-
WAUTELET Philippe authored
Some files with it are still available as they could be useful later.
WAUTELET Philippe authoredSome files with it are still available as they could be useful later.
prep_ideal_case.f90 70.43 KiB
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
!--------------- special set of characters for RCS information
!-----------------------------------------------------------------
! $Source$ $Revision$
!-----------------------------------------------------------------
! #######################
PROGRAM PREP_IDEAL_CASE
! #######################
!
!!**** *PREP_IDEAL_CASE* - program to write an initial FM-file
!!
!! PURPOSE
!! -------
! The purpose of this program is to prepare an initial meso-NH file
! (LFIFM and DESFM files) filled with some idealized fields.
!
! ---- The present version can provide two types of fields:
!
! 1) CIDEAL = 'CSTN' : 3D fields derived from a vertical profile with
! --------------- n levels of constant moist Brunt Vaisala frequency
! The vertical profile is read in EXPRE file.
! These fields can be used for model runs
!
! 2) CIDEAL = 'RSOU' : 3D fields derived from a radiosounding.
! ---------------
! The radiosounding is read in EXPRE file.
! The following kind of data is permitted :
! YKIND = 'STANDARD' : Zsol, Psol, Tsol, TDsol
! (Pressure, dd, ff) ,
! (Pressure, T, Td)
! YKIND = 'PUVTHVMR' : zsol, Psol, Thvsol, Rsol
! (Pressure, U, V) ,
! (Pressure, THv, R)
! YKIND = 'PUVTHVHU' : zsol, Psol, Thvsol, Husol
! (Pressure, U, V) ,
! (Pressure, THv, Hu)
! YKIND = 'ZUVTHVHU' : zsol, Psol, Thvsol, Husol
! (height, U, V) ,
! (height, THv, Hu)
! YKIND = 'ZUVTHVMR' : zsol, Psol, Thvsol, Rsol
! (height, U, V) ,
! (height, THv, R)
! YKIND = 'PUVTHDMR' : zsol, Psol, Thdsol, Rsol
! (Pressure, U, V) ,
! (Pressure, THd, R)
! YKIND = 'PUVTHDHU' : zsol, Psol, Thdsol, Husol
! (Pressure, U, V) ,
! (Pressure, THd, Hu)
! YKIND = 'ZUVTHDMR' : zsol, Psol, Thdsol, Rsol
! (height, U, V) ,
! (height, THd, R)
! YKIND = 'ZUVTHLMR' : zsol, Psol, Thdsol, Rsol
! (height, U, V) ,
! (height, THl, Rt)
!
! These fields can be used for model runs
!
! Cases (1) and (2) can be balanced
! (geostrophic, hydrostatic and anelastic balances) if desired.
!
! ---- The orography can be flat (YZS='FLAT'), but also
! sine-shaped (YZS='SINE') or bell-shaped (YZS='BELL')
!
! ---- The U(z) profile given in the RSOU and CSTN cases can
! be multiplied (CUFUN="Y*Z") by a function of y (function FUNUY)
! The V(z) profile given in the RSOU and CSTN cases can
! be multiplied (CVFUN="X*Z") by a function of x (function FUNVX).
! If it is not the case, i.e. U(y,z)=U(z) then CUFUN="ZZZ" and
! CVFUN="ZZZ" for V(y,z)=V(z). Instead of these separable forms,
! non-separables functions FUNUYZ (CUFUN="Y,Z") and FUNVXZ (CVFUN="X,Z")
! can be used to specify the wind components.
!
!!** METHOD
!! ------
!! The directives and data to perform the preparation of the initial FM
!! file are stored in EXPRE file. This file is composed of two parts :
!! - a namelists-format part which is present in all cases
!! - a free-format part which contains data in cases
!! of discretised orography (CZS='DATA')
!! of radiosounding (CIDEAL='RSOU') or Nv=cste profile (CIDEAL='CSTN')
!! of forced version (LFORCING=.TRUE.)
!!
!!
!! The following PREP_IDEAL_CASE program :
!!
!! - initializes physical constants by calling INI_CST
!!
!! - sets default values for global variables which will be
!! written in DESFM file and for variables in EXPRE file (namelists part)
!! which will be written in LFIFM file.
!!
!! - reads the namelists part of EXPRE file which gives
!! informations about the preinitialization to perform,
!!
!! - allocates memory for arrays,
!!
!! - initializes fields depending on the
!! directives (CIDEAL in namelist NAM_CONF_PRE) :
!!
!! * grid variables :
!! The gridpoints are regularly spaced by XDELTAX, XDELTAY.
!! The grid is stretched along the z direction, the mesh varies
!! from XDZGRD near the ground to XDZTOP near the top and the
!! weigthing function is a TANH function characterized by its
!! center and width above and under this center
!! The orography is initialized following the kind of orography
!! (YZS in namelist NAM_CONF_PRE) and the degrees of freedom :
!! sine-shape ---> ZHMAX, IEXPX,IEXPY
!! bell-shape ---> ZHMAX, ZAX,ZAY,IIZS,IJZS
!! The horizontal grid variables are initialized following
!! the kind of geometry (LCARTESIAN in namelist NAM_CONF_PRE)
!! and the grid parameters XLAT0,XLON0,XBETA in both geometries
!! and XRPK,XLONORI,XLATORI in conformal projection.
!! In the case of initialization from a radiosounding, the
!! date and time is read in free-part of the EXPRE file. In other
!! cases year, month and day are set to NUNDEF and time to 0.
!!
!! * prognostic fields :
!!
!! U,V,W, Theta and r. are first determined. They are
!! multiplied by rhoj after the anelastic reference state
!! computation.
!! For the CSTN and RSOU cases, the determination of
!! Theta and rv is performed respectively by SET_RSOU
!! and by SET_CSTN which call the common routine SET_MASS.
!! These three routines have the following actions :
!! --- The input vertical profile is converted in
!! variables (U,V,thetav,r) and interpolated
!! on a mixed grid (with VERT_COORD) as in PREP_REAL_CASE
!! --- A variation of the u-wind component( x-model axis component)
!! is possible in y direction, a variation of the v-wind component
!! (y-model axis component) is possible in x direction.
!! --- Thetav could be computed with thermal wind balance
!! (LGEOSBAL=.TRUE. with call of SET_GEOSBAL)
!! --- The mass fields (theta and r ) and the wind components are
!! then interpolated on the model grid with orography as in
!! PREP_REAL_CASE with the option LSHIFT
!! --- An anelastic correction is applied in PRESSURE_IN_PREP in
!! the case of non-vanishing orography.
!!
!! * anelastic reference state variables :
!!
!! 1D reference state :
!! RSOU and CSTN cases : rhorefz and thvrefz are computed
!! by SET_REFZ (called by SET_MASS).
!! They are deduced from thetav and r on the model grid
!! without orography.
!! The 3D reference state is computed by SET_REF
!!
!! * The total mass of dry air is computed by TOTAL_DMASS
!!
!! - writes the DESFM file,
!!
!! - writes the LFIFM file .
!!
!! EXTERNAL
!! --------
!! DEFAULT_DESFM : to set default values for variables which can be
!! contained in DESFM file
!! DEFAULT_EXPRE : to set default values for other global variables
!! which can be contained in namelist-part of EXPRE file
!! Module MODE_GRIDPROJ : contains conformal projection routines
!! SM_GRIDPROJ : to compute some grid variables, in
!! case of conformal projection.
!! Module MODE_GRIDCART : contains cartesian geometry routines
!! SM_GRIDCART : to compute some grid variables, in
!! case of cartesian geometry.
!! SET_RSOU : to initialize mass fields from a radiosounding
!! SET_CSTN : to initialize mass fields from a vertical profile of
!! n layers of Nv=cste
!! SET_REF : to compute rhoJ
!! RESSURE_IN_PREP : to apply an anelastic correction in the case of
!! non-vanishing orography
!! FMOPEN : to open a FM-file (DESFM + LFIFM)
!! WRITE_DESFM : to write the DESFM file
!! WRI_LFIFM : to write the LFIFM file
!! FMCLOS : to close a FM-file (DESFM + LFIFM)
!!
!! MXM,MYM,MZM : Shuman operators
!! WGUESS : to compute W with the continuity equation from
!! the U,V values
!!
!!
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAMETERS : contains parameters
!! Module MODD_DIM1 : contains dimensions
!! Module MODD_CONF : contains configuration variables for
!! all models
!! Module MODD_CST : contains physical constants
!! Module MODD_GRID : contains grid variables for all models
!! Module MODD_GRID1 : contains grid variables
!! Module MODD_TIME : contains time variables for all models
!! Module MODD_TIME1 : contains time variables
!! Module MODD_REF : contains reference state variables for
!! all models
!! Module MODD_REF1 : contains reference state variables
!! Module MODD_LUNIT : contains variables which concern names
!! and logical unit numbers of files for all models
!! Module MODD_FIELD1 : contains prognostics variables
!! Module MODD_GR_FIELD1 : contains the surface prognostic variables
!! Module MODD_LSFIELD1 : contains Larger Scale fields
!! Module MODD_DYN1 : contains dynamic control variables for model 1
!! Module MODD_LBC1 : contains lbc control variables for model 1
!!
!!
!! Module MODN_CONF1 : contains configuration variables for model 1
!! and the NAMELIST list
!! Module MODN_LUNIT1 : contains variables which concern names
!! and logical unit numbers of files and
!! the NAMELIST list
!!
!!
!! REFERENCE
!! ---------
!! Book2 of MESO-NH documentation (program PREP_IDEAL_CASE)
!!
!! AUTHOR
!! ------
!! V. Ducrocq *Meteo France*
!!
!! MODIFICATIONS
!! -------------
!! Original 05/05/94
!! updated V. Ducrocq 27/06/94
!! updated P.M. 27/07/94
!! updated V. Ducrocq 23/08/94
!! updated V. Ducrocq 01/09/94
!! namelist changes J. Stein 26/10/94
!! namelist changes J. Stein 04/11/94
!! remove the second step of the geostrophic balance 14/11/94 (J.Stein)
!! add grid stretching in the z direction + Larger scale fields +
!! cleaning 6/12/94 (J.Stein)
!! periodize the orography and the grid sizes in the periodic case
!! 19/12/94 (J.Stein)
!! correct a bug in the Larger Scale Fields initialization
!! 19/12/94 (J.Stein)
!! add the vertical grid stretching 02/01/95 (J. Stein)
!! Total mass of dry air computation 02/01/95 (J.P.Lafore)
!! add the 1D switch 13/01/95 (J. Stein)
!! enforce a regular vertical grid if desired 18/01/95 (J. Stein)
!! add the tdtcur initialization 26/01/95 (J. Stein)
!! bug in the test of the type of RS localization 25/02/95 (J. Stein)
!! remove R from the historical variables 16/03/95 (J. Stein)
!! error on the grid stretching 30/06/95 (J. Stein)
!! add the soil fields 01/09/95 (S.Belair)
!! change the streching function and the wind guess
!! (J. Stein and V.Masson) 21/09/95
!! reset to FALSE LUSERC,..,LUSERH 12/12/95 (J. Stein)
!! enforce the RS localization in 1D and 2D config.
!! + add the 'TSZ0' option for the soil variables 28/01/96 (J. Stein)
!! initialization of domain from center point 31/01/96 (V. Masson)
!! add the constant file reading 05/02/96 (J. Stein)
!! enter vertical model levels values 20/10/95 (T.Montmerle)
!! add LFORCING option 19/02/96 (K. Suhre)
!! modify structure of NAM_CONF_PRE 20/02/96 (J.-P. Pinty)
!! default of the domain center when use of pgd file 12/03/96 (V. Masson)
!! change the surface initialization 20/03/96 ( Stein,
!! Bougeault, Kastendeutsch )
!! change the DEFAULT_DESFMN CALL 17/04/96 ( Lafore )
!! set the STORAGE_TYPE to 'TT' (a single instant) 30/04/96 (Stein,
!! Jabouille)
!! new wguess to spread the divergence 15/05/96 (Stein)
!! set LTHINSHELL to TRUE + return to the old wguess 29/08/96 (Stein)
!! MY_NAME and DAD_NAME writing for nesting 30/07/96 (Lafore)
!! MY_NAME and DAD_NAME reading in pgd file 26/09/96 (Masson)
!! and reading of pgd grid in a new routine
!! XXHAT and XYHAT are set to 0. at origine point 02/10/96 (Masson)
!! add LTHINSHELL in namelist NAM_CONF_PRE 08/10/96 (Masson)
!! restores use of TS and T2 26/11/96 (Masson)
!! value XUNDEF for soil and vegetation fields on sea 27/11/96 (Masson)
!! use of HUG and HU2 in both ISBA and TSZ0 cases 04/12/96 (Masson)
!! add initialization of chemical variables 06/08/96 (K. Suhre)
!! add MANUAL option for the terrain elevation 12/12/96 (J.-P. Pinty)
!! set DATA instead of MANUAL for the terrain
!! elevation option
!! add new anelastic equations' systems 29/06/97 (Stein)
!! split mode_lfifm_pgd 29/07/97 (Masson)
!! add directional z0 and subgrid scale orography 31/07/97 (Masson)
!! separates surface treatment in PREP_IDEAL_SURF 15/03/99 (Masson)
!! new PGD fields allocations 15/03/99 (Masson)
!! iterative call to pressure solver 15/03/99 (Masson)
!! removes TSZ0 case 04/01/00 (Masson)
!! parallelization 18/06/00 (Pinty)
!! adaptation for patch approach 02/07/00 (Solmon/Masson)
!! bug in W LB field on Y direction 05/03/01 (Stein)
!! add module MODD_NSV for NSV variable 01/02/01 (D. Gazen)
!! allow namelists in different orders 15/10/01 (I. Mallet)
!! allow LUSERC and LUSERI in 1D configuration 05/06/02 (P. Jabouille)
!! add ZUVTHLMR case (move in set_rsou latter) 05/12/02 Jabouille/Masson
!! move LHORELAX_SV (after INI_NSV) 30/04/04 (Pinty)
!! Correction Parallel bug IBEG & IDEND evalution 13/11/08 J.Escobar
!! add the option LSHIFT for interpolation of 26/10/10 (G.Tanguy)
!! correction for XHAT & parallelizarion of ZSDATA 23/09/11 J.Escobar
!! the vertical profile (as in PREP_REAL_CASE)
!! add use MODI of SURFEX routines 10/10/111 J.Escobar
!!
!! For 2D modeling:
!! Initialization of ADVFRC profiles (SET_ADVFRC) 06/2010 (P.Peyrille)
!! when LDUMMY(2)=T in PRE_IDEA1.nam
!! USE MODDB_ADVFRC_n for grid-nesting 02*2012 (M. Tomasini)
!! LBOUSS in MODD_REF 07/2013 (C.Lac)
!! Correction for ZS in PGD file 04/2014 (G. TANGUY)
!! Bug : remove NC WRITE_HGRID 05/2014 (S. Bielli via J.Escobar )
!! BUG if ZFRC and ZFRC_ADV or ZFRC_REL are used together 11/2014 (G. Delautier)
!! Bug : detected with cray compiler ,
!! missing '&' in continuation string 3/12/2014 J.Escobar
!! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
!! 06/2016 (G.Delautier) phasage surfex 8
!! P.Wautelet : 08/07/2016 : removed MNH_NCWRIT define
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_PARAMETERS ! Declarative modules
USE MODD_DIM_n
USE MODD_CONF
USE MODD_CST
USE MODD_GRID
USE MODD_GRID_n
USE MODD_METRICS_n
USE MODD_PGDDIM
USE MODD_PGDGRID
USE MODD_TIME
USE MODD_TIME_n
USE MODD_REF
USE MODD_REF_n
USE MODD_LUNIT
USE MODD_FIELD_n
USE MODD_DYN_n
USE MODD_LBC_n
USE MODD_LSFIELD_n
USE MODD_PARAM_n
USE MODD_CH_MNHC_n, ONLY: LUSECHEM, LUSECHAQ, LUSECHIC, LCH_PH, &
LCH_INIT_FIELD, CCHEM_INPUT_FILE
USE MODD_CH_AEROSOL,ONLY: LORILAM, CORGANIC, LVARSIGI, LVARSIGJ, LINITPM, XINIRADIUSI, &
XINIRADIUSJ, XINISIGI, XINISIGJ, XN0IMIN, XN0JMIN, CRGUNIT
USE MODD_DUST, ONLY: LDUST, NMODE_DST, CRGUNITD, XINISIG, XINIRADIUS, XN0MIN
USE MODD_SALT, ONLY: LSALT, NMODE_SLT, CRGUNITS, XINISIG_SLT, XINIRADIUS_SLT, XN0MIN_SLT
USE MODD_VAR_ll, ONLY: NPROC
USE MODD_LUNIT_n
USE MODD_CONF_n
USE MODD_NSV, ONLY : NSV,NSV_CHEM, &
NSV_DSTEND, NSV_DSTBEG
!
USE MODN_BLANK
!
USE MODE_THERMO
USE MODE_POS
USE MODE_GRIDCART ! Executive modules
USE MODE_GRIDPROJ
USE MODE_FM
USE MODE_FMREAD
USE MODE_IO_ll
USE MODE_ll
USE MODD_ARGSLIST_ll, ONLY : LIST_ll
USE MODE_MODELN_HANDLER
!
USE MODI_DEFAULT_DESFM_n ! Interface modules
USE MODI_DEFAULT_EXPRE
USE MODI_READ_HGRID
USE MODI_SHUMAN
USE MODI_SET_RSOU
USE MODI_SET_CSTN
USE MODI_SET_FRC
USE MODI_PRESSURE_IN_PREP
USE MODI_WRITE_DESFM_n
USE MODI_WRITE_LFIFM_n
USE MODI_METRICS
USE MODI_UPDATE_METRICS
USE MODI_SET_REF
USE MODI_SET_PERTURB
USE MODI_TOTAL_DMASS
USE MODI_WGUESS
USE MODI_CH_INIT_SCHEME_n
USE MODI_CH_INIT_FIELD_n
USE MODI_GATHER_ll
USE MODI_INI_NSV
USE MODI_READ_PRE_IDEA_NAM_n
USE MODI_CH_AER_INIT_SOA
USE MODI_ZSMT_PIC
USE MODI_ZSMT_PGD
USE MODI_READ_VER_GRID
USE MODI_READ_ALL_NAMELISTS
USE MODI_PGD_GRID_SURF_ATM
USE MODI_SPLIT_GRID
USE MODI_PGD_SURF_ATM
USE MODI_ICE_ADJUST_BIS
USE MODI_WRITE_PGD_SURF_ATM_n
USE MODI_PREP_SURF_MNH
!
!JUAN
USE MODE_SPLITTINGZ_ll
USE MODD_SUB_MODEL_n
USE MODE_MNH_TIMING
USE MODN_CONFZ
!JUAN
USE MODN_CONFIO
USE MODI_TH_R_FROM_THL_RT_3D
!
USE MODI_VERSION
USE MODI_INIT_PGD_SURF_ATM
USE MODI_WRITE_SURF_ATM_N
USE MODD_MNH_SURFEX_n
! Modif ADVFRC
USE MODD_2D_FRC
USE MODD_ADVFRC_n ! Modif for grid-nesting
USE MODI_SETADVFRC
USE MODD_RELFRC_n ! Modif for grid-nesting
USE MODI_SET_RELFRC
!
USE MODI_INI_CST
USE MODI_INI_NEB
USE MODE_FMWRIT
USE MODI_WRITE_HGRID
USE MODD_MPIF
USE MODD_VAR_ll
!
USE MODE_MPPDB
!
IMPLICIT NONE
!
!* 0.1 Declarations of global variables not declared in the modules
!
REAL, DIMENSION(:,:,:), ALLOCATABLE :: XJ ! Jacobian
REAL :: XLATCEN=XUNDEF, XLONCEN=XUNDEF ! latitude and longitude of the center of
! the domain for initialization. This
! point is vertical vorticity point
! ------------------------
REAL :: XDELTAX=0.5E4, XDELTAY=0.5E4 ! horizontal mesh lengths
! used to determine XXHAT,XYHAT
!
INTEGER :: NLUPRE,NLUOUT ! Logical unit numbers for EXPRE file
! and for output_listing file
INTEGER :: NRESP ! return code in FM routines
INTEGER :: NTYPE ! type of file (cpio or not)
INTEGER :: NNPRAR ! number of articles predicted in
! the LFIFM file
INTEGER :: NNINAR ! number of articles present in
! the LFIFM file
LOGICAL :: GFOUND ! Return code when searching namelist
!
INTEGER :: JLOOP,JILOOP,JJLOOP ! Loop indexes
!
INTEGER :: NIB,NJB,NKB ! Begining useful area in x,y,z directions
INTEGER :: NIE,NJE ! Ending useful area in x,y directions
INTEGER :: NIU,NJU,NKU ! Upper bounds in x,y,z directions
CHARACTER (LEN=32) :: CEXPRE ! name of the EXPRE file
CHARACTER (LEN=32) :: CDESFM ! Name of DESFM file
CHARACTER(LEN=4) :: CIDEAL ='CSTN' ! kind of idealized fields
! 'CSTN' : Nv=cste case
! 'RSOU' : radiosounding case
CHARACTER(LEN=4) :: CZS ='FLAT' ! orography selector
! 'FLAT' : zero orography
! 'SINE' : sine-shaped orography
! 'BELL' : bell-shaped orography
REAL :: XHMAX=XUNDEF ! Maximum height for orography
REAL :: NEXPX=3,NEXPY=1 ! Exponents for orography in case of CZS='SINE'
REAL :: XAX= 1.E4, XAY=1.E4 ! Widths for orography in case CZS='BELL'
! along x and y
INTEGER :: NIZS = 5, NJZS = 5 ! Localization of the center in
! case CZS ='BELL'
!
!* 0.1.1 Declarations of local variables for N=cste and
! radiosounding cases :
!
INTEGER :: NYEAR,NMONTH,NDAY ! year, month and day in EXPRE file
REAL :: XTIME ! time in EXPRE file
LOGICAL :: LPERTURB =.FALSE. ! Logical to add a perturbation to
! a basic state
LOGICAL :: LGEOSBAL =.FALSE. ! Logical to satisfy the geostrophic
! balance
! .TRUE. for geostrophic balance
! .FALSE. to ignore this balance
LOGICAL :: LPV_PERT =.FALSE. ! Logical to add a PV pertubation
LOGICAL :: LRMV_BL =.FALSE. ! Logical to remove the boundary layer
! before PV inversion
LOGICAL :: LSHIFT =.FALSE. ! flag to perform vertical shift or not.
CHARACTER(LEN=3) :: CFUNU ='ZZZ' ! CHARACTER STRING for variation of
! U in y direction
! 'ZZZ' : U = U(Z)
! 'Y*Z' : U = F(Y) * U(Z)
! 'Y,Z' : U = G(Y,Z)
CHARACTER(LEN=3) :: CFUNV ='ZZZ' ! CHARACTER STRING for variation of
! V in x direction
! 'ZZZ' : V = V(Z)
! 'Y*Z' : V = F(X) * V(Z)
! 'Y,Z' : V = G(X,Z)
CHARACTER(LEN=6) :: CTYPELOC='IJGRID' ! Type of informations used to give the
! localization of vertical profile
! 'IJGRID' for (i,j) point on index space
! 'XYHATM' for (x,y) coordinates on
! conformal or cartesian plane
! 'LATLON' for (latitude,longitude) on
! spherical earth
REAL :: XLATLOC= 45., XLONLOC=0.
! Latitude and longitude of the vertical
! profile localization (used in case
! CTYPELOC='LATLON')
REAL :: XXHATLOC=2.E4, XYHATLOC=2.E4
! (x,y) of the vertical profile
! localization (used in cases
! CTYPELOC='LATLON' and 'XYHATM')
INTEGER, DIMENSION(1) :: NILOC=4, NJLOC=4
! (i,j) of the vertical profile
! localization
!
!
REAL,DIMENSION(:,:,:),ALLOCATABLE :: XCORIOZ ! Coriolis parameter (this
! is exceptionnaly a 3D array
! for computing needs)
!
!
!* 0.1.2 Declarations of local variables used when a PhysioGraphic Data
! file is used :
!
INTEGER :: JSV ! loop index on scalar var.
CHARACTER(LEN=28) :: CPGD_FILE=' ' ! Physio-Graphic Data file name
LOGICAL :: LREAD_ZS = .TRUE., & ! switch to use orography
! coming from the PGD file
LREAD_GROUND_PARAM = .TRUE. ! switch to use soil parameters
! useful for the soil scheme
! coming from the PGD file
INTEGER :: NSLEVE =12 ! number of iteration for smooth orography
REAL :: XSMOOTH_ZS = XUNDEF ! optional uniform smooth orography for SLEVE coordinate
CHARACTER(LEN=28) :: YPGD_NAME, YPGD_DAD_NAME ! general information
CHARACTER(LEN=8) :: YKIND ! Kind of radiosounding data
CHARACTER(LEN=2) :: YPGD_TYPE
!
INTEGER :: IINFO_ll ! return code of // routines
TYPE(LIST_ll), POINTER :: TZ_FIELDS_ll ! list of metric coefficient fields
!
INTEGER :: IISIZEXF,IJSIZEXF,IISIZEXFU,IJSIZEXFU ! dimensions of the
INTEGER :: IISIZEX4,IJSIZEX4,IISIZEX2,IJSIZEX2 ! West-east LB arrays
INTEGER :: IISIZEYF,IJSIZEYF,IISIZEYFV,IJSIZEYFV ! dimensions of the
INTEGER :: IISIZEY4,IJSIZEY4,IISIZEY2,IJSIZEY2 ! North-south LB arrays
INTEGER :: IBEG,IEND,IXOR,IXDIM,IYOR,IYDIM,ILBX,ILBY
REAL, DIMENSION(:), ALLOCATABLE :: ZXHAT_ll, ZYHAT_ll
!
REAL, DIMENSION(:,:,:), ALLOCATABLE ::ZTHL,ZT,ZRT,ZFRAC_ICE,&
ZEXN,ZLVOCPEXN,ZLSOCPEXN,ZCPH, &
ZRSATW, ZRSATI
! variables for adjustement
INTEGER :: ILENCH, IGRID, IRESP
CHARACTER (LEN=100) :: YCOMMENT
REAL :: ZDIST
!
!JUAN TIMING
REAL*8,DIMENSION(2) :: ZTIME1,ZTIME2,ZEND,ZTOT
CHARACTER :: YMI
INTEGER :: IMI
INTEGER::JK
!JUAN TIMING
!
REAL, DIMENSION(:), ALLOCATABLE :: ZZS_ll
INTEGER :: IJ
INTEGER :: NZSFILTER=1 ! number of iteration for filter for fine orography
LOGICAL :: LHSLOP=.FALSE. ! filtering of slopes higher than XHSLOP
REAL :: XHSLOP=1.2 ! if LHSLOP filtering of slopes higher than XHSLOP
!
REAL :: ZZS_MAX, ZZS_MAX_ll
INTEGER :: IJPHEXT
!
!
!* 0.2 Namelist declarations
!
NAMELIST/NAM_CONF_PRE/ LTHINSHELL,LCARTESIAN, &! Declarations in MODD_CONF
LPACK, &!
NVERB,CIDEAL,CZS, &!+global variables initialized
LBOUSS,LPERTURB,LPV_PERT, &! at their declarations
LRMV_BL,LFORCING,CEQNSYS, &! at their declarations
LSHIFT,L2D_ADV_FRC,L2D_REL_FRC, &
NHALO , JPHEXT
NAMELIST/NAM_GRID_PRE/ XLON0,XLAT0, & ! Declarations in MODD_GRID
XBETA,XRPK, &
XLONORI,XLATORI
NAMELIST/NAM_GRIDH_PRE/ XLATCEN,XLONCEN, & ! local variables initialized
XDELTAX,XDELTAY, & ! at their declarations
XHMAX,NEXPX,NEXPY, &
XAX,XAY,NIZS,NJZS
NAMELIST/NAM_VPROF_PRE/LGEOSBAL, CFUNU,CFUNV, &! global variables initialized
CTYPELOC,XLATLOC,XLONLOC, &! at their declarations
XXHATLOC,XYHATLOC,NILOC,NJLOC
NAMELIST/NAM_REAL_PGD/CPGD_FILE, & ! Physio-Graphic Data file
! name
LREAD_ZS, & ! switch to use orography
! coming from the PGD file
LREAD_GROUND_PARAM
NAMELIST/NAM_SLEVE/NSLEVE, XSMOOTH_ZS
!
!* 0.3 Auxillary Namelist declarations
!
NAMELIST/NAM_AERO_PRE/ LORILAM, LINITPM, XINIRADIUSI, XINIRADIUSJ, &
XINISIGI, XINISIGJ, XN0IMIN, XN0JMIN, CRGUNIT, &
LDUST, LSALT, CRGUNITD, CRGUNITS,&
NMODE_DST, XINISIG, XINIRADIUS, XN0MIN,&
XINISIG_SLT, XINIRADIUS_SLT, XN0MIN_SLT, &
NMODE_SLT
!
!-------------------------------------------------------------------------------
!
!* 0. PROLOGUE
! --------
CALL MPPDB_INIT()
!
CALL GOTO_MODEL(1)
!
CALL INITIO_ll()
NULLIFY(TZ_FIELDS_ll)
CALL VERSION
CPROGRAM='IDEAL '
!
!JUAN TIMING
XT_START = 0.0
XT_STORE = 0.0
!
CALL SECOND_MNH2(ZEND)
!
!JUAN TIMING
!
!* 1. INITIALIZE PHYSICAL CONSTANTS :
! ------------------------------
!
NVERB = 5
CALL INI_CST
CALL INI_NEB
!
!-------------------------------------------------------------------------------
!
!
!* 2. SET DEFAULT VALUES :
! --------------------
!
!
!* 2.1 For variables in DESFM file
!
CALL DEFAULT_DESFM_n(1)
!
CSURF = "NONE"
!
!
!* 2.2 For other global variables in EXPRE file
!
CALL DEFAULT_EXPRE
!-------------------------------------------------------------------------------
!
!* 3. READ THE EXPRE FILE :
! --------------------
!
!* 3.1 initialize logical unit numbers (EXPRE and output-listing files)
! and open these files :
!
!
CLUOUT = 'OUTPUT_LISTING1'
CLUOUT0 = CLUOUT
CEXPRE = 'PRE_IDEA1.nam'
CALL OPEN_ll(UNIT=NLUOUT,FILE=CLUOUT,IOSTAT=NRESP,FORM='FORMATTED',ACTION='WRITE', &
MODE=GLOBAL)
CALL OPEN_ll(UNIT=NLUPRE,FILE=CEXPRE,IOSTAT=NRESP,ACTION='READ', &
DELIM='QUOTE',MODE=GLOBAL)
!
!* 3.2 read in NLUPRE the namelist informations
!
WRITE(NLUOUT,FMT=*) 'attempt to read ',TRIM(CEXPRE),' file'
CALL POSNAM(NLUPRE,'NAM_REAL_PGD',GFOUND,NLUOUT)
IF (GFOUND) READ(UNIT=NLUPRE,NML=NAM_REAL_PGD)
!
!
CALL POSNAM(NLUPRE,'NAM_CONF_PRE',GFOUND,NLUOUT)
IF (GFOUND) READ(UNIT=NLUPRE,NML=NAM_CONF_PRE)
!JUANZ
CALL POSNAM(NLUPRE,'NAM_CONFZ',GFOUND,NLUOUT)
IF (GFOUND) READ(UNIT=NLUPRE,NML=NAM_CONFZ)
!JUANZ
CALL POSNAM(NLUPRE,'NAM_CONFIO',GFOUND,NLUOUT)
IF (GFOUND) READ(UNIT=NLUPRE,NML=NAM_CONFIO)
CALL SET_CONFIO_ll(LCDF4, LLFIOUT, LLFIREAD)
CALL POSNAM(NLUPRE,'NAM_GRID_PRE',GFOUND,NLUOUT)
IF (GFOUND) READ(UNIT=NLUPRE,NML=NAM_GRID_PRE)
CALL POSNAM(NLUPRE,'NAM_GRIDH_PRE',GFOUND,NLUOUT)
IF (GFOUND) READ(UNIT=NLUPRE,NML=NAM_GRIDH_PRE)
CALL POSNAM(NLUPRE,'NAM_VPROF_PRE',GFOUND,NLUOUT)
IF (GFOUND) READ(UNIT=NLUPRE,NML=NAM_VPROF_PRE)
CALL POSNAM(NLUPRE,'NAM_BLANK',GFOUND,NLUOUT)
IF (GFOUND) READ(UNIT=NLUPRE,NML=NAM_BLANK)
CALL READ_PRE_IDEA_NAM_n(NLUPRE,NLUOUT)
CALL POSNAM(NLUPRE,'NAM_AERO_PRE',GFOUND,NLUOUT)
IF (GFOUND) READ(UNIT=NLUPRE,NML=NAM_AERO_PRE)
!
IF( LEN_TRIM(CPGD_FILE) /= 0 ) THEN
! open the PGD_FILE
CALL FMOPEN_ll(CPGD_FILE,'READ',CLUOUT,NNPRAR,2,NVERB,NNINAR,NRESP)
! read the grid in the PGD file
CALL FMREAD(CPGD_FILE,'IMAX',CLUOUT,'--',NIMAX,IGRID,ILENCH,YCOMMENT,IRESP)
CALL FMREAD(CPGD_FILE,'JMAX',CLUOUT,'--',NJMAX,IGRID,ILENCH,YCOMMENT,IRESP)
CALL FMREAD(CPGD_FILE,'JPHEXT',CLUOUT,'--',IJPHEXT,IGRID,ILENCH,YCOMMENT,IRESP)
IF ( CPGD_FILE /= CINIFILEPGD) THEN
WRITE(NLUOUT,FMT=*) ' WARNING : in PRE_IDEA1.nam, in NAM_LUNITn you&
& have CINIFILEPGD= ',CINIFILEPGD
WRITE(NLUOUT,FMT=*) ' whereas in NAM_REAL_PGD you have CPGD_FILE = '&
,CPGD_FILE
WRITE(NLUOUT,FMT=*) ' '
WRITE(NLUOUT,FMT=*) ' CINIFILEPGD HAS BEEN SET TO ',CPGD_FILE
CINIFILEPGD=CPGD_FILE
END IF
IF ( IJPHEXT .NE. JPHEXT ) THEN
WRITE(NLUOUT,FMT=*) ' PREP_IDEAL_CASE : JPHEXT in PRE_IDEA1.nam/NAM_CONF_PRE ( or default value )&
& JPHEXT=',JPHEXT
WRITE(NLUOUT,FMT=*) ' different from PGD files=', CINIFILEPGD,' value JPHEXT=',IJPHEXT
WRITE(NLUOUT,FMT=*) '-> JOB ABORTED'
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
!WRITE(NLUOUT,FMT=*) ' JPHEXT HAS BEEN SET TO ', IJPHEXT
!IJPHEXT = JPHEXT
END IF
END IF
!
NIMAX_ll=NIMAX !! _ll variables are global variables
NJMAX_ll=NJMAX !! but the old names are kept in PRE_IDEA1.nam file
!
!* 3.3 check some parameters:
!
L1D=.FALSE. ; L2D=.FALSE.
!
IF ((NIMAX == 1).OR.(NJMAX == 1)) THEN
L2D=.TRUE.
NJMAX_ll=1
NIMAX_ll=MAX(NIMAX,NJMAX)
WRITE(NLUOUT,FMT=*) ' NJMAX HAS BEEN SET TO 1 SINCE 2D INITIAL FILE IS REQUIRED &
& (L2D=TRUE) )'
END IF
!
IF ((NIMAX == 1).AND.(NJMAX == 1)) THEN
L1D=.TRUE.
NIMAX_ll = 1
NJMAX_ll = 1
WRITE(NLUOUT,FMT=*) ' 1D INITIAL FILE IS REQUIRED (L1D=TRUE) '
END IF
!
IF(.NOT. L1D) THEN
LHORELAX_UVWTH=.TRUE.
LHORELAX_RV=.TRUE.
ENDIF
!
NRIMX= MIN(JPRIMMAX,NIMAX_ll/2)
!
IF (L2D) THEN
NRIMY=0
ELSE
NRIMY= MIN(JPRIMMAX,NJMAX_ll/2)
END IF
!
IF (L1D) THEN
NRIMX=0
NRIMY=0
END IF
!
IF (L1D .AND. ( LPERTURB .OR. LGEOSBAL .OR. &
(.NOT. LCARTESIAN ) .OR. (.NOT. LTHINSHELL) ))THEN
LGEOSBAL = .FALSE.
LPERTURB = .FALSE.
LCARTESIAN = .TRUE.
LTHINSHELL = .TRUE.
WRITE(NLUOUT,FMT=*) ' LGEOSBAL AND LPERTURB HAVE BEEN SET TO FALSE &
& AND LCARTESIAN AND LTHINSHELL TO TRUE &
& SINCE 1D INITIAL FILE IS REQUIRED (L1D=TRUE)'
END IF
!
IF (LGEOSBAL .AND. LSHIFT ) THEN
LSHIFT=.FALSE.
WRITE(NLUOUT,FMT=*) ' LSHIFT HAS BEEN SET TO FALSE SINCE &
& LGEOSBAL=.TRUE. IS REQUIRED '
END IF
!
!* 3.4 compute the number of moist variables :
!
IF (.NOT.LUSERV) THEN
LUSERV = .TRUE.
WRITE(NLUOUT,FMT=*) ' LUSERV HAS BEEN RESET TO TRUE, SINCE A MOIST VARIABLE &
& IS PRESENT IN EXPRE FILE (CIDEAL = RSOU OR CSTN)'
END IF
!
IF((LUSERI .OR. LUSERC).AND. (CIDEAL /= 'RSOU')) THEN
WRITE(NLUOUT,FMT=*) 'USE OF HYDROMETEORS IS ONLY ALLOWED IN RSOU CASE'
WRITE(NLUOUT,FMT=*) '-> JOB ABORTED'
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
ENDIF
IF (LUSERI) THEN
LUSERC =.TRUE.
LUSERR =.TRUE.
LUSERI =.TRUE.
LUSERS =.TRUE.
LUSERG =.TRUE.
LUSERH =.FALSE.
CCLOUD='ICE3'
ELSEIF(LUSERC) THEN
LUSERR =.FALSE.
LUSERI =.FALSE.
LUSERS =.FALSE.
LUSERG =.FALSE.
LUSERH =.FALSE.
CCLOUD='REVE'
ELSE
LUSERC =.FALSE.
LUSERR =.FALSE.
LUSERI =.FALSE.
LUSERS =.FALSE.
LUSERG =.FALSE.
LUSERH =.FALSE.
LHORELAX_RC=.FALSE.
LHORELAX_RR=.FALSE.
LHORELAX_RI=.FALSE.
LHORELAX_RS=.FALSE.
LHORELAX_RG=.FALSE.
LHORELAX_RH=.FALSE.
CCLOUD='NONE'
!
END IF
!
NRR=0
IF (LUSERV) NRR=NRR+1
IF (LUSERC) NRR=NRR+1
IF (LUSERR) NRR=NRR+1
IF (LUSERI) NRR=NRR+1
IF (LUSERS) NRR=NRR+1
IF (LUSERG) NRR=NRR+1
IF (LUSERH) NRR=NRR+1
!
! NRR=4 for RSOU case because RI and Rc always computed
IF (CIDEAL == 'RSOU' .AND. NRR < 4 ) NRR=4
!
!
!* 3.5 Chemistry
!
IF (LORILAM .OR. LCH_INIT_FIELD) THEN
! Always initialize chemical scheme variables before INI_NSV call !
CALL CH_INIT_SCHEME_n(1,LUSECHAQ,LUSECHIC,LCH_PH,NLUOUT,NVERB)
LUSECHEM = .TRUE.
IF (LORILAM) THEN
CORGANIC = "MPMPO"
LVARSIGI = .TRUE.
LVARSIGJ = .TRUE.
CALL CH_AER_INIT_SOA(NLUOUT, NVERB)
END IF
END IF
! initialise NSV_* variables
CALL INI_NSV(1)
LHORELAX_SV(:)=.FALSE.
IF(.NOT. L1D) LHORELAX_SV(1:NSV)=.TRUE.
!
!-------------------------------------------------------------------------------
!
!* 4. ALLOCATE MEMORY FOR ARRAYS :
! ----------------------------
!
!* 4.1 Vertical Spatial grid
!
CALL READ_VER_GRID(CEXPRE)
!
!* 4.2 Initialize parallel variables and compute array's dimensions
!
!
IF(LGEOSBAL) THEN
CALL SET_SPLITTING_ll('XSPLITTING') ! required for integration of thermal wind balance
ELSE
CALL SET_SPLITTING_ll('BSPLITTING')
ENDIF
CALL SET_JP_ll(1,JPHEXT,JPVEXT,JPHEXT)
CALL SET_DAD0_ll()
CALL SET_DIM_ll(NIMAX_ll, NJMAX_ll, NKMAX)
CALL SET_FMPACK_ll(L1D,L2D,LPACK)
CALL SET_LBX_ll(CLBCX(1), 1)
CALL SET_LBY_ll(CLBCY(1), 1)
CALL SET_XRATIO_ll(1, 1)
CALL SET_YRATIO_ll(1, 1)
CALL SET_XOR_ll(1, 1)
CALL SET_XEND_ll(NIMAX_ll+2*JPHEXT, 1)
CALL SET_YOR_ll(1, 1)
CALL SET_YEND_ll(NJMAX_ll+2*JPHEXT, 1)
CALL SET_DAD_ll(0, 1)
CALL INI_PARAZ_ll(IINFO_ll)
!
! sizes of arrays of the extended sub-domain
!
CALL GET_DIM_EXT_ll('B',NIU,NJU)
CALL GET_DIM_PHYS_ll('B',NIMAX,NJMAX)
CALL GET_INDICE_ll(NIB,NJB,NIE,NJE)
CALL GET_OR_ll('B',IXOR,IYOR)
NKB=1+JPVEXT
NKU=NKMAX+2*JPVEXT
!
!* 4.3 Global variables absent from the modules :
!
ALLOCATE(XJ(NIU,NJU,NKU))
SELECT CASE(CIDEAL)
CASE('RSOU','CSTN')
IF (LGEOSBAL) ALLOCATE(XCORIOZ(NIU,NJU,NKU)) ! exceptionally a 3D array
CASE DEFAULT ! undefined preinitialization
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE : CIDEAL IS NOT CORRECTLY DEFINED'
WRITE(NLUOUT,FMT=*) '-> JOB ABORTED'
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
END SELECT
!
!* 4.4 Prognostic variables at M instant (module MODD_FIELD1):
!
ALLOCATE(XUT(NIU,NJU,NKU))
ALLOCATE(XVT(NIU,NJU,NKU))
ALLOCATE(XWT(NIU,NJU,NKU))
ALLOCATE(XTHT(NIU,NJU,NKU))
ALLOCATE(XPABST(NIU,NJU,NKU))
ALLOCATE(XRT(NIU,NJU,NKU,NRR))
ALLOCATE(XSVT(NIU,NJU,NKU,NSV))
!
!* 4.5 Grid variables (module MODD_GRID1 and MODD_METRICS1):
!
ALLOCATE(XMAP(NIU,NJU))
ALLOCATE(XLAT(NIU,NJU))
ALLOCATE(XLON(NIU,NJU))
ALLOCATE(XDXHAT(NIU),XDYHAT(NJU))
IF (LEN_TRIM(CPGD_FILE)==0) ALLOCATE(XZS(NIU,NJU))
IF (LEN_TRIM(CPGD_FILE)==0) ALLOCATE(ZZS_ll(NIMAX_ll))
IF (LEN_TRIM(CPGD_FILE)==0) ALLOCATE(XZSMT(NIU,NJU))
ALLOCATE(XZZ(NIU,NJU,NKU))
!
ALLOCATE(XDXX(NIU,NJU,NKU))
ALLOCATE(XDYY(NIU,NJU,NKU))
ALLOCATE(XDZX(NIU,NJU,NKU))
ALLOCATE(XDZY(NIU,NJU,NKU))
ALLOCATE(XDZZ(NIU,NJU,NKU))
!
!* 4.6 Reference state variables (modules MODD_REF and MODD_REF1):
!
ALLOCATE(XRHODREFZ(NKU),XTHVREFZ(NKU))
XTHVREFZ(:)=0.0
IF(CEQNSYS == 'DUR') THEN
ALLOCATE(XRVREF(NIU,NJU,NKU))
ELSE
ALLOCATE(XRVREF(0,0,0))
END IF
ALLOCATE(XRHODREF(NIU,NJU,NKU),XTHVREF(NIU,NJU,NKU),XEXNREF(NIU,NJU,NKU))
ALLOCATE(XRHODJ(NIU,NJU,NKU))
!
!* 4.7 Larger Scale fields (modules MODD_LSFIELD1):
!
ALLOCATE(XLSUM(NIU,NJU,NKU))
ALLOCATE(XLSVM(NIU,NJU,NKU))
ALLOCATE(XLSWM(NIU,NJU,NKU))
ALLOCATE(XLSTHM(NIU,NJU,NKU))
ALLOCATE(XLSRVM(NIU,NJU,NKU))
!
! allocate lateral boundary field used for coupling
!
IF ( L1D) THEN ! 1D case
!
NSIZELBX_ll=0
NSIZELBXU_ll=0
NSIZELBY_ll=0
NSIZELBYV_ll=0
NSIZELBXTKE_ll=0
NSIZELBXR_ll=0
NSIZELBXSV_ll=0
NSIZELBYTKE_ll=0
NSIZELBYR_ll=0
NSIZELBYSV_ll=0
ALLOCATE(XLBXUM(0,0,0))
ALLOCATE(XLBYUM(0,0,0))
ALLOCATE(XLBXVM(0,0,0))
ALLOCATE(XLBYVM(0,0,0))
ALLOCATE(XLBXWM(0,0,0))
ALLOCATE(XLBYWM(0,0,0))
ALLOCATE(XLBXTHM(0,0,0))
ALLOCATE(XLBYTHM(0,0,0))
ALLOCATE(XLBXTKEM(0,0,0))
ALLOCATE(XLBYTKEM(0,0,0))
ALLOCATE(XLBXRM(0,0,0,0))
ALLOCATE(XLBYRM(0,0,0,0))
ALLOCATE(XLBXSVM(0,0,0,0))
ALLOCATE(XLBYSVM(0,0,0,0))
!
ELSEIF( L2D ) THEN ! 2D case (not yet parallelized)
!
CALL GET_SIZEX_LB(CLUOUT,NIMAX_ll,NJMAX_ll,NRIMX, &
IISIZEXF,IJSIZEXF,IISIZEXFU,IJSIZEXFU, &
IISIZEX4,IJSIZEX4,IISIZEX2,IJSIZEX2)
NSIZELBY_ll=0
NSIZELBYV_ll=0
NSIZELBYTKE_ll=0
NSIZELBYR_ll=0
NSIZELBYSV_ll=0
ALLOCATE(XLBYUM(0,0,0))
ALLOCATE(XLBYVM(0,0,0))
ALLOCATE(XLBYWM(0,0,0))
ALLOCATE(XLBYTHM(0,0,0))
ALLOCATE(XLBYTKEM(0,0,0))
ALLOCATE(XLBYRM(0,0,0,0))
ALLOCATE(XLBYSVM(0,0,0,0))
!
IF ( LHORELAX_UVWTH ) THEN
!JUAN A REVOIR TODO_JPHEXT
! <<<<<<< prep_ideal_case.f90
! NSIZELBX_ll=2*NRIMX+2
! NSIZELBXU_ll=2*NRIMX+2
ALLOCATE(XLBXUM(IISIZEXFU,NJU,NKU))
ALLOCATE(XLBXVM(IISIZEXF,NJU,NKU))
ALLOCATE(XLBXWM(IISIZEXF,NJU,NKU))
ALLOCATE(XLBXTHM(IISIZEXF,NJU,NKU))
! =======
NSIZELBX_ll=2*NRIMX+2*JPHEXT
NSIZELBXU_ll=2*NRIMX+2*JPHEXT
! ALLOCATE(XLBXUM(2*NRIMX+2*JPHEXT,NJU,NKU))
! ALLOCATE(XLBXVM(2*NRIMX+2*JPHEXT,NJU,NKU))
! ALLOCATE(XLBXWM(2*NRIMX+2*JPHEXT,NJU,NKU))
! ALLOCATE(XLBXTHM(2*NRIMX+2*JPHEXT,NJU,NKU))
! >>>>>>> 1.3.2.4.2.3.2.14.2.8.2.11.2.2
ELSE
NSIZELBX_ll= 2*JPHEXT ! 2
NSIZELBXU_ll=2*(JPHEXT+1) ! 4
ALLOCATE(XLBXUM(NSIZELBXU_ll,NJU,NKU))
ALLOCATE(XLBXVM(NSIZELBX_ll,NJU,NKU))
ALLOCATE(XLBXWM(NSIZELBX_ll,NJU,NKU))
ALLOCATE(XLBXTHM(NSIZELBX_ll,NJU,NKU))
END IF
!
IF ( NRR > 0 ) THEN
IF ( LHORELAX_RV .OR. LHORELAX_RC .OR. LHORELAX_RR .OR. LHORELAX_RI &
.OR. LHORELAX_RS .OR. LHORELAX_RG .OR. LHORELAX_RH &
) THEN
!JUAN A REVOIR TODO_JPHEXT
! <<<<<<< prep_ideal_case.f90
! NSIZELBXR_ll=2* NRIMX+2
ALLOCATE(XLBXRM(IISIZEXF,NJU,NKU,NRR))
! =======
NSIZELBXR_ll=2*NRIMX+2*JPHEXT
! ALLOCATE(XLBXRM(2*NRIMX+2*JPHEXT,NJU,NKU,NRR))
! >>>>>>> 1.3.2.4.2.3.2.14.2.8.2.11.2.2
ELSE
NSIZELBXR_ll=2*JPHEXT ! 2
ALLOCATE(XLBXRM(NSIZELBXR_ll,NJU,NKU,NRR))
ENDIF
ELSE
NSIZELBXR_ll=0
ALLOCATE(XLBXRM(0,0,0,0))
END IF
!
IF ( NSV > 0 ) THEN
IF ( ANY( LHORELAX_SV(:)) ) THEN
!JUAN A REVOIR TODO_JPHEXT
! <<<<<<< prep_ideal_case.f90
! NSIZELBXSV_ll=2* NRIMX+2
ALLOCATE(XLBXSVM(IISIZEXF,NJU,NKU,NSV))
! =======
NSIZELBXSV_ll=2*NRIMX+2*JPHEXT
! ALLOCATE(XLBXSVM(2*NRIMX+2*JPHEXT,NJU,NKU,NSV))
! >>>>>>> 1.3.2.4.2.3.2.14.2.8.2.11.2.2
ELSE
NSIZELBXSV_ll=2*JPHEXT ! 2
ALLOCATE(XLBXSVM(NSIZELBXSV_ll,NJU,NKU,NSV))
END IF
ELSE
NSIZELBXSV_ll=0
ALLOCATE(XLBXSVM(0,0,0,0))
END IF
!
ELSE ! 3D case
!
CALL GET_SIZEX_LB(CLUOUT,NIMAX_ll,NJMAX_ll,NRIMX, &
IISIZEXF,IJSIZEXF,IISIZEXFU,IJSIZEXFU, &
IISIZEX4,IJSIZEX4,IISIZEX2,IJSIZEX2)
CALL GET_SIZEY_LB(CLUOUT,NIMAX_ll,NJMAX_ll,NRIMY, &
IISIZEYF,IJSIZEYF,IISIZEYFV,IJSIZEYFV, &
IISIZEY4,IJSIZEY4,IISIZEY2,IJSIZEY2)
!
IF ( LHORELAX_UVWTH ) THEN
NSIZELBX_ll=2*NRIMX+2*JPHEXT
NSIZELBXU_ll=2*NRIMX+2*JPHEXT
NSIZELBY_ll=2*NRIMY+2*JPHEXT
NSIZELBYV_ll=2*NRIMY+2*JPHEXT
ALLOCATE(XLBXUM(IISIZEXFU,IJSIZEXFU,NKU))
ALLOCATE(XLBYUM(IISIZEYF,IJSIZEYF,NKU))
ALLOCATE(XLBXVM(IISIZEXF,IJSIZEXF,NKU))
ALLOCATE(XLBYVM(IISIZEYFV,IJSIZEYFV,NKU))
ALLOCATE(XLBXWM(IISIZEXF,IJSIZEXF,NKU))
ALLOCATE(XLBYWM(IISIZEYF,IJSIZEYF,NKU))
ALLOCATE(XLBXTHM(IISIZEXF,IJSIZEXF,NKU))
ALLOCATE(XLBYTHM(IISIZEYF,IJSIZEYF,NKU))
ELSE
NSIZELBX_ll=2*JPHEXT ! 2
NSIZELBXU_ll=2*(JPHEXT+1) ! 4
NSIZELBY_ll=2*JPHEXT ! 2
NSIZELBYV_ll=2*(JPHEXT+1) ! 4
ALLOCATE(XLBXUM(IISIZEX4,IJSIZEX4,NKU))
ALLOCATE(XLBYUM(IISIZEY2,IJSIZEY2,NKU))
ALLOCATE(XLBXVM(IISIZEX2,IJSIZEX2,NKU))
ALLOCATE(XLBYVM(IISIZEY4,IJSIZEY4,NKU))
ALLOCATE(XLBXWM(IISIZEX2,IJSIZEX2,NKU))
ALLOCATE(XLBYWM(IISIZEY2,IJSIZEY2,NKU))
ALLOCATE(XLBXTHM(IISIZEX2,IJSIZEX2,NKU))
ALLOCATE(XLBYTHM(IISIZEY2,IJSIZEY2,NKU))
END IF
!
IF ( NRR > 0 ) THEN
IF ( LHORELAX_RV .OR. LHORELAX_RC .OR. LHORELAX_RR .OR. LHORELAX_RI &
.OR. LHORELAX_RS .OR. LHORELAX_RG .OR. LHORELAX_RH &
) THEN
NSIZELBXR_ll=2*NRIMX+2*JPHEXT
NSIZELBYR_ll=2*NRIMY+2*JPHEXT
ALLOCATE(XLBXRM(IISIZEXF,IJSIZEXF,NKU,NRR))
ALLOCATE(XLBYRM(IISIZEYF,IJSIZEYF,NKU,NRR))
ELSE
NSIZELBXR_ll=2*JPHEXT ! 2
NSIZELBYR_ll=2*JPHEXT ! 2
ALLOCATE(XLBXRM(IISIZEX2,IJSIZEX2,NKU,NRR))
ALLOCATE(XLBYRM(IISIZEY2,IJSIZEY2,NKU,NRR))
ENDIF
ELSE
NSIZELBXR_ll=0
NSIZELBYR_ll=0
ALLOCATE(XLBXRM(0,0,0,0))
ALLOCATE(XLBYRM(0,0,0,0))
END IF
!
IF ( NSV > 0 ) THEN
IF ( ANY( LHORELAX_SV(:)) ) THEN
NSIZELBXSV_ll=2*NRIMX+2*JPHEXT
NSIZELBYSV_ll=2*NRIMY+2*JPHEXT
ALLOCATE(XLBXSVM(IISIZEXF,IJSIZEXF,NKU,NSV))
ALLOCATE(XLBYSVM(IISIZEYF,IJSIZEYF,NKU,NSV))
ELSE
NSIZELBXSV_ll=2*JPHEXT ! 2
NSIZELBYSV_ll=2*JPHEXT ! 2
ALLOCATE(XLBXSVM(IISIZEX2,IJSIZEX2,NKU,NSV))
ALLOCATE(XLBYSVM(IISIZEY2,IJSIZEY2,NKU,NSV))
END IF
ELSE
NSIZELBXSV_ll=0
NSIZELBYSV_ll=0
ALLOCATE(XLBXSVM(0,0,0,0))
ALLOCATE(XLBYSVM(0,0,0,0))
END IF
END IF
!
!
!-------------------------------------------------------------------------------
!
!* 5. INITIALIZE ALL THE MODEL VARIABLES
! ----------------------------------
!
!
!* 5.1 Grid variables and RS localization:
!
!* 5.1.1 Horizontal Spatial grid :
!
IF( LEN_TRIM(CPGD_FILE) /= 0 ) THEN
!--------------------------------------------------------
! the MESONH horizontal grid will be read in the PGD_FILE
!--------------------------------------------------------
CALL READ_HGRID(1,CPGD_FILE,YPGD_NAME,YPGD_DAD_NAME,YPGD_TYPE)
! control the cartesian option
IF( LCARTESIAN ) THEN
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE : IN GENERAL, THE USE OF A PGD_FILE &
& IMPLIES THAT YOU MUST TAKE INTO ACCOUNT THE EARTH SPHERICITY'
WRITE(NLUOUT,FMT=*) 'NEVERTHELESS, LCARTESIAN HAS BEEN KEPT TO TRUE'
END IF
!
!* use of the externalized surface
!
CSURF = "EXTE"
!
! determine whether the model is flat or no
!
ZZS_MAX = ABS( MAXVAL(XZS(NIB:NIU-JPHEXT,NJB:NJU-JPHEXT)))
CALL MPI_ALLREDUCE(ZZS_MAX, ZZS_MAX_ll, 1, MPI_PRECISION, MPI_MAX, &
NMNH_COMM_WORLD,IINFO_ll)
IF( ABS(ZZS_MAX_ll) < 1.E-10 ) THEN
LFLAT=.TRUE.
ELSE
LFLAT=.FALSE.
END IF
!
ELSE
!------------------------------------------------------------------------
! the MESONH horizontal grid is built from the PRE_IDEA1.nam informations
!------------------------------------------------------------------------
!
ALLOCATE(XXHAT(NIU),XYHAT(NJU))
!
! define the grid localization at the earth surface by the central point
! coordinates
!
IF (XLONCEN/=XUNDEF .OR. XLATCEN/=XUNDEF) THEN
IF (XLONCEN/=XUNDEF .AND. XLATCEN/=XUNDEF) THEN
!
! it should be noted that XLATCEN and XLONCEN refer to a vertical
! vorticity point and (XLATORI, XLONORI) refer to the mass point of
! conformal coordinates (0,0). This is to allow the centering of the model in
! a non-cyclic configuration regarding to XLATCEN or XLONCEN.
!
ALLOCATE(ZXHAT_ll(NIMAX_ll+2*JPHEXT),ZYHAT_ll(NJMAX_ll+2*JPHEXT))
ZXHAT_ll=0.
ZYHAT_ll=0.
CALL SM_LATLON(XLATCEN,XLONCEN, &
-XDELTAX*(NIMAX_ll/2-0.5+JPHEXT), &
-XDELTAY*(NJMAX_ll/2-0.5+JPHEXT), &
XLATORI,XLONORI)
DEALLOCATE(ZXHAT_ll,ZYHAT_ll)
!
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE : XLATORI=' , XLATORI, &
' XLONORI= ', XLONORI
ELSE
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE : LATITUDE AND LONGITUDE OF THE CENTER &
& POINT MUST BE INITIALIZED ALL TOGETHER OR NOT'
WRITE(NLUOUT,FMT=*) '-> JOB ABORTED'
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
END IF
END IF
!
IF (NPROC > 1) THEN
CALL GET_DIM_EXT_ll('B',IXDIM,IYDIM)
IBEG = IXOR-JPHEXT-1
IEND = IBEG+IXDIM-1
XXHAT(:) = (/ (FLOAT(JLOOP)*XDELTAX, JLOOP=IBEG,IEND) /)
IBEG = IYOR-JPHEXT-1
IEND = IBEG+IYDIM-1
XYHAT(:) = (/ (FLOAT(JLOOP)*XDELTAY, JLOOP=IBEG,IEND) /)
!
ELSE
XXHAT(:) = (/ (FLOAT(JLOOP-NIB)*XDELTAX, JLOOP=1,NIU) /)
XYHAT(:) = (/ (FLOAT(JLOOP-NJB)*XDELTAY, JLOOP=1,NJU) /)
END IF
END IF
!
!* 5.1.2 Orography and Gal-Chen Sommerville transformation :
!
IF ( LEN_TRIM(CPGD_FILE) == 0 .OR. .NOT. LREAD_ZS) THEN
SELECT CASE(CZS) ! 'FLAT' or 'SINE' or 'BELL'
CASE('FLAT')
LFLAT = .TRUE.
IF (XHMAX==XUNDEF) THEN
XZS(:,:) = 0.
ELSE
XZS(:,:) = XHMAX
END IF
CASE('SINE') ! sinus-shaped orography
IF (XHMAX==XUNDEF) XHMAX=300.
LFLAT =.FALSE.
XZS(:,:) = XHMAX & ! three-dimensional case
*SPREAD((/((SIN((XPI/(NIMAX_ll+2*JPHEXT-1))*JLOOP)**2)**NEXPX,JLOOP=IXOR-1,IXOR+NIU-2)/),2,NJU) &
*SPREAD((/((SIN((XPI/(NJMAX_ll+2*JPHEXT-1))*JLOOP)**2)**NEXPY,JLOOP=IYOR-1,IYOR+NJU-2)/),1,NIU)
IF(L1D) THEN ! one-dimensional case
XZS(:,:) = XHMAX
END IF
CASE('BELL') ! bell-shaped orography
IF (XHMAX==XUNDEF) XHMAX=300.
LFLAT = .FALSE.
IF(.NOT.L2D) THEN ! three-dimensional case
XZS(:,:) = XHMAX / ( 1. &
+ ( (SPREAD(XXHAT(1:NIU),2,NJU) - FLOAT(NIZS) * XDELTAX) /XAX ) **2 &
+ ( (SPREAD(XYHAT(1:NJU),1,NIU) - FLOAT(NJZS) * XDELTAY) /XAY ) **2 ) **1.5
ELSE ! two-dimensional case
XZS(:,:) = XHMAX / ( 1. &
+ ( (SPREAD(XXHAT(1:NIU),2,NJU) - FLOAT(NIZS) * XDELTAX) /XAX ) **2 )
ENDIF
IF(L1D) THEN ! one-dimensional case
XZS(:,:) = XHMAX
END IF
CASE('COSI') ! (1+cosine)**4 shape
IF (XHMAX==XUNDEF) XHMAX=800.
LFLAT = .FALSE.
IF(L2D) THEN ! two-dimensional case
DO JILOOP = 1, NIU
ZDIST = XXHAT(JILOOP)-FLOAT(NIZS)*XDELTAX
IF( ABS(ZDIST)<(4.0*XAX) ) THEN
XZS(JILOOP,:) = (XHMAX/16.0)*( 1.0 + COS((XPI*ZDIST)/(4.0*XAX)) )**4
ELSE
XZS(JILOOP,:) = 0.0
ENDIF
END DO
ENDIF
CASE('SCHA') ! exp(-(x/a)**2)*cosine(pi*x/lambda)**2 shape
IF (XHMAX==XUNDEF) XHMAX=800.
LFLAT = .FALSE.
IF(L2D) THEN ! two-dimensional case
DO JILOOP = 1, NIU
ZDIST = XXHAT(JILOOP)-FLOAT(NIZS)*XDELTAX
IF( ABS(ZDIST)<(4.0*XAX) ) THEN
XZS(JILOOP,:) = XHMAX*EXP(-(ZDIST/XAY)**2)*COS((XPI*ZDIST)/XAX)**2
ELSE
XZS(JILOOP,:) = 0.0
ENDIF
END DO
ENDIF
CASE('AGNE') ! h*a**2/(x**2+a**2) shape
LFLAT = .FALSE.
IF(L2D) THEN ! two-dimensional case
DO JILOOP = 1, NIU
ZDIST = XXHAT(JILOOP)-FLOAT(NIZS)*XDELTAX
XZS(JILOOP,:) = XHMAX*(XAX**2)/(XAX**2+ZDIST**2)
END DO
ELSE ! three dimensionnal case - infinite profile in y direction
DO JILOOP = 1, NIU
ZDIST = XXHAT(JILOOP)-FLOAT(NIZS)*XDELTAX
XZS(JILOOP,:) = XHMAX*(XAX**2)/(XAX**2+ZDIST**2)
END DO
ENDIF
CASE('DATA') ! discretized orography
LFLAT =.FALSE.
WRITE(NLUOUT,FMT=*) 'CZS="DATA", ATTEMPT TO READ ARRAY &
&XZS(NIB:NIU-JPHEXT:1,NJU-JPHEXT:NJB:-1) &
&starting from the first index'
CALL POSKEY(NLUPRE,NLUOUT,'ZSDATA')
DO JJLOOP = NJMAX_ll+2*JPHEXT-1,JPHEXT+1,-1 ! input like a map prior the sounding
READ(NLUPRE,FMT=*) ZZS_ll
IF ( ( JJLOOP <= ( NJU-JPHEXT + IYOR-1 ) ) .AND. ( JJLOOP >= ( NJB + IYOR-1 ) ) ) THEN
IJ = JJLOOP - ( IYOR-1 )
XZS(NIB:NIU-JPHEXT,IJ) = ZZS_ll(IXOR:IXOR + NIU-JPHEXT - NIB )
END IF
END DO
!
CASE DEFAULT ! undefined shape of orography
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE: ERRONEOUS TERRAIN TYPE'
WRITE(NLUOUT,FMT=*) '-> JOB ABORTED'
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
END SELECT
!
CALL ADD2DFIELD_ll(TZ_FIELDS_ll, XZS)
CALL UPDATE_HALO_ll(TZ_FIELDS_ll,IINFO_ll)
CALL CLEANLIST_ll(TZ_FIELDS_ll)
!
END IF
!
!IF( ( LEN_TRIM(CPGD_FILE) /= 0 ) .AND. .NOT.LFLAT .AND. &
! ((CLBCX(1) /= "OPEN" ) .OR. &
! (CLBCX(2) /= "OPEN" ) .OR. (CLBCY(1) /= "OPEN" ) .OR. &
! (CLBCY(2) /= "OPEN" )) ) THEN
! WRITE(NLUOUT,FMT=*) 'STOP:WITH A PGD FILE YOU CANNOT BE IN CYCLIC LBC'
! !callabortstop
! CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
! CALL ABORT
! STOP
!END IF
!
IF (LWEST_ll()) THEN
DO JILOOP = 1,JPHEXT
XZS(JILOOP,:) = XZS(NIB,:)
END DO
END IF
IF (LEAST_ll()) THEN
DO JILOOP = NIU-JPHEXT+1,NIU
XZS(JILOOP,:)=XZS(NIU-JPHEXT,:)
END DO
END IF
IF (LSOUTH_ll()) THEN
DO JJLOOP = 1,JPHEXT
XZS(:,JJLOOP)=XZS(:,NJB)
END DO
END IF
IF (LNORTH_ll()) THEN
DO JJLOOP =NJU-JPHEXT+1,NJU
XZS(:,JJLOOP)=XZS(:,NJU-JPHEXT)
END DO
END IF
!
IF ( LEN_TRIM(CPGD_FILE) == 0 .OR. .NOT. LREAD_ZS) THEN
IF (LSLEVE) THEN
CALL ZSMT_PIC(NSLEVE,XSMOOTH_ZS)
ELSE
XZSMT(:,:) = 0.
END IF
END IF
!
IF (LCARTESIAN) THEN
CALL SM_GRIDCART(CLUOUT,XXHAT,XYHAT,XZHAT,XZS,LSLEVE,XLEN1,XLEN2,XZSMT,XDXHAT,XDYHAT,XZZ,XJ)
XMAP=1.
ELSE
CALL SM_GRIDPROJ(CLUOUT,XXHAT,XYHAT,XZHAT,XZS,LSLEVE,XLEN1,XLEN2,XZSMT,XLATORI,XLONORI, &
XMAP,XLAT,XLON,XDXHAT,XDYHAT,XZZ,XJ)
END IF
!* 5.4.1 metrics coefficients and update halos:
!
CALL METRICS(XMAP,XDXHAT,XDYHAT,XZZ,XDXX,XDYY,XDZX,XDZY,XDZZ)
!
CALL UPDATE_METRICS(CLBCX,CLBCY,XDXX,XDYY,XDZX,XDZY,XDZZ)
!
!* 5.1.3 Compute the localization in index space of the vertical profile
! in CSTN and RSOU cases :
!
IF (CTYPELOC =='LATLON' ) THEN
IF (.NOT.LCARTESIAN) THEN ! compute (x,y) if
CALL SM_XYHAT(XLATORI,XLONORI, & ! the localization
XLATLOC,XLONLOC,XXHATLOC,XYHATLOC) ! is given in latitude
ELSE ! and longitude
WRITE(NLUOUT,FMT=*) 'CTYPELOC CANNOT BE LATLON IN CARTESIAN GEOMETRY'
WRITE(NLUOUT,FMT=*) '-> JOB ABORTED'
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
END IF
END IF
!
ALLOCATE(ZXHAT_ll(NIMAX_ll+ 2 * JPHEXT),ZYHAT_ll(NJMAX_ll+2 * JPHEXT))
CALL GATHERALL_FIELD_ll('XX',XXHAT,ZXHAT_ll,NRESP) !//
CALL GATHERALL_FIELD_ll('YY',XYHAT,ZYHAT_ll,NRESP) !//
IF (CTYPELOC /= 'IJGRID') THEN
NILOC = MINLOC(ABS(XXHATLOC-ZXHAT_ll(:)))
NJLOC = MINLOC(ABS(XYHATLOC-ZYHAT_ll(:)))
END IF
!
IF ( L1D .AND. ( NILOC(1) /= 1 .OR. NJLOC(1) /= 1 ) ) THEN
NILOC = 1
NJLOC = 1
WRITE(NLUOUT,FMT=*) 'FOR 1D CONFIGURATION, THE RS INFORMATIONS ARE TAKEN AT &
& I=1 AND J=1 (CENTRAL VERTICAL WITHOUT HALO)'
END IF
!
IF ( L2D .AND. ( NJLOC(1) /= 1 ) ) THEN
NJLOC = 1
WRITE(NLUOUT,FMT=*) 'FOR 2D CONFIGURATION, THE RS INFORMATIONS ARE TAKEN AT &
& J=1 (CENTRAL PLANE WITHOUT HALO)'
END IF
!
!* 5.2 Prognostic variables (not multiplied by rhoJ) : u,v,w,theta,r
! and 1D anelastic reference state
!
IF(LPV_PERT .AND. .NOT.(LGEOSBAL)) THEN
WRITE(NLUOUT,FMT=*) 'FOR PV INVERSION, LGEOSBAL HAS TO BE TRUE'
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
ENDIF
!
IF(LPV_PERT .AND. NPROC>1) THEN
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE : THE USE OF A PV INVERSION HAS TO BE &
& PERFORMED WITH MONOPROCESSOR MODE'
WRITE(NLUOUT,FMT=*) '-> JOB ABORTED'
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
ENDIF
!
!* 5.2.1 Use a Radiosounding : CIDEAL='RSOU''
!
IF (CIDEAL == 'RSOU') THEN
WRITE(NLUOUT,FMT=*) 'CIDEAL="RSOU", attempt to read DATE'
CALL POSKEY(NLUPRE,NLUOUT,'RSOU')
READ(NLUPRE,FMT=*) NYEAR,NMONTH,NDAY,XTIME
TDTCUR = DATE_TIME(DATE(NYEAR,NMONTH,NDAY),XTIME)
TDTEXP = TDTCUR
TDTSEG = TDTCUR
TDTMOD = TDTCUR
READ(NLUPRE,*) YKIND
BACKSPACE(NLUPRE) ! because YKIND read again in set_rsou
WRITE(NLUOUT,FMT=*) 'CIDEAL="RSOU", ATTEMPT TO PROCESS THE SOUNDING DATA'
IF (LGEOSBAL) THEN
CALL SET_RSOU(CEXPRE,CFUNU,CFUNV,NILOC(1),NJLOC(1),LBOUSS,LPV_PERT,&
LRMV_BL,XJ,LSHIFT,XCORIOZ)
ELSE
CALL SET_RSOU(CEXPRE,CFUNU,CFUNV,NILOC(1),NJLOC(1),LBOUSS,LPV_PERT,&
LRMV_BL,XJ,LSHIFT)
END IF
!
!* 5.2.2 N=cste and U(z) : CIDEAL='CSTN'
!
ELSE IF (CIDEAL == 'CSTN') THEN
WRITE(NLUOUT,FMT=*) 'CIDEAL="CSTN", attempt to read DATE'
CALL POSKEY(NLUPRE,NLUOUT,'CSTN')
READ(NLUPRE,FMT=*) NYEAR,NMONTH,NDAY,XTIME
TDTCUR = DATE_TIME(DATE(NYEAR,NMONTH,NDAY),XTIME)
TDTEXP = TDTCUR
TDTSEG = TDTCUR
TDTMOD = TDTCUR
WRITE(NLUOUT,FMT=*) 'CIDEAL="CSTN", ATTEMPT TO PROCESS THE SOUNDING DATA'
IF (LGEOSBAL) THEN
CALL SET_CSTN(CEXPRE,CFUNU,CFUNV,NILOC(1),NJLOC(1),LBOUSS,LPV_PERT,&
LRMV_BL,XJ,LSHIFT,XCORIOZ)
ELSE
CALL SET_CSTN(CEXPRE,CFUNU,CFUNV,NILOC(1),NJLOC(1),LBOUSS,LPV_PERT,&
LRMV_BL,XJ,LSHIFT)
END IF
!
END IF
!
!* 5.3 Forcing variables
!
IF (LFORCING) THEN
WRITE(NLUOUT,FMT=*) 'FORCING IS ENABLED, ATTEMPT TO SET FORCING FIELDS'
CALL POSKEY(NLUPRE,NLUOUT,'ZFRC ','PFRC')
CALL SET_FRC(CEXPRE)
END IF
!
!! ---------------------------------------------------------------------
! Modif PP ADV FRC
! 5.4.2 initialize profiles for adv forcings
IF (L2D_ADV_FRC) THEN
WRITE(NLUOUT,FMT=*) 'L2D_ADV_FRC IS SET TO TRUE'
WRITE(NLUOUT,FMT=*) 'ADVECTING FORCING USED IS USER MADE, NOT STANDARD ONE '
WRITE(NLUOUT,FMT=*) 'IT IS FOR 2D IDEALIZED WAM STUDY ONLY '
CALL POSKEY(NLUPRE,NLUOUT,'ZFRC_ADV')
CALL SET_ADVFRC(CEXPRE)
ENDIF
IF (L2D_REL_FRC) THEN
WRITE(NLUOUT,FMT=*) 'L2D_REL_FRC IS SET TO TRUE'
WRITE(NLUOUT,FMT=*) 'RELAXATION FORCING USED IS USER MADE, NOT STANDARD ONE '
WRITE(NLUOUT,FMT=*) 'IT IS FOR 2D IDEALIZED WAM STUDY ONLY '
CALL POSKEY(NLUPRE,NLUOUT,'ZFRC_REL')
CALL SET_RELFRC(CEXPRE)
ENDIF
!* 5.4 3D Reference state variables :
!
!
!* 5.4.1 metrics coefficients and update halos:
!
CALL METRICS(XMAP,XDXHAT,XDYHAT,XZZ,XDXX,XDYY,XDZX,XDZY,XDZZ)
!
CALL UPDATE_METRICS(CLBCX,CLBCY,XDXX,XDYY,XDZX,XDZY,XDZZ)
!
!* 5.4.2 3D reference state :
!
CALL SET_REF(0,'NIL',CLUOUT, &
XZZ,XZHAT,XJ,XDXX,XDYY,CLBCX,CLBCY, &
XREFMASS,XMASS_O_PHI0,XLINMASS, &
XRHODREF,XTHVREF,XRVREF,XEXNREF,XRHODJ )
!
!
!* 5.5.1 Absolute pressure :
!
!
!* 5.5.2 Total mass of dry air Md computation :
!
CALL TOTAL_DMASS(CLUOUT,XJ,XRHODREF,XDRYMASST)
!
!
!* 5.6 Complete prognostic variables (multipliy by rhoJ) at time t :
!
! U grid : gridpoint 2
IF (LWEST_ll()) XUT(1,:,:) = 2.*XUT(2,:,:) - XUT(3,:,:)
! V grid : gridpoint 3
IF (LSOUTH_ll()) XVT(:,1,:) = 2.*XVT(:,2,:) - XVT(:,3,:)
! SV : gridpoint 1
XSVT(:,:,:,:) = 0.
!
!
!* 5.7 Larger scale fields initialization :
!
XLSUM(:,:,:) = XUT(:,:,:) ! these fields do not satisfy the
XLSVM(:,:,:) = XVT(:,:,:) ! lower boundary condition but are
XLSWM(:,:,:) = XWT(:,:,:) ! in equilibrium
XLSTHM(:,:,:)= XTHT(:,:,:)
XLSRVM(:,:,:)= XRT(:,:,:,1)
!
! enforce the vertical homogeneity under the ground and above the top of
! the model for the LS fields
!
XLSUM(:,:,NKB-1)=XLSUM(:,:,NKB)
XLSUM(:,:,NKU)=XLSUM(:,:,NKU-1)
XLSVM(:,:,NKB-1)=XLSVM(:,:,NKB)
XLSVM(:,:,NKU)=XLSVM(:,:,NKU-1)
XLSWM(:,:,NKB-1)=XLSWM(:,:,NKB)
XLSWM(:,:,NKU)=XLSWM(:,:,NKU-1)
XLSTHM(:,:,NKB-1)=XLSTHM(:,:,NKB)
XLSTHM(:,:,NKU)=XLSTHM(:,:,NKU-1)
IF ( NRR > 0 ) THEN
XLSRVM(:,:,NKB-1)=XLSRVM(:,:,NKB)
XLSRVM(:,:,NKU)=XLSRVM(:,:,NKU-1)
END IF
!
ILBX=SIZE(XLBXUM,1)
ILBY=SIZE(XLBYUM,2)
IF(LWEST_ll() .AND. .NOT. L1D) THEN
XLBXUM(1:NRIMX+JPHEXT, :,:) = XUT(2:NRIMX+JPHEXT+1, :,:)
XLBXVM(1:NRIMX+JPHEXT, :,:) = XVT(1:NRIMX+JPHEXT, :,:)
XLBXWM(1:NRIMX+JPHEXT, :,:) = XWT(1:NRIMX+JPHEXT, :,:)
XLBXTHM(1:NRIMX+JPHEXT, :,:) = XTHT(1:NRIMX+JPHEXT, :,:)
XLBXRM(1:NRIMX+JPHEXT, :,:,:) = XRT(1:NRIMX+JPHEXT, :,:,:)
ENDIF
IF(LEAST_ll() .AND. .NOT. L1D) THEN
XLBXUM(ILBX-NRIMX-JPHEXT+1:ILBX,:,:) = XUT(NIU-NRIMX-JPHEXT+1:NIU, :,:)
XLBXVM(ILBX-NRIMX-JPHEXT+1:ILBX,:,:) = XVT(NIU-NRIMX-JPHEXT+1:NIU, :,:)
XLBXWM(ILBX-NRIMX-JPHEXT+1:ILBX,:,:) = XWT(NIU-NRIMX-JPHEXT+1:NIU, :,:)
XLBXTHM(ILBX-NRIMX-JPHEXT+1:ILBX,:,:) = XTHT(NIU-NRIMX-JPHEXT+1:NIU, :,:)
XLBXRM(ILBX-NRIMX-JPHEXT+1:ILBX,:,:,:) = XRT(NIU-NRIMX-JPHEXT+1:NIU, :,:,:)
ENDIF
IF(LSOUTH_ll() .AND. .NOT. L1D .AND. .NOT. L2D) THEN
XLBYUM(:,1:NRIMY+JPHEXT, :) = XUT(:,1:NRIMY+JPHEXT, :)
XLBYVM(:,1:NRIMY+JPHEXT, :) = XVT(:,2:NRIMY+JPHEXT+1, :)
XLBYWM(:,1:NRIMY+JPHEXT, :) = XWT(:,1:NRIMY+JPHEXT, :)
XLBYTHM(:,1:NRIMY+JPHEXT, :) = XTHT(:,1:NRIMY+JPHEXT, :)
XLBYRM(:,1:NRIMY+JPHEXT, :,:) = XRT(:,1:NRIMY+JPHEXT, :,:)
ENDIF
IF(LNORTH_ll().AND. .NOT. L1D .AND. .NOT. L2D) THEN
XLBYUM(:,ILBY-NRIMY-JPHEXT+1:ILBY,:) = XUT(:,NJU-NRIMY-JPHEXT+1:NJU, :)
XLBYVM(:,ILBY-NRIMY-JPHEXT+1:ILBY,:) = XVT(:,NJU-NRIMY-JPHEXT+1:NJU, :)
XLBYWM(:,ILBY-NRIMY-JPHEXT+1:ILBY,:) = XWT(:,NJU-NRIMY-JPHEXT+1:NJU, :)
XLBYTHM(:,ILBY-NRIMY-JPHEXT+1:ILBY,:) = XTHT(:,NJU-NRIMY-JPHEXT+1:NJU, :)
XLBYRM(:,ILBY-NRIMY-JPHEXT+1:ILBY,:,:) = XRT(:,NJU-NRIMY-JPHEXT+1:NJU, :,:)
ENDIF
DO JSV = 1, NSV
IF(LWEST_ll() .AND. .NOT. L1D) &
XLBXSVM(1:NRIMX+JPHEXT, :,:,JSV) = XSVT(1:NRIMX+JPHEXT, :,:,JSV)
IF(LEAST_ll() .AND. .NOT. L1D) &
XLBXSVM(ILBX-NRIMX-JPHEXT+1:ILBX,:,:,JSV) = XSVT(NIU-NRIMX-JPHEXT+1:NIU, :,:,JSV)
IF(LSOUTH_ll() .AND. .NOT. L1D .AND. .NOT. L2D) &
XLBYSVM(:,1:NRIMY+JPHEXT, :,JSV) = XSVT(:,1:NRIMY+JPHEXT, :,JSV)
IF(LNORTH_ll() .AND. .NOT. L1D .AND. .NOT. L2D) &
XLBYSVM(:,ILBY-NRIMY-JPHEXT+1:ILBY,:,JSV) = XSVT(:,NJU-NRIMY-JPHEXT+1:NJU, :,JSV)
END DO
!
!
!* 5.8 Add a perturbation to a basic state :
!
IF(LPERTURB) CALL SET_PERTURB(CEXPRE)
!
!
!* 5.9 Anelastic correction and pressure:
!
CALL ICE_ADJUST_BIS(XPABST,XTHT,XRT)
IF ( .NOT. L1D ) CALL PRESSURE_IN_PREP(XDXX,XDYY,XDZX,XDZY,XDZZ)
CALL ICE_ADJUST_BIS(XPABST,XTHT,XRT)
!
!
!* 5.10 Compute THETA, vapor and cloud mixing ratio
!
IF (CIDEAL == 'RSOU') THEN
ALLOCATE(ZEXN(NIU,NJU,NKU))
ALLOCATE(ZT(NIU,NJU,NKU))
ALLOCATE(ZTHL(NIU,NJU,NKU))
ALLOCATE(ZRT(NIU,NJU,NKU))
ALLOCATE(ZCPH(NIU,NJU,NKU))
ALLOCATE(ZLVOCPEXN(NIU,NJU,NKU))
ALLOCATE(ZLSOCPEXN(NIU,NJU,NKU))
ALLOCATE(ZFRAC_ICE(NIU,NJU,NKU))
ALLOCATE(ZRSATW(NIU,NJU,NKU))
ALLOCATE(ZRSATI(NIU,NJU,NKU))
ZRT=XRT(:,:,:,1)+XRT(:,:,:,2)+XRT(:,:,:,4)
ZEXN=(XPABST/XP00) ** (XRD/XCPD)
ZT=XTHT*(XPABST/XP00)**(XRD/XCPD)
ZCPH=XCPD+ XCPV * XRT(:,:,:,1)+ XCL *XRT(:,:,:,2) + XCI * XRT(:,:,:,4)
ZLVOCPEXN = (XLVTT + (XCPV-XCL) * (ZT-XTT))/(ZCPH*ZEXN)
ZLSOCPEXN = (XLSTT + (XCPV-XCI) * (ZT-XTT))/(ZCPH*ZEXN)
ZTHL=XTHT-ZLVOCPEXN*XRT(:,:,:,2)-ZLSOCPEXN*XRT(:,:,:,4)
DEALLOCATE(ZEXN)
DEALLOCATE(ZT)
DEALLOCATE(ZCPH)
DEALLOCATE(ZLVOCPEXN)
DEALLOCATE(ZLSOCPEXN)
CALL TH_R_FROM_THL_RT_3D('T',ZFRAC_ICE,XPABST,ZTHL,ZRT,XTHT,XRT(:,:,:,1), &
XRT(:,:,:,2),XRT(:,:,:,4),ZRSATW, ZRSATI)
DEALLOCATE(ZTHL)
DEALLOCATE(ZRT)
! Coherence test
IF ((.NOT. LUSERI) ) THEN
IF (MAXVAL(XRT(:,:,:,4))/= 0) THEN
WRITE(NLUOUT,FMT=*) "*********************************"
WRITE(NLUOUT,FMT=*) 'WARNING'
WRITE(NLUOUT,FMT=*) 'YOU HAVE LUSERI=FALSE '
WRITE(NLUOUT,FMT=*) ' BUT WITH YOUR RADIOSOUNDING Ri/=0'
WRITE(NLUOUT,FMT=*) MINVAL(XRT(:,:,:,4)),MAXVAL(XRT(:,:,:,4))
WRITE(NLUOUT,FMT=*) "*********************************"
ENDIF
ENDIF
IF ((.NOT. LUSERC)) THEN
IF (MAXVAL(XRT(:,:,:,2))/= 0) THEN
WRITE(NLUOUT,FMT=*) "*********************************"
WRITE(NLUOUT,FMT=*) 'WARNING'
WRITE(NLUOUT,FMT=*) 'YOU HAVE LUSERC=FALSE '
WRITE(NLUOUT,FMT=*) 'BUT WITH YOUR RADIOSOUNDING RC/=0'
WRITE(NLUOUT,FMT=*) MINVAL(XRT(:,:,:,2)),MAXVAL(XRT(:,:,:,2))
WRITE(NLUOUT,FMT=*) "*********************************"
ENDIF
ENDIF
! on remet les bonnes valeurs pour NRR
IF(CCLOUD=='NONE') NRR=1
IF(CCLOUD=='REVE') NRR=2
END IF
!
!-------------------------------------------------------------------------------
!
!* 6. INITIALIZE SCALAR VARIABLES FOR CHEMISTRY
! -----------------------------------------
!
! before calling chemistry
CCONF = 'START'
CSTORAGE_TYPE='TT'
CALL CLOSE_ll(CEXPRE,IOSTAT=NRESP) ! Close the EXPRE file
!
IF ( LCH_INIT_FIELD ) CALL CH_INIT_FIELD_n(1, NLUOUT, NVERB)
!
!-------------------------------------------------------------------------------
!
!* 7. WRITE THE FMFILE
! ----------------
!
CALL SECOND_MNH2(ZTIME1)
!
NNPRAR = 22 + 2*(NRR+NSV) & ! 22 = number of grid variables + reference
+ 8 + 17 ! state variables + dimension variables
! 2*(8+NRR+NSV) + 1 = number of prognostic
! variables at time t and t-dt
NTYPE=1
CDESFM=ADJUSTL(ADJUSTR(CINIFILE)//'.des')
!
CALL FMOPEN_ll(CINIFILE,'WRITE',CLUOUT,NNPRAR,NTYPE,NVERB,NNINAR,NRESP)
!
CALL WRITE_DESFM_n(1,CDESFM,CLUOUT)
!
CALL WRITE_LFIFM_n(CINIFILE,' ') ! There is no DAD model for PREP_IDEAL_CASE
!
CALL SECOND_MNH2(ZTIME2)
!
XT_STORE = XT_STORE + ZTIME2 - ZTIME1
!
!-------------------------------------------------------------------------------
!
!* 8. EXTERNALIZED SURFACE
! --------------------
!
!
IF (CSURF =='EXTE') THEN
IF (LEN_TRIM(CINIFILEPGD)==0) THEN
IF (LEN_TRIM(CPGD_FILE)/=0) THEN
CINIFILEPGD=CPGD_FILE
ELSE
WRITE(NLUOUT,FMT=*) 'STOP : CINIFILEPGD needed in NAM_LUNITn'
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
ENDIF
ENDIF
CALL SURFEX_ALLOC_LIST(1)
YSURF_CUR => YSURF_LIST(1)
CALL READ_ALL_NAMELISTS(YSURF_CUR,'MESONH','PRE',.FALSE.)
! Switch to model 1 surface variables
CALL GOTO_SURFEX(1)
!* definition of physiographic fields
! computed ...
IF (LEN_TRIM(CPGD_FILE)==0 .OR. .NOT. LREAD_GROUND_PARAM) THEN
CPGDFILE = CINIFILE
CALL PGD_GRID_SURF_ATM(YSURF_CUR%UG, YSURF_CUR%U,YSURF_CUR%GCP,'MESONH',CINIFILE,'MESONH',.TRUE.)
CALL PGD_SURF_ATM (YSURF_CUR,'MESONH',CINIFILE,'MESONH',.TRUE.)
CPGDFILE = CINIFILEPGD
ELSE
! ... or read from file.
CPGDFILE = CPGD_FILE
CALL INIT_PGD_SURF_ATM(YSURF_CUR,'MESONH','PGD', &
' ',' ',&
TDTCUR%TDATE%YEAR, TDTCUR%TDATE%MONTH, &
TDTCUR%TDATE%DAY, TDTCUR%TIME )
!
END IF
!
!* forces orography from atmospheric file
IF (.NOT. LREAD_ZS) CALL MNHPUT_ZS_n
!
! on ecrit un nouveau fichier PGD que s'il n'existe pas
IF (LEN_TRIM(CPGD_FILE)==0 .OR. .NOT. LREAD_GROUND_PARAM) THEN
!* writing of physiographic fields in the file
CSTORAGE_TYPE='PG'
COUTFMFILE = CINIFILEPGD
CALL FMOPEN_ll(CINIFILEPGD,'WRITE',CLUOUT,NNPRAR,NTYPE,NVERB,NNINAR,NRESP)
CALL FMWRIT(CINIFILEPGD,'PROGRAM ',CLUOUT,'--',CPROGRAM,0,1,' ',NRESP)
CALL FMWRIT(CINIFILEPGD,'SURF ',CLUOUT,'--','EXTE',0,1,' ',NRESP)
CALL FMWRIT(CINIFILEPGD,'L1D ',CLUOUT,'--',L1D,0,1,' ',NRESP)
CALL FMWRIT(CINIFILEPGD,'L2D ',CLUOUT,'--',L2D,0,1,' ',NRESP)
CALL FMWRIT(CINIFILEPGD,'PACK ',CLUOUT,'--',LPACK,0,1,' ',NRESP)
CALL WRITE_HGRID(1,CINIFILEPGD,' ')
CALL WRITE_PGD_SURF_ATM_n(YSURF_CUR,'MESONH')
CSTORAGE_TYPE='TT'
ENDIF
!
!
!* rereading of physiographic fields and definition of prognostic fields
!* writing of all surface fields
COUTFMFILE = CINIFILE
CALL PREP_SURF_MNH(' ',' ')
CALL SURFEX_DEALLO_LIST
ELSE
CSURF = "NONE"
END IF
!
!-------------------------------------------------------------------------------
!
!* 9. CLOSES THE FILE
! ---------------
!
IF (CSURF =='EXTE' .AND. (LEN_TRIM(CPGD_FILE)==0 .OR. .NOT. LREAD_GROUND_PARAM)) THEN
CALL FMCLOS_ll(CINIFILEPGD,'KEEP',CLUOUT,NRESP)
ENDIF
CALL FMCLOS_ll(CINIFILE,'KEEP',CLUOUT,NRESP)
IF( LEN_TRIM(CPGD_FILE) /= 0 ) THEN
CALL FMCLOS_ll(CPGD_FILE,'KEEP',CLUOUT,NRESP)
ENDIF
!
!
!-------------------------------------------------------------------------------
!
!* 10. PRINTS ON OUTPUT-LISTING
! ------------------------
!
IF (NVERB >= 5) THEN
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE: LCARTESIAN,CIDEAL,CZS=', &
LCARTESIAN,CIDEAL,CZS
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE: LUSERV=',LUSERV
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE: XLON0,XLAT0,XBETA,XRPK,XLONORI,XLATORI=', &
XLON0,XLAT0,XBETA,XRPK,XLONORI,XLATORI
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE: XDELTAX,XDELTAY=',XDELTAX,XDELTAY
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE: NVERB=',NVERB
IF(LCARTESIAN) THEN
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE: No map projection used.'
ELSE
IF (XRPK == 1.) THEN
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE: Polar stereo used.'
ELSE IF (XRPK == 0.) THEN
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE: Mercator used.'
ELSE
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE: Lambert used, cone factor=',XRPK
END IF
END IF
END IF
!
IF (NVERB >= 5) THEN
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE: IIB, IJB, IKB=',NIB,NJB,NKB
WRITE(NLUOUT,FMT=*) 'PREP_IDEAL_CASE: IIU, IJU, IKU=',NIU,NJU,NKU
END IF
!
!
!* 28.1 print statistics!
!
!
CALL SECOND_MNH2(ZTIME2)
XT_START=XT_START+ZTIME2-ZEND
!
! Set File Timing OUTPUT
!
CALL SET_ILUOUT_TIMING(NLUOUT)
!
! Compute global time
!
CALL TIME_STAT_ll(XT_START,ZTOT)
!
!
IMI = 1
CALL TIME_HEADER_ll(IMI)
!
CALL TIME_STAT_ll(XT_STORE,ZTOT, ' STORE-FIELDS','=')
CALL TIMING_SEPARATOR('+')
CALL TIMING_SEPARATOR('+')
WRITE(YMI,FMT="(I0)") IMI
CALL TIME_STAT_ll(XT_START,ZTOT, ' MODEL'//YMI,'+')
CALL TIMING_SEPARATOR('+')
CALL TIMING_SEPARATOR('+')
CALL TIMING_SEPARATOR('+')
WRITE(NLUOUT,FMT=*) ' '
WRITE(NLUOUT,FMT=*) '****************************************************'
WRITE(NLUOUT,FMT=*) '* PREP_IDEAL_CASE: PREP_IDEAL_CASE ENDS CORRECTLY. *'
WRITE(NLUOUT,FMT=*) '****************************************************'
!
CALL CLOSE_ll(CLUOUT,IOSTAT=NRESP)
CALL END_PARA_ll(IINFO_ll)
!
!
!callabortstop
!JUAN CALL ABORT
STOP
!
END PROGRAM PREP_IDEAL_CASE