Skip to content
Snippets Groups Projects
mode_mf_turb.F90 10.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • !MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
    !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
    !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt  
    !MNH_LIC for details. version 1.
    !    ######################
         MODULE MODE_MF_TURB
    !    ######################
    !
    IMPLICIT NONE
    CONTAINS
    
                    ONOMIXLG,KSV_LGBEG,KSV_LGEND,                         &
    
                    PDZZ,                                                 &
                    PRHODJ,                                               &
                    PTHLM,PTHVM,PRTM,PUM,PVM,PSVM,                        &
                    PTHLDT,PRTDT,PUDT,PVDT,PSVDT,                         &
                    PEMF,PTHL_UP,PTHV_UP,PRT_UP,PU_UP,PV_UP,PSV_UP,       &
                    PFLXZTHMF,PFLXZTHVMF,PFLXZRMF,PFLXZUMF,PFLXZVMF,      &
                    PFLXZSVMF                                             )
    
    !     #################################################################
    !
    !
    !!****  *MF_TURB* - computes the MF_turbulent source terms for the prognostic
    !!                  variables. 
    !!
    !!    PURPOSE
    !!    -------
    !!****  The purpose of this routine is to compute the source terms in 
    !!    the evolution equations due to the MF turbulent mixing. 
    !!      The source term is computed as the divergence of the turbulent fluxes.
    !
    !!**  METHOD
    !!    ------
    !!    
    !!
    !!    EXTERNAL
    !!    --------
    !!
    !!    IMPLICIT ARGUMENTS
    !!    ------------------
    !!
    !!
    !!    REFERENCE
    !!    ---------
    !!
    !!    AUTHOR
    !!    ------
    !!     
    !!
    !!    MODIFICATIONS
    !!    -------------
    !!  10/2009     (C.Lac)        Introduction of different PTSTEP according to the
    !!                              advection schemes
    !!  09/2010     (V.Masson)     Optimization
    !!     S. Riette Jan 2012: support for both order of vertical levels
    !!                         suppression of useless initialisations
    !!
    !! --------------------------------------------------------------------------
    !       
    !*      0. DECLARATIONS
    !          ------------
    !
    
    USE MODI_SHUMAN_MF, ONLY: MZM_MF
    
    USE MODE_TRIDIAG_MASSFLUX, ONLY: TRIDIAG_MASSFLUX
    
    USE YOMHOOK , ONLY : LHOOK, DR_HOOK, JPHOOK
    
    IMPLICIT NONE
    !
    !
    !*      0.1  declarations of arguments
    !
    !
    
    TYPE(DIMPHYEX_t),       INTENT(IN)   :: D
    INTEGER,                INTENT(IN)   :: KSV
    
    LOGICAL,                INTENT(IN)   :: OMIXUV      ! True if mixing of momentum
    LOGICAL,                INTENT(IN)   :: ONOMIXLG  ! False if mixing of lagrangian tracer
    INTEGER,                INTENT(IN)   :: KSV_LGBEG ! first index of lag. tracer
    INTEGER,                INTENT(IN)   :: KSV_LGEND ! last  index of lag. tracer
    REAL,                   INTENT(IN)   :: PIMPL       ! degree of implicitness
    REAL,                 INTENT(IN)     ::  PTSTEP   ! Dynamical timestep 
    !
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN)   :: PDZZ        ! metric coefficients
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN)   :: PRHODJ      ! dry density * Grid size
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) ::  PTHLM        ! conservative pot. temp.
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) ::  PRTM         ! water var.  where 
    
    !  Virtual potential temperature at t-dt
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) ::  PTHVM 
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) ::  PUM
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) ::  PVM
    
    REAL, DIMENSION(D%NIJT,D%NKT,KSV), INTENT(IN) ::  PSVM
    
    !
    ! Tendencies of conservative variables
    
    REAL, DIMENSION(D%NIJT,D%NKT),   INTENT(OUT) ::  PTHLDT
    
    REAL, DIMENSION(D%NIJT,D%NKT),   INTENT(OUT) ::  PRTDT 
    
    REAL, DIMENSION(D%NIJT,D%NKT),   INTENT(OUT) ::  PUDT
    REAL, DIMENSION(D%NIJT,D%NKT),   INTENT(OUT) ::  PVDT
    
    ! Tendencies of scalar variables
    
    REAL, DIMENSION(D%NIJT,D%NKT,KSV), INTENT(OUT) ::  PSVDT
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN)   ::  PEMF,PTHL_UP,PTHV_UP,PRT_UP,PU_UP,PV_UP
    REAL, DIMENSION(D%NIJT,D%NKT,KSV), INTENT(IN) ::  PSV_UP
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT)  ::  PFLXZTHMF,PFLXZTHVMF,PFLXZRMF,PFLXZUMF,PFLXZVMF
    
    REAL, DIMENSION(D%NIJT,D%NKT,KSV), INTENT(OUT)::  PFLXZSVMF
    
    !
    !
    !
    !-------------------------------------------------------------------------------
    !
    !       0.2  declaration of local variables
    !
    
    
    REAL, DIMENSION(D%NIJT,D%NKT) :: ZVARS
    
    INTEGER :: JSV          !number of scalar variables and Loop counter
    
    INTEGER :: JIJ, JK
    INTEGER :: IIJB,IIJE ! physical horizontal domain indices
    INTEGER :: IKT
    
    REAL(KIND=JPHOOK) :: ZHOOK_HANDLE
    
    !
    !----------------------------------------------------------------------------
    !
    !*      1.PRELIMINARIES
    !         -------------
    !
    
    IF (LHOOK) CALL DR_HOOK('MF_TURB',0,ZHOOK_HANDLE)
    
    PFLXZSVMF(:,:,:) = 0.
    PSVDT(:,:,:) = 0.
    
    
    !
    !----------------------------------------------------------------------------
    !
    !*      2. COMPUTE THE MEAN FLUX OF CONSERVATIVE VARIABLES at time t-dt
    !          (equation (3) of Soares et al)
    !          + THE MEAN FLUX OF THETA_V (buoyancy flux)
    !          -----------------------------------------------
    !   ( Resulting fluxes are in flux level (w-point) as PEMF and PTHL_UP )
    !
    
    
    CALL MZM_MF(D, PTHLM(:,:), PFLXZTHMF(:,:))
    CALL MZM_MF(D, PRTM(:,:), PFLXZRMF(:,:))
    CALL MZM_MF(D, PTHVM(:,:), PFLXZTHVMF(:,:))
    
    !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    PFLXZTHMF(IIJB:IIJE,1:IKT) = PEMF(IIJB:IIJE,1:IKT)*(PTHL_UP(IIJB:IIJE,1:IKT)-PFLXZTHMF(IIJB:IIJE,1:IKT))
    PFLXZRMF(IIJB:IIJE,1:IKT) =  PEMF(IIJB:IIJE,1:IKT)*(PRT_UP(IIJB:IIJE,1:IKT)-PFLXZRMF(IIJB:IIJE,1:IKT))
    PFLXZTHVMF(IIJB:IIJE,1:IKT) = PEMF(IIJB:IIJE,1:IKT)*(PTHV_UP(IIJB:IIJE,1:IKT)-PFLXZTHVMF(IIJB:IIJE,1:IKT))
    !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
      CALL MZM_MF(D, PUM(:,:), PFLXZUMF(:,:))
      CALL MZM_MF(D, PVM(:,:), PFLXZVMF(:,:))
    
      !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
      PFLXZUMF(IIJB:IIJE,1:IKT) =  PEMF(IIJB:IIJE,1:IKT)*(PU_UP(IIJB:IIJE,1:IKT)-PFLXZUMF(IIJB:IIJE,1:IKT))
      PFLXZVMF(IIJB:IIJE,1:IKT) =  PEMF(IIJB:IIJE,1:IKT)*(PV_UP(IIJB:IIJE,1:IKT)-PFLXZVMF(IIJB:IIJE,1:IKT))
      !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    ELSE
      PFLXZUMF(:,:) = 0.
      PFLXZVMF(:,:) = 0.
    ENDIF
    !
    !
    !----------------------------------------------------------------------------
    !
    !*      3. COMPUTE TENDENCIES OF CONSERVATIVE VARIABLES (or treated as such...)
    !          (implicit formulation)
    !          --------------------------------------------
    !
    
    !
    !
    ! 3.1 Compute the tendency for the conservative potential temperature
    !     (PDZZ and flux in w-point and PRHODJ is mass point, result in mass point)
    !
    
    CALL TRIDIAG_MASSFLUX(D,PTHLM,PFLXZTHMF,-PEMF,PTSTEP,PIMPL,  &
    
    ! compute new flux and THL tendency
    
    CALL MZM_MF(D, ZVARS(:,:), PFLXZTHMF(:,:))
    
    !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    PFLXZTHMF(IIJB:IIJE,1:IKT) = PEMF(IIJB:IIJE,1:IKT)*(PTHL_UP(IIJB:IIJE,1:IKT)-PFLXZTHMF(IIJB:IIJE,1:IKT))
    PTHLDT(IIJB:IIJE,1:IKT)= (ZVARS(IIJB:IIJE,1:IKT)-PTHLM(IIJB:IIJE,1:IKT))/PTSTEP
    !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    
    !
    ! 3.2 Compute the tendency for the conservative mixing ratio
    !
    
    CALL TRIDIAG_MASSFLUX(D,PRTM(:,:),PFLXZRMF,-PEMF,PTSTEP,PIMPL,  &
    
    ! compute new flux and RT tendency
    
    CALL MZM_MF(D, ZVARS(:,:), PFLXZRMF(:,:))
    
    !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    PFLXZRMF(IIJB:IIJE,1:IKT) =  PEMF(IIJB:IIJE,1:IKT)*(PRT_UP(IIJB:IIJE,1:IKT)-PFLXZRMF(IIJB:IIJE,1:IKT))
    PRTDT(IIJB:IIJE,1:IKT) = (ZVARS(IIJB:IIJE,1:IKT)-PRTM(IIJB:IIJE,1:IKT))/PTSTEP
    !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    !
    
    IF (OMIXUV) THEN
      !
      ! 3.3 Compute the tendency for the (non conservative but treated as it) zonal momentum
      !     (PDZZ and flux in w-point and PRHODJ is mass point, result in mass point)
      !
    
    
      CALL TRIDIAG_MASSFLUX(D,PUM,PFLXZUMF,-PEMF,PTSTEP,PIMPL,  &
    
      ! compute new flux and U tendency
    
      CALL MZM_MF(D, ZVARS(:,:), PFLXZUMF(:,:))
    
      !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
      PFLXZUMF(IIJB:IIJE,1:IKT) = PEMF(IIJB:IIJE,1:IKT)*(PU_UP(IIJB:IIJE,1:IKT)-PFLXZUMF(IIJB:IIJE,1:IKT))
      PUDT(IIJB:IIJE,1:IKT)= (ZVARS(IIJB:IIJE,1:IKT)-PUM(IIJB:IIJE,1:IKT))/PTSTEP
      !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
      !
      !
      ! 3.4 Compute the tendency for the (non conservative but treated as it for the time beiing)
      !                                  meridian momentum
      !     (PDZZ and flux in w-point and PRHODJ is mass point, result in mass point)
      !
    
      CALL TRIDIAG_MASSFLUX(D,PVM,PFLXZVMF,-PEMF,PTSTEP,PIMPL,  &
    
      ! compute new flux and V tendency
    
      CALL MZM_MF(D, ZVARS(:,:), PFLXZVMF(:,:))
    
      !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
      PFLXZVMF(IIJB:IIJE,1:IKT) = PEMF(IIJB:IIJE,1:IKT)*(PV_UP(IIJB:IIJE,1:IKT)-PFLXZVMF(IIJB:IIJE,1:IKT))
      PVDT(IIJB:IIJE,1:IKT)= (ZVARS(IIJB:IIJE,1:IKT)-PVM(IIJB:IIJE,1:IKT))/PTSTEP
      !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    
      IF (ONOMIXLG .AND. JSV >= KSV_LGBEG .AND. JSV<= KSV_LGEND) CYCLE
      
      !*     compute mean flux of scalar variables at time t-dt
      !   ( Resulting fluxes are in flux level (w-point) as PEMF and PTHL_UP )
    
    
      CALL MZM_MF(D, PSVM(:,:,JSV), PFLXZSVMF(:,:,JSV))
    
      !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
      PFLXZSVMF(IIJB:IIJE,1:IKT,JSV) = PEMF(IIJB:IIJE,1:IKT)*&
                                           & (PSV_UP(IIJB:IIJE,1:IKT,JSV)-PFLXZSVMF(IIJB:IIJE,1:IKT,JSV))
      !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
      !
      ! 3.5 Compute the tendency for scalar variables
      !     (PDZZ and flux in w-point and PRHODJ is mass point, result in mass point)
      !
    
      CALL TRIDIAG_MASSFLUX(D,PSVM(:,:,JSV),PFLXZSVMF(:,:,JSV),&
    
                            -PEMF,PTSTEP,PIMPL,PDZZ,PRHODJ,ZVARS )
    
      ! compute new flux and Sv tendency
    
      CALL MZM_MF(D, ZVARS, PFLXZSVMF(:,:,JSV))
    
      !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
      PFLXZSVMF(IIJB:IIJE,1:IKT,JSV) = PEMF(IIJB:IIJE,1:IKT)*&
                                           & (PSV_UP(IIJB:IIJE,1:IKT,JSV)-PFLXZSVMF(IIJB:IIJE,1:IKT,JSV))
      PSVDT(IIJB:IIJE,1:IKT,JSV)= (ZVARS(IIJB:IIJE,1:IKT)-PSVM(IIJB:IIJE,1:IKT,JSV))/PTSTEP
      !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    
    ENDDO
    !
    IF (LHOOK) CALL DR_HOOK('MF_TURB',1,ZHOOK_HANDLE)
    END SUBROUTINE MF_TURB    
    
    END MODULE MODE_MF_TURB