZLBDAS(JL)**XEXCRIMSG & ! RCRIMSG
* ZRHODREF(JL)**(-XCEXVT) - ZZW1(JL,1) )
ZZW2(JL,:) = ZZW1(JL,2) * ZCSVT(JL,:)/ZRCT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZCSVT(JL,:)/PTSTEP)),0.0)
ZCRSVS(JL,:) = ZCRSVS(JL,:) - ZZW2(JL,:)
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_H2SO4' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. TRIM(HICNAMES(JLI)) == 'IC_HCL' &
.OR. HICNAMES(JLI)(1:4) == 'IC_A' .OR. HICNAMES(JLI)(1:4) == 'IC_B' &
.OR. NINDEXGI(JLI).EQ.0) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ZZW2(JL,NINDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETHP) * ZZW2(JL,NINDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETSU) * ZZW2(JL,NINDEXWI(JLI))
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETDF) * ZZW2(JL,NINDEXWI(JLI))
ENDIF
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PCRSVS,4)
IF (.NOT.(NINDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,NINDEXWG(JLW)) = ZGRSVS(JL,NINDEXWG(JLW)) + ZZW2(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ENDIF
ENDDO
DEALLOCATE(IVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
END IF
DEALLOCATE(GRIM)
!
!
ZZW(:) = 0.0
ZZW1(:,2:3) = 0.0
ALLOCATE(GACC(IMICRO))
GACC(:) = (ZRRT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
(ZRST(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
(ZZRRS(:)>0.0) .AND. (ZZT(:)<XTT)
IGACC = COUNT( GACC(:) )
!
IF( IGACC>0 ) THEN
!
!
ALLOCATE(ZVEC1(IGACC))
ALLOCATE(ZVEC2(IGACC))
ALLOCATE(ZVEC3(IGACC))
ALLOCATE(IVEC1(IGACC))
ALLOCATE(IVEC2(IGACC))
!
! 6.3.1 select the (ZLBDAS,ZLBDAR) couplet
!
ZVEC1(:) = PACK( ZLBDAS(:),MASK=GACC(:) )
ZVEC2(:) = PACK( ZLBDAR(:),MASK=GACC(:) )
!
! 6.3.2 find the next lower indice for the ZLBDAS and for the ZLBDAR
! in the geometrical set of (Lbda_s,Lbda_r) couplet use to
! tabulate the RACCSS-kernel
!
ZVEC1(1:IGACC) = MAX( 1.00001, MIN( FLOAT(NACCLBDAS)-0.00001, &
XACCINTP1S * LOG( ZVEC1(1:IGACC) ) + XACCINTP2S ) )
IVEC1(1:IGACC) = INT( ZVEC1(1:IGACC) )
ZVEC1(1:IGACC) = ZVEC1(1:IGACC) - FLOAT( IVEC1(1:IGACC) )
!
ZVEC2(1:IGACC) = MAX( 1.00001, MIN( FLOAT(NACCLBDAR)-0.00001, &
XACCINTP1R * LOG( ZVEC2(1:IGACC) ) + XACCINTP2R ) )
IVEC2(1:IGACC) = INT( ZVEC2(1:IGACC) )
ZVEC2(1:IGACC) = ZVEC2(1:IGACC) - FLOAT( IVEC2(1:IGACC) )
!
! 6.3.3 perform the bilinear interpolation of the normalized
! RACCSS-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_RACCSS(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RACCSS(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_RACCSS(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RACCSS(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = UNPACK( VECTOR=ZVEC3(:),MASK=GACC,FIELD=0.0 )
!
! 6.3.4 raindrop accretion on the small sized aggregates
!
ZZW2(:,:) = 0.0
DO JL = 1,IMICRO
IF ( GACC(JL) ) THEN
ZZW1(JL,2) = & !! coef of RRACCS
XFRACCSS*( ZLBDAS(JL)**XCXS )*( ZRHODREF(JL)**(-XCEXVT-1.) ) &
*( XLBRACCS1/((ZLBDAS(JL)**2) ) + &
XLBRACCS2/( ZLBDAS(JL) * ZLBDAR(JL) ) + &
XLBRACCS3/( (ZLBDAR(JL)**2)) )/ZLBDAR(JL)**4
ZZW1(JL,4) = MIN( ZZRRS(JL),ZZW1(JL,2)*ZZW(JL) ) ! RRACCSS
ZZW2(JL,:) = ZZW1(JL,4) * ZRSVT(JL,:)/ZRRT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZRSVT(JL,:)/PTSTEP)),0.0)
ZRRSVS(JL,:) = ZRRSVS(JL,:) - ZZW2(JL,:)
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_H2SO4' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. TRIM(HICNAMES(JLI)) == 'IC_HCL' &
.OR. HICNAMES(JLI)(1:4) == 'IC_A' .OR. HICNAMES(JLI)(1:4) == 'IC_B' &
.OR. NINDEXGI(JLI).EQ.0) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ZZW2(JL,NINDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETHP) * ZZW2(JL,NINDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETSU) * ZZW2(JL,NINDEXWI(JLI))
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETDF) * ZZW2(JL,NINDEXWI(JLI))
ENDIF
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PRRSVS,4)
IF (.NOT.(NINDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,NINDEXWG(JLW)) = ZGRSVS(JL,NINDEXWG(JLW)) + ZZW2(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ENDIF
ENDDO
!
! 6.3.4b perform the bilinear interpolation of the normalized
! RACCS-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_RACCS(IVEC2(JJ)+1,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_RACCS(IVEC2(JJ)+1,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* ZVEC2(JJ) &
- ( XKER_RACCS(IVEC2(JJ) ,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_RACCS(IVEC2(JJ) ,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* (ZVEC2(JJ) - 1.0)
END DO
ZZW1(:,2) = ZZW1(:,2)*UNPACK( VECTOR=ZVEC3(:),MASK=GACC(:),FIELD=0.0 )
!
! 6.3.5 raindrop accretion-conversion of the large sized aggregates
! into graupeln
!
ZZW2(:,:) = 0.0
WHERE ( GACC(:) .AND. (ZZRSS(:)>0.0) )
ZZW1(:,2) = MAX( MIN( ZZRRS(:),ZZW1(:,2)-ZZW1(:,4) ),0.0 ) ! RRACCSG
END WHERE
DO JL = 1,IMICRO
IF ( GACC(JL) .AND. (ZZRSS(JL)>0.0) .AND. ZZW1(JL,2)>0.0 ) THEN
ZZW2(JL,:) = ZZW1(JL,2) * ZRSVT(JL,:)/ZRRT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZRSVT(JL,:)/PTSTEP)),0.0)
ZRRSVS(JL,:) = ZRRSVS(JL,:) - ZZW2(JL,:)
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_H2SO4' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. TRIM(HICNAMES(JLI)) == 'IC_HCL' &
.OR. HICNAMES(JLI)(1:4) == 'IC_A' .OR. HICNAMES(JLI)(1:4) == 'IC_B' &
.OR. NINDEXGI(JLI).EQ.0) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ZZW2(JL,NINDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETHP) * ZZW2(JL,NINDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETSU) * ZZW2(JL,NINDEXWI(JLI))
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETDF) * ZZW2(JL,NINDEXWI(JLI))
ENDIF
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PRRSVS,4)
IF (.NOT.(NINDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,NINDEXWG(JLW)) = ZGRSVS(JL,NINDEXWG(JLW)) + ZZW2(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ENDIF
ENDDO
!
DEALLOCATE(IVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC3)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
END IF
DEALLOCATE(GACC)
!
!
ZZW1(:,4) = 0.0
ZZW2(:,:) = 0.0
DO JL = 1,IMICRO
IF ( (ZRIT(JL)>PRTMIN_AQ*1.e3/ZRHODREF(JL)) .AND. &
(ZRRT(JL)>PRTMIN_AQ*1.e3/ZRHODREF(JL)) .AND. &
(ZZRIS(JL)>0.0) .AND. (ZZRRS(JL)>0.0) ) THEN
ZZW1(JL,4) = MIN( ZZRRS(JL), XRCFRI * ZCIT(JL) & ! RRCFRIG
* ZLBDAR(JL)**XEXRCFRI &
* ZRHODREF(JL)**(-XCEXVT-1.) )
ZZW2(JL,:) = ZZW1(JL,4) * ZRSVT(JL,:)/ZRRT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZRSVT(JL,:)/PTSTEP)),0.0)
ZRRSVS(JL,:) = ZRRSVS(JL,:) - ZZW2(JL,:)
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_H2SO4' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. TRIM(HICNAMES(JLI)) == 'IC_HCL' &
.OR. HICNAMES(JLI)(1:4) == 'IC_A' .OR. HICNAMES(JLI)(1:4) == 'IC_B' &
.OR. NINDEXGI(JLI).EQ.0) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ZZW2(JL,NINDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETHP) * ZZW2(JL,NINDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETSU) * ZZW2(JL,NINDEXWI(JLI))
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ZZW2(JL,NINDEXWI(JLI))
ZGRSVS(JL,NINDEXGI(JLI)) = ZGRSVS(JL,NINDEXGI(JLI)) + &
(1. - XRETDF) * ZZW2(JL,NINDEXWI(JLI))
ENDIF
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PRRSVS,4)
IF (.NOT.(NINDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,NINDEXWG(JLW)) = ZGRSVS(JL,NINDEXWG(JLW)) + ZZW2(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ENDIF
ENDDO
!
!* 6.5 compute the Dry growth case of graupel
!
ZZW(:) = 0.0
ZZW1(:,:) = 0.0
WHERE( (ZRGT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
((ZRCT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:) .AND. ZZRCS(:)>0.0)) )
ZZW(:) = ZLBDAG(:)**(XCXG-XDG-2.0) * ZRHODREF(:)**(-XCEXVT)
ZZW1(:,1) = MIN( ZZRCS(:),XFCDRYG * ZRCT(:) * ZZW(:) ) ! RCDRYG
END WHERE
WHERE( (ZRGT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
((ZRIT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:) .AND. ZZRIS(:)>0.0)) )
ZZW(:) = ZLBDAG(:)**(XCXG-XDG-2.0) * ZRHODREF(:)**(-XCEXVT)
ZZW1(:,2) = MIN( ZZRIS(:),XFIDRYG * EXP( XCOLEXIG*(ZZT(:)-XTT) ) &
* ZRIT(:) * ZZW(:) ) ! RIDRYG
END WHERE
!
! 6.5.1 accretion of aggregates on the graupeln
!
ALLOCATE(GDRY(IMICRO))
GDRY(:) = (ZRST(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
(ZRGT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. (ZZRSS(:)>0.0)
IGDRY = COUNT( GDRY(:) )
!
IF( IGDRY>0 ) THEN
!
!
ALLOCATE(ZVEC1(IGDRY))
ALLOCATE(ZVEC2(IGDRY))
ALLOCATE(ZVEC3(IGDRY))
ALLOCATE(IVEC1(IGDRY))
ALLOCATE(IVEC2(IGDRY))
!
! 6.5.3 select the (ZLBDAG,ZLBDAS) couplet
!
ZVEC1(:) = PACK( ZLBDAG(:),MASK=GDRY(:) )
ZVEC2(:) = PACK( ZLBDAS(:),MASK=GDRY(:) )
!
! 6.5.4 find the next lower indice for the ZLBDAG and for the ZLBDAS
! in the geometrical set of (Lbda_g,Lbda_s) couplet use to
! tabulate the SDRYG-kernel
!
ZVEC1(1:IGDRY) = MAX( 1.00001, MIN( FLOAT(NDRYLBDAG)-0.00001, &
XDRYINTP1G * LOG( ZVEC1(1:IGDRY) ) + XDRYINTP2G ) )
IVEC1(1:IGDRY) = INT( ZVEC1(1:IGDRY) )
ZVEC1(1:IGDRY) = ZVEC1(1:IGDRY) - FLOAT( IVEC1(1:IGDRY) )
!
ZVEC2(1:IGDRY) = MAX( 1.00001, MIN( FLOAT(NDRYLBDAS)-0.00001, &
XDRYINTP1S * LOG( ZVEC2(1:IGDRY) ) + XDRYINTP2S ) )
IVEC2(1:IGDRY) = INT( ZVEC2(1:IGDRY) )
ZVEC2(1:IGDRY) = ZVEC2(1:IGDRY) - FLOAT( IVEC2(1:IGDRY) )
!
! 6.5.5 perform the bilinear interpolation of the normalized
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
! SDRYG-kernel
!
DO JJ = 1,IGDRY
ZVEC3(JJ) = ( XKER_SDRYG(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_SDRYG(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_SDRYG(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_SDRYG(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = UNPACK( VECTOR=ZVEC3(:),MASK=GDRY,FIELD=0.0 )
!
WHERE( GDRY(:) )
ZZW1(:,3) = MIN( ZZRSS(:),XFSDRYG*ZZW(:) & ! RSDRYG
* EXP( XCOLEXSG*(ZZT(:)-XTT) ) &
*( ZLBDAS(:)**(XCXS-XBS) )*( ZLBDAG(:)**XCXG ) &
*( ZRHODREF(:)**(-XCEXVT-1.) ) &
*( XLBSDRYG1/( ZLBDAG(:)**2 ) + &
XLBSDRYG2/( ZLBDAG(:) * ZLBDAS(:) ) + &
XLBSDRYG3/( ZLBDAS(:)**2) ) )
END WHERE
DEALLOCATE(IVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC3)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
END IF
!
! 6.5.6 accretion of raindrops on the graupeln
!
GDRY(:) = (ZRRT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
(ZRGT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. (ZZRRS(:)>0.0)
IGDRY = COUNT( GDRY(:) )
!
IF( IGDRY>0 ) THEN
!
!
ALLOCATE(ZVEC1(IGDRY))
ALLOCATE(ZVEC2(IGDRY))
ALLOCATE(ZVEC3(IGDRY))
ALLOCATE(IVEC1(IGDRY))
ALLOCATE(IVEC2(IGDRY))
!
! 6.5.8 select the (ZLBDAG,ZLBDAR) couplet
!
ZVEC1(:) = PACK( ZLBDAG(:),MASK=GDRY(:) )