-
RIETTE Sébastien authoredRIETTE Sébastien authored
ini_rain_ice.F90 55.92 KiB
!MNH_LIC Copyright 1995-2019 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! ######spl
SUBROUTINE INI_RAIN_ICE ( KLUOUT, HCLOUD )
! ###########################################################
!
!!**** *INI_RAIN_ICE * - initialize the constants necessary for the warm and
!! cold microphysical schemes.
!!
!! PURPOSE
!! -------
!! The purpose of this routine is to initialize the constants used to
!! resolve the mixed phase microphysical scheme. The collection kernels of
!! the precipitating particles are recomputed if necessary if some parameters
!! defining the ice categories have been modified. The number of small
!! time steps leading to stable scheme for the rain, ice, snow and ggraupeln
!! sedimentation is also computed (time-splitting technique).
!!
!!** METHOD
!! ------
!! The constants are initialized to their numerical values and the number
!! of small time step is computed by dividing the 2* Deltat time interval of
!! the Leap-frog scheme so that the stability criterion for the rain
!! sedimentation is fulfilled for a Raindrop maximal fall velocity equal
!! VTRMAX. The parameters defining the collection kernels are read and are
!! checked against the new ones. If any change occurs, these kernels are
!! recomputed and their numerical values are written in the output listing.
!!
!! EXTERNAL
!! --------
!! GAMMA : gamma function
!!
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_CST
!! XPI !
!! XP00 ! Reference pressure
!! XRD ! Gaz constant for dry air
!! XRHOLW ! Liquid water density
!! Module MODD_REF
!! XTHVREFZ ! Reference virtual pot.temp. without orography
!! Module MODD_PARAMETERS
!! JPVEXT !
!! Module MODD_RAIN_ICE_DESCR
!! Module MODD_RAIN_ICE_PARAM
!!
!! REFERENCE
!! ---------
!! Book2 of documentation ( routine INI_RAIN_ICE )
!!
!! AUTHOR
!! ------
!! J.-P. Pinty * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original 04/12/95
!! J.-P. Pinty 05/04/96 Add automatic control and regeneration of the
!! collection kernels
!! J.-P. Pinty 10/05/96 Correction of ZRATE and computations of RIM
!! J.-P. Pinty 24/11/97 Sedimentation of ice made for Columns and bug for XAG
!! J.-P. Lafore 23/11/98 Back to Lin et al. 83 formulation for RIAUTS
!! with a Critical ice content set to .5 g/Kg
!! N. Asencio 13/08/98 parallel code: PDZMIN is computed outside in ini_modeln
!! J.-P. Lafore 12/8/98 In case of nesting microphysics constants of
!! MODD_RAIN_ICE_PARAM are computed only once.
!! Only KSPLTR is computed for each model.
!! J. Stein 20/04/99 remove 2 unused local variables
!! G Molinie 21/05/99 Bug in XEXRCFRI and XRCFRI
!! J.-P. Pinty 24/06/00 Bug in RCRIMS
!! J.-P. Pinty 24/12/00 Update hail case
!! J.-P. Chaboureau & J.-P. Pinty
!! 24/03/01 Update XCRIAUTI for cirrus cases
!! J.-P. Pinty 24/11/01 Update ICE3/ICE4 options
!! S. Riette 2016-11: new ICE3/ICE4 options
!! P. Wautelet 22/01/2019 bug correction: incorrect write
! P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST
USE MODD_PARAMETERS
USE MODD_PARAM_ICE
USE MODD_RAIN_ICE_DESCR
USE MODD_RAIN_ICE_PARAM
USE MODD_REF
!
USE MODI_GAMMA
USE MODI_GAMMA_INC
USE MODE_RRCOLSS, ONLY: RRCOLSS
USE MODE_RZCOLX, ONLY: RZCOLX
USE MODE_RSCOLRG, ONLY: RSCOLRG
USE MODE_READ_XKER_RACCS, ONLY: READ_XKER_RACCS
USE MODE_READ_XKER_SDRYG, ONLY: READ_XKER_SDRYG
USE MODE_READ_XKER_RDRYG, ONLY: READ_XKER_RDRYG
USE MODE_READ_XKER_SWETH, ONLY: READ_XKER_SWETH
USE MODE_READ_XKER_GWETH, ONLY: READ_XKER_GWETH
USE MODE_READ_XKER_RWETH, ONLY: READ_XKER_RWETH
!
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
INTEGER, INTENT(IN) :: KLUOUT ! Logical unit number for prints
!
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Indicator of the cloud scheme
!
!
!
!* 0.2 Declarations of local variables :
!
INTEGER :: IKB ! Coordinates of the first physical
! points along z
INTEGER :: J1,J2 ! Internal loop indexes
REAL :: ZT ! Work variable
REAL :: ZVTRMAX ! Raindrop maximal fall velocity
REAL :: ZRHO00 ! Surface reference air density
REAL :: ZE, ZRV ! Work array for ZRHO00 computation
REAL :: ZRATE ! Geometrical growth of Lbda in the tabulated
! functions and kernels
REAL :: ZBOUND ! XDCSLIM*Lbda_s: upper bound for the partial
! integration of the riming rate of the aggregates
REAL :: ZEGS, ZEGR, ZEHS, & ! Bulk collection efficiencies
& ZEHG, ZEHR
!
INTEGER :: IND ! Number of interval to integrate the kernels
REAL :: ZESR ! Mean efficiency of rain-aggregate collection
REAL :: ZFDINFTY ! Factor used to define the "infinite" diameter
!
!
!
LOGICAL :: GFLAG ! Logical flag for printing the constatnts on the output
! listing
REAL :: ZCONC_MAX ! Maximal concentration for snow
REAL :: ZGAMC,ZGAMC2 ! parameters
! involving various moments of the generalized gamma law
REAL :: ZFACT_NUCL! Amplification factor for the minimal ice concentration
REAL :: ZXR ! Value of x_r in N_r = C_r lambda_r ** x_r
!
INTEGER :: KND
INTEGER :: KACCLBDAS,KACCLBDAR,KDRYLBDAG,KDRYLBDAS,KDRYLBDAR
INTEGER :: KWETLBDAS,KWETLBDAG,KWETLBDAR,KWETLBDAH
REAL :: PALPHAR,PALPHAS,PALPHAG,PALPHAH
REAL :: PNUR,PNUS,PNUG,PNUH
REAL :: PBR,PBS,PBG
REAL :: PCR,PCS,PCG,PCH
REAL :: PDR,PDS,PDG,PDH
REAL :: PESR,PEGS,PEGR,PEHS,PEHG,PEHR
REAL :: PFDINFTY
REAL :: PACCLBDAS_MAX,PACCLBDAR_MAX,PACCLBDAS_MIN,PACCLBDAR_MIN
REAL :: PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN
REAL :: PDRYLBDAR_MAX,PDRYLBDAR_MIN
REAL :: PWETLBDAS_MAX,PWETLBDAG_MAX,PWETLBDAS_MIN,PWETLBDAG_MIN
REAL :: PWETLBDAR_MAX,PWETLBDAH_MAX,PWETLBDAR_MIN,PWETLBDAH_MIN
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
!-------------------------------------------------------------------------------
!
IF (LHOOK) CALL DR_HOOK('INI_RAIN_ICE',0,ZHOOK_HANDLE)
!
!* 0. FUNCTION STATEMENTS
! -------------------
!
!
!* 0.1 p_moment of the Generalized GAMMA function
!
!
!
!
IF (ALLOCATED(XRTMIN)) THEN ! In case of nesting microphysics constants of
! MODD_RAIN_ICE_PARAM are computed only once,
! but if INI_RAIN_ICE has been called already
! one must change the XRTMIN size.
DEALLOCATE(XRTMIN)
END IF
!
!-------------------------------------------------------------------------------
!
!* 2. CHARACTERISTICS OF THE SPECIES
! ------------------------------
!
!
!* 2.1 Cloud droplet and Raindrop characteristics
!
XAC = (XPI/6.0)*XRHOLW
XBC = 3.0
XCC = XRHOLW*XG/(18.0*1.7E-5) ! Stokes flow (Pruppacher p 322 for T=273K)
XDC = 2.0
!
!
XAR = (XPI/6.0)*XRHOLW
XBR = 3.0
XCR = 842.
XDR = 0.8
!
!XCCR = 1.E7 ! N0_r = XCXR * lambda_r ** ZXR
XCCR = 8.E6 ! N0_r = XCXR * lambda_r ** ZXR
ZXR = -1. !
!
XF0R = 1.00
XF1R = 0.26
!
XC1R = 1./2.
!
!
!* 2.2 Ice crystal characteristics
!
!
SELECT CASE (CPRISTINE_ICE)
CASE('PLAT')
XAI = 0.82 ! Plates
XBI = 2.5 ! Plates
XC_I = 800. ! Plates
XDI = 1.0 ! Plates
XC1I = 1./XPI ! Plates
CASE('COLU')
XAI = 2.14E-3 ! Columns
XBI = 1.7 ! Columns
XC_I = 2.1E5 ! Columns
XDI = 1.585 ! Columns
XC1I = 0.8 ! Columns
CASE('BURO')
XAI = 44.0 ! Bullet rosettes
XBI = 3.0 ! Bullet rosettes
XC_I = 4.3E5 ! Bullet rosettes
XDI = 1.663 ! Bullet rosettes
XC1I = 0.5 ! Bullet rosettes
END SELECT
!
! Note that XCCI=N_i (a locally predicted value) and XCXI=0.0, implicitly
!
XF0I = 1.00
XF2I = 0.14
!
!
!* 2.3 Snowflakes/aggregates characteristics
!
!
XAS = 0.02
XBS = 1.9
XCS = 5.1
XDS = 0.27
!
XCCS = 5.0
XCXS = 1.0
!
XF0S = 0.86
XF1S = 0.28
!
XC1S = 1./XPI
!
!
!* 2.4 Graupel/Frozen drop characteristics
!
!
XAG = 19.6 ! Lump graupel case
XBG = 2.8 ! Lump graupel case
XCG = 124. ! Lump graupel case
XDG = 0.66 ! Lump graupel case
!
XCCG = 5.E5
XCXG = -0.5
! XCCG = 4.E4 ! Test of Ziegler (1988)
! XCXG = -1.0 ! Test of Ziegler (1988)
!
XF0G = 0.86
XF1G = 0.28
!
XC1G = 1./2.
!
!
!* 2.5 Hailstone characteristics
!
!
XAH = 470.
XBH = 3.0
XCH = 207.
XDH = 0.64
!
!XCCH = 5.E-4
!XCXH = 2.0
!!!!!!!!!!!!
XCCH = 4.E4 ! Test of Ziegler (1988)
XCXH = -1.0 ! Test of Ziegler (1988)
!!! XCCH = 5.E5 ! Graupel_like
!!! XCXH = -0.5 ! Graupel_like
!!!!!!!!!!!!
!
XF0H = 0.86
XF1H = 0.28
!
XC1H = 1./2.
!
!-------------------------------------------------------------------------------
!
!* 3. DIMENSIONAL DISTRIBUTIONS OF THE SPECIES
! ----------------------------------------
!
!
! 3.1 Cloud droplet distribution
!
! Over land
XALPHAC = 1.0 ! Gamma law of the Cloud droplet (here volume-like distribution)
XNUC = 3.0 ! Gamma law with little dispersion
!
!
! Over sea
XALPHAC2 = 3.0 ! Gamma law of the Cloud droplet (here volume-like distribution)
XNUC2 = 1.0 ! Gamma law with little dispersion
!
!* 3.2 Raindrops distribution
!
XALPHAR = 1.0 ! Exponential law
XNUR = 1.0 ! Exponential law
!
!* 3.3 Ice crystal distribution
!
XALPHAI = 3.0 ! Gamma law for the ice crystal volume
XNUI = 3.0 ! Gamma law with little dispersion
!
XALPHAS = 1.0 ! Exponential law
XNUS = 1.0 ! Exponential law
!
XALPHAG = 1.0 ! Exponential law
XNUG = 1.0 ! Exponential law
!
XALPHAH = 1.0 ! Gamma law
XNUH = 8.0 ! Gamma law with little dispersion
!
!* 3.4 Constants for shape parameter
!
ZGAMC = MOMG(XALPHAC,XNUC,3.)
ZGAMC2 = MOMG(XALPHAC2,XNUC2,3.)
XLBC(1) = XAR*ZGAMC
XLBC(2) = XAR*ZGAMC2
XLBEXC = 1.0/XBC
!
XLBEXR = 1.0/(-1.0-XBR)
XLBR = ( XAR*XCCR*MOMG(XALPHAR,XNUR,XBR) )**(-XLBEXR)
!
XLBEXI = 1.0/(-XBI)
XLBI = ( XAI*MOMG(XALPHAI,XNUI,XBI) )**(-XLBEXI)
!
XLBEXS = 1.0/(XCXS-XBS)
XLBS = ( XAS*XCCS*MOMG(XALPHAS,XNUS,XBS) )**(-XLBEXS)
!
XLBEXG = 1.0/(XCXG-XBG)
XLBG = ( XAG*XCCG*MOMG(XALPHAG,XNUG,XBG) )**(-XLBEXG)
!
XLBEXH = 1.0/(XCXH-XBH)
XLBH = ( XAH*XCCH*MOMG(XALPHAH,XNUH,XBH) )**(-XLBEXH)
!
!* 3.5 Minimal values allowed for the mixing ratios
!
XLBDAR_MAX = 100000.0
XLBDAS_MAX = 100000.0
XLBDAG_MAX = 100000.0
!
ZCONC_MAX = 1.E6 ! Maximal concentration for falling particules set to 1 per cc
XLBDAS_MAX = ( ZCONC_MAX/XCCS )**(1./XCXS)
!
IF (HCLOUD == 'ICE4') THEN
ALLOCATE( XRTMIN(7) )
ELSE IF (HCLOUD == 'ICE3') THEN
ALLOCATE( XRTMIN(6) )
END IF
!
XRTMIN(1) = 1.0E-20
XRTMIN(2) = 1.0E-20
XRTMIN(3) = 1.0E-20
XRTMIN(4) = 1.0E-20
XRTMIN(5) = 1.0E-15
XRTMIN(6) = 1.0E-15
IF (HCLOUD == 'ICE4') XRTMIN(7) = 1.0E-15
!
XCONC_SEA=1E8 ! 100/cm3
XCONC_LAND=3E8 ! 300/cm3
XCONC_URBAN=5E8 ! 500/cm3
!
!-------------------------------------------------------------------------------
!
!* 4. CONSTANTS FOR THE SEDIMENTATION
! -------------------------------
!
!
!* 4.1 Exponent of the fall-speed air density correction
!
XCEXVT = 0.4
!
IKB = 1 + JPVEXT
!ZRHO00 = XP00/(XRD*XTHVREFZ(IKB))
!According to Foote and Du Toit (1969) and List (1958), ZRHO00 must be computed for Hu=50%, P=101325Pa and T=293.15K
ZE = (50./100.) * EXP(XALPW-XBETAW/293.15-XGAMW*LOG(293.15))
ZRV = (XRD/XRV) * ZE / (101325.-ZE)
ZRHO00 = 101325.*(1.+ZRV)/(XRD+ZRV*XRV)/293.15
!
!* 4.2 Constants for sedimentation
!
XFSEDC(1) = GAMMA(XNUC+(XDC+3.)/XALPHAC)/GAMMA(XNUC+3./XALPHAC)* &
(ZRHO00)**XCEXVT
XFSEDC(2) = GAMMA(XNUC2+(XDC+3.)/XALPHAC2)/GAMMA(XNUC2+3./XALPHAC2)* &
(ZRHO00)**XCEXVT
!
XEXSEDR = (XBR+XDR+1.0)/(XBR+1.0)
XFSEDR = XCR*XAR*XCCR*MOMG(XALPHAR,XNUR,XBR+XDR)* &
(XAR*XCCR*MOMG(XALPHAR,XNUR,XBR))**(-XEXSEDR)*(ZRHO00)**XCEXVT
!
XEXRSEDI = (XBI+XDI)/XBI
XEXCSEDI = 1.0-XEXRSEDI
XFSEDI = (4.*XPI*900.)**(-XEXCSEDI) * &
XC_I*XAI*MOMG(XALPHAI,XNUI,XBI+XDI) * &
((XAI*MOMG(XALPHAI,XNUI,XBI)))**(-XEXRSEDI) * &
(ZRHO00)**XCEXVT
!When we do not use computations for columns, I think we must uncomment line just below
!XEXCSEDI = XEXCSEDI * 3. to be checked
!
! Computations made for Columns
!
XEXRSEDI = 1.9324
XEXCSEDI =-0.9324
XFSEDI = 3.89745E11*MOMG(XALPHAI,XNUI,3.285)* &
MOMG(XALPHAI,XNUI,1.7)**(-XEXRSEDI)*(ZRHO00)**XCEXVT
XEXCSEDI =-0.9324*3.0
WRITE (KLUOUT,FMT=*)' PRISTINE ICE SEDIMENTATION for columns XFSEDI =',XFSEDI
!
!
XEXSEDS = (XBS+XDS-XCXS)/(XBS-XCXS)
XFSEDS = XCS*XAS*XCCS*MOMG(XALPHAS,XNUS,XBS+XDS)* &
(XAS*XCCS*MOMG(XALPHAS,XNUS,XBS))**(-XEXSEDS)*(ZRHO00)**XCEXVT
!
XEXSEDG = (XBG+XDG-XCXG)/(XBG-XCXG)
XFSEDG = XCG*XAG*XCCG*MOMG(XALPHAG,XNUG,XBG+XDG)* &
(XAG*XCCG*MOMG(XALPHAG,XNUG,XBG))**(-XEXSEDG)*(ZRHO00)**XCEXVT
!
XEXSEDH = (XBH+XDH-XCXH)/(XBH-XCXH)
XFSEDH = XCH*XAH*XCCH*MOMG(XALPHAH,XNUH,XBH+XDH)* &
(XAH*XCCH*MOMG(XALPHAH,XNUH,XBH))**(-XEXSEDH)*(ZRHO00)**XCEXVT
!
!
!-------------------------------------------------------------------------------
!
!* 5. CONSTANTS FOR THE SLOW COLD PROCESSES
! -------------------------------------
!
!
!* 5.1 Constants for ice nucleation
!
SELECT CASE (CPRISTINE_ICE)
CASE('PLAT')
ZFACT_NUCL = 1.0 ! Plates
CASE('COLU')
ZFACT_NUCL = 25.0 ! Columns
CASE('BURO')
ZFACT_NUCL = 17.0 ! Bullet rosettes
END SELECT
!
XNU10 = 50.*ZFACT_NUCL
XALPHA1 = 4.5
XBETA1 = 0.6
!
XNU20 = 1000.*ZFACT_NUCL
XALPHA2 = 12.96
XBETA2 = 0.639
!
XMNU0 = 6.88E-13
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=KLUOUT,FMT='(" Heterogeneous nucleation")')
WRITE(UNIT=KLUOUT,FMT='(" NU10=",E13.6," ALPHA1=",E13.6," BETA1=",E13.6)') &
XNU10,XALPHA1,XBETA1
WRITE(UNIT=KLUOUT,FMT='(" NU20=",E13.6," ALPHA2=",E13.6," BETA2=",E13.6)') &
XNU20,XALPHA2,XBETA2
WRITE(UNIT=KLUOUT,FMT='(" mass of embryo XMNU0=",E13.6)') XMNU0
END IF
!
XALPHA3 = -3.075
XBETA3 = 81.00356
XHON = (XPI/6.)*((2.0*3.0*4.0*5.0*6.0)/(2.0*3.0))*(1.1E5)**(-3.0) !
! Pi/6 * (G_c(6)/G_c(3)) * (1/Lbda_c**3)
! avec Lbda_c=1.1E5 m^-1
! the formula is equivalent to
! rho_dref * r_c G(6)
! Pi/6 * -------------- * ---------
! rho_lw * N_c G(3)*G(3)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=KLUOUT,FMT='(" Homogeneous nucleation")')
WRITE(UNIT=KLUOUT,FMT='(" ALPHA3=",E13.6," BETA3=",E13.6)') XALPHA3,XBETA3
WRITE(UNIT=KLUOUT,FMT='(" constant XHON=",E13.6)') XHON
END IF
!
!
!* 5.2 Constants for vapor deposition on ice
!
XSCFAC = (0.63**(1./3.))*SQRT((ZRHO00)**XCEXVT) ! One assumes Sc=0.63
!
X0DEPI = (4.0*XPI)*XC1I*XF0I*MOMG(XALPHAI,XNUI,1.)
X2DEPI = (4.0*XPI)*XC1I*XF2I*XC_I*MOMG(XALPHAI,XNUI,XDI+2.0)
!
X0DEPS = (4.0*XPI)*XCCS*XC1S*XF0S*MOMG(XALPHAS,XNUS,1.)
X1DEPS = (4.0*XPI)*XCCS*XC1S*XF1S*SQRT(XCS)*MOMG(XALPHAS,XNUS,0.5*XDS+1.5)
XEX0DEPS = XCXS-1.0
XEX1DEPS = XCXS-0.5*(XDS+3.0)
!
X0DEPG = (4.0*XPI)*XCCG*XC1G*XF0G*MOMG(XALPHAG,XNUG,1.)
X1DEPG = (4.0*XPI)*XCCG*XC1G*XF1G*SQRT(XCG)*MOMG(XALPHAG,XNUG,0.5*XDG+1.5)
XEX0DEPG = XCXG-1.0
XEX1DEPG = XCXG-0.5*(XDG+3.0)
!
X0DEPH = (4.0*XPI)*XCCH*XC1H*XF0H*MOMG(XALPHAH,XNUH,1.)
X1DEPH = (4.0*XPI)*XCCH*XC1H*XF1H*SQRT(XCH)*MOMG(XALPHAH,XNUH,0.5*XDH+1.5)
XEX0DEPH = XCXH-1.0
XEX1DEPH = XCXH-0.5*(XDH+3.0)
!
!* 5.3 Constants for pristine ice autoconversion
!
XTIMAUTI = 1.E-3 ! Time constant at T=T_t
XTEXAUTI = 0.015 ! Temperature factor of the I+I collection efficiency
!!XCRIAUTI = 0.25E-3 ! Critical ice content for the autoconversion to occur
XCRIAUTI = 0.2E-4 ! Critical ice content for the autoconversion to occur
! Revised value by Chaboureau et al. (2001)
XACRIAUTI=0.06
XBCRIAUTI=-3.5
XT0CRIAUTI=(LOG10(XCRIAUTI)-XBCRIAUTI)/0.06
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=KLUOUT,FMT='(" pristine ice autoconversion")')
WRITE(UNIT=KLUOUT,FMT='(" Time constant XTIMAUTI=",E13.6)') XTIMAUTI
WRITE(UNIT=KLUOUT,FMT='(" Temp. factor XTEXAUTI=",E13.6)') XTEXAUTI
WRITE(UNIT=KLUOUT,FMT='(" Crit. ice cont. XCRIAUTI=",E13.6)') XCRIAUTI
WRITE(UNIT=KLUOUT,FMT='(" A Coef. for cirrus law XACRIAUTI=",E13.6)')XACRIAUTI
WRITE(UNIT=KLUOUT,FMT='(" B Coef. for cirrus law XBCRIAUTI=",E13.6)')XBCRIAUTI
WRITE(UNIT=KLUOUT, &
& FMT='(" Temp degC at which cirrus law starts to be used=",E13.6)') XT0CRIAUTI
END IF
!
!
!* 5.4 Constants for snow aggregation
!
XCOLIS = 0.25 ! Collection efficiency of I+S
XCOLEXIS = 0.05 ! Temperature factor of the I+S collection efficiency
XFIAGGS = (XPI/4.0)*XCOLIS*XCCS*XCS*(ZRHO00**XCEXVT)*MOMG(XALPHAS,XNUS,XDS+2.0)
XEXIAGGS = XCXS-XDS-2.0
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=KLUOUT,FMT='(" snow aggregation")')
WRITE(UNIT=KLUOUT,FMT='(" Coll. efficiency XCOLIS=",E13.6)') XCOLIS
WRITE(UNIT=KLUOUT,FMT='(" Temp. factor XCOLEXIS=",E13.6)') XCOLEXIS
END IF
!
!
!-------------------------------------------------------------------------------
!
!* 6. CONSTANTS FOR THE SLOW WARM PROCESSES
! -------------------------------------
!
!
!* 6.1 Constants for the cloud droplets autoconversion
!
XTIMAUTC = 1.E-3
XCRIAUTC = 0.5E-3
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=KLUOUT,FMT='(" cloud droplets autoconversion")')
WRITE(UNIT=KLUOUT,FMT='(" Time constant XTIMAUTC=",E13.6)') XTIMAUTC
WRITE(UNIT=KLUOUT,FMT='(" Crit. ice cont. XCRIAUTC=",E13.6)') XCRIAUTC
END IF
!
!* 6.2 Constants for the accretion of cloud droplets by raindrops
!
XFCACCR = (XPI/4.0)*XCCR*XCR*(ZRHO00**XCEXVT)*MOMG(XALPHAR,XNUR,XDR+2.0)
XEXCACCR = -XDR-3.0
!
!* 6.3 Constants for the evaporation of the raindrops
!
X0EVAR = (4.0*XPI)*XCCR*XC1R*XF0R*MOMG(XALPHAR,XNUR,1.)
X1EVAR = (4.0*XPI)*XCCR*XC1R*XF1R*SQRT(XCR)*MOMG(XALPHAR,XNUR,0.5*XDR+1.5)
XEX0EVAR = -2.0
XEX1EVAR = -1.0-0.5*(XDR+3.0)
!
!
!-------------------------------------------------------------------------------
!
!* 7. CONSTANTS FOR THE FAST COLD PROCESSES FOR THE AGGREGATES
! --------------------------------------------------------
!
!
!* 7.1 Constants for the riming of the aggregates
!
XDCSLIM = 0.007 ! D_cs^lim = 7 mm as suggested by Farley et al. (1989)
XCOLCS = 1.0
XEXCRIMSS= XCXS-XDS-2.0
XCRIMSS = (XPI/4.0)*XCOLCS*XCCS*XCS*(ZRHO00**XCEXVT)*MOMG(XALPHAS,XNUS,XDS+2.0)
XEXCRIMSG= XEXCRIMSS
XCRIMSG = XCRIMSS
XSRIMCG = XCCS*XAS*MOMG(XALPHAS,XNUS,XBS)
XEXSRIMCG= XCXS-XBS
XSRIMCG2 = XCCS*XAG*MOMG(XALPHAS,XNUS,XBG)
XSRIMCG3 = XFRACM90
XEXSRIMCG2=XCXS-XBG
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=KLUOUT,FMT='(" riming of the aggregates")')
WRITE(UNIT=KLUOUT,FMT='(" D_cs^lim (Farley et al.) XDCSLIM=",E13.6)') XDCSLIM
WRITE(UNIT=KLUOUT,FMT='(" Coll. efficiency XCOLCS=",E13.6)') XCOLCS
END IF
!
NGAMINC = 80
XGAMINC_BOUND_MIN = 1.0E-1 ! Minimal value of (Lbda * D_cs^lim)**alpha
XGAMINC_BOUND_MAX = 1.0E7 ! Maximal value of (Lbda * D_cs^lim)**alpha
ZRATE = EXP(LOG(XGAMINC_BOUND_MAX/XGAMINC_BOUND_MIN)/REAL(NGAMINC-1))
!
IF( .NOT.ALLOCATED(XGAMINC_RIM1) ) ALLOCATE( XGAMINC_RIM1(NGAMINC) )
IF( .NOT.ALLOCATED(XGAMINC_RIM2) ) ALLOCATE( XGAMINC_RIM2(NGAMINC) )
IF( .NOT.ALLOCATED(XGAMINC_RIM4) ) ALLOCATE( XGAMINC_RIM4(NGAMINC) )
!
DO J1=1,NGAMINC
ZBOUND = XGAMINC_BOUND_MIN*ZRATE**(J1-1)
XGAMINC_RIM1(J1) = GAMMA_INC(XNUS+(2.0+XDS)/XALPHAS,ZBOUND)
XGAMINC_RIM2(J1) = GAMMA_INC(XNUS+XBS/XALPHAS ,ZBOUND)
XGAMINC_RIM4(J1) = GAMMA_INC(XNUS+XBG/XALPHAS ,ZBOUND)
END DO
!
XRIMINTP1 = XALPHAS / LOG(ZRATE)
XRIMINTP2 = 1.0 + XRIMINTP1*LOG( XDCSLIM/(XGAMINC_BOUND_MIN)**(1.0/XALPHAS) )
!
!* 7.2 Constants for the accretion of raindrops onto aggregates
!
XFRACCSS = ((XPI**2)/24.0)*XCCS*XCCR*XRHOLW*(ZRHO00**XCEXVT)
!
XLBRACCS1 = MOMG(XALPHAS,XNUS,2.)*MOMG(XALPHAR,XNUR,3.)
XLBRACCS2 = 2.*MOMG(XALPHAS,XNUS,1.)*MOMG(XALPHAR,XNUR,4.)
XLBRACCS3 = MOMG(XALPHAR,XNUR,5.)
!
XFSACCRG = (XPI/4.0)*XAS*XCCS*XCCR*(ZRHO00**XCEXVT)
!
XLBSACCR1 = MOMG(XALPHAR,XNUR,2.)*MOMG(XALPHAS,XNUS,XBS)
XLBSACCR2 = 2.*MOMG(XALPHAR,XNUR,1.)*MOMG(XALPHAS,XNUS,XBS+1.)
XLBSACCR3 = MOMG(XALPHAS,XNUS,XBS+2.)
!
!* 7.2.1 Defining the ranges for the computation of the kernels
!
! Notice: One magnitude of lambda discretized over 10 points for rain
! Notice: One magnitude of lambda discretized over 10 points for snow
!
NACCLBDAS = 40
XACCLBDAS_MIN = 5.0E1 ! Minimal value of Lbda_s to tabulate XKER_RACCS
XACCLBDAS_MAX = 5.0E5 ! Maximal value of Lbda_s to tabulate XKER_RACCS
ZRATE = LOG(XACCLBDAS_MAX/XACCLBDAS_MIN)/REAL(NACCLBDAS-1)
XACCINTP1S = 1.0 / ZRATE
XACCINTP2S = 1.0 - LOG( XACCLBDAS_MIN ) / ZRATE
NACCLBDAR = 40
XACCLBDAR_MIN = 1.0E3 ! Minimal value of Lbda_r to tabulate XKER_RACCS
XACCLBDAR_MAX = 1.0E7 ! Maximal value of Lbda_r to tabulate XKER_RACCS
ZRATE = LOG(XACCLBDAR_MAX/XACCLBDAR_MIN)/REAL(NACCLBDAR-1)
XACCINTP1R = 1.0 / ZRATE
XACCINTP2R = 1.0 - LOG( XACCLBDAR_MIN ) / ZRATE
!
!* 7.2.2 Computations of the tabulated normalized kernels
!
IND = 50 ! Interval number, collection efficiency and infinite diameter
ZESR = 1.0 ! factor used to integrate the dimensional distributions when
ZFDINFTY = 20.0 ! computing the kernels XKER_RACCSS, XKER_RACCS and XKER_SACCRG
!
IF( .NOT.ALLOCATED(XKER_RACCSS) ) ALLOCATE( XKER_RACCSS(NACCLBDAS,NACCLBDAR) )
IF( .NOT.ALLOCATED(XKER_RACCS ) ) ALLOCATE( XKER_RACCS (NACCLBDAS,NACCLBDAR) )
IF( .NOT.ALLOCATED(XKER_SACCRG) ) ALLOCATE( XKER_SACCRG(NACCLBDAR,NACCLBDAS) )
!
CALL READ_XKER_RACCS (KACCLBDAS,KACCLBDAR,KND, &
PALPHAS,PNUS,PALPHAR,PNUR,PESR,PBS,PBR,PCS,PDS,PCR,PDR, &
PACCLBDAS_MAX,PACCLBDAR_MAX,PACCLBDAS_MIN,PACCLBDAR_MIN,&
PFDINFTY )
IF( (KACCLBDAS/=NACCLBDAS) .OR. (KACCLBDAR/=NACCLBDAR) .OR. (KND/=IND) .OR. &
(PALPHAS/=XALPHAS) .OR. (PNUS/=XNUS) .OR. &
(PALPHAR/=XALPHAR) .OR. (PNUR/=XNUR) .OR. &
(PESR/=ZESR) .OR. (PBS/=XBS) .OR. (PBR/=XBR) .OR. &
(PCS/=XCS) .OR. (PDS/=XDS) .OR. (PCR/=XCR) .OR. (PDR/=XDR) .OR. &
(PACCLBDAS_MAX/=XACCLBDAS_MAX) .OR. (PACCLBDAR_MAX/=XACCLBDAR_MAX) .OR. &
(PACCLBDAS_MIN/=XACCLBDAS_MIN) .OR. (PACCLBDAR_MIN/=XACCLBDAR_MIN) .OR. &
(PFDINFTY/=ZFDINFTY) ) THEN
CALL RRCOLSS ( IND, XALPHAS, XNUS, XALPHAR, XNUR, &
ZESR, XBR, XCS, XDS, XCR, XDR, &
XACCLBDAS_MAX, XACCLBDAR_MAX, XACCLBDAS_MIN, XACCLBDAR_MIN, &
ZFDINFTY, XKER_RACCSS, XAG, XBS, XAS )
CALL RZCOLX ( IND, XALPHAS, XNUS, XALPHAR, XNUR, &
ZESR, XBR, XCS, XDS, XCR, XDR, &
XACCLBDAS_MAX, XACCLBDAR_MAX, XACCLBDAS_MIN, XACCLBDAR_MIN, &
ZFDINFTY, XKER_RACCS )
CALL RSCOLRG ( IND, XALPHAS, XNUS, XALPHAR, XNUR, &
ZESR, XBS, XCS, XDS, XCR, XDR, &
XACCLBDAS_MAX, XACCLBDAR_MAX, XACCLBDAS_MIN, XACCLBDAR_MIN, &
ZFDINFTY, XKER_SACCRG, XAG, XBS, XAS )
WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
WRITE(UNIT=KLUOUT,FMT='("**** UPDATE NEW SET OF RACSS KERNELS ****")')
WRITE(UNIT=KLUOUT,FMT='("**** UPDATE NEW SET OF RACS KERNELS ****")')
WRITE(UNIT=KLUOUT,FMT='("**** UPDATE NEW SET OF SACRG KERNELS ****")')
WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("KND=",I3)') IND
WRITE(UNIT=KLUOUT,FMT='("KACCLBDAS=",I3)') NACCLBDAS
WRITE(UNIT=KLUOUT,FMT='("KACCLBDAR=",I3)') NACCLBDAR
WRITE(UNIT=KLUOUT,FMT='("PALPHAS=",E13.6)') XALPHAS
WRITE(UNIT=KLUOUT,FMT='("PNUS=",E13.6)') XNUS
WRITE(UNIT=KLUOUT,FMT='("PALPHAR=",E13.6)') XALPHAR
WRITE(UNIT=KLUOUT,FMT='("PNUR=",E13.6)') XNUR
WRITE(UNIT=KLUOUT,FMT='("PESR=",E13.6)') ZESR
WRITE(UNIT=KLUOUT,FMT='("PBS=",E13.6)') XBS
WRITE(UNIT=KLUOUT,FMT='("PBR=",E13.6)') XBR
WRITE(UNIT=KLUOUT,FMT='("PCS=",E13.6)') XCS
WRITE(UNIT=KLUOUT,FMT='("PDS=",E13.6)') XDS
WRITE(UNIT=KLUOUT,FMT='("PCR=",E13.6)') XCR
WRITE(UNIT=KLUOUT,FMT='("PDR=",E13.6)') XDR
WRITE(UNIT=KLUOUT,FMT='("PACCLBDAS_MAX=",E13.6)') &
XACCLBDAS_MAX
WRITE(UNIT=KLUOUT,FMT='("PACCLBDAR_MAX=",E13.6)') &
XACCLBDAR_MAX
WRITE(UNIT=KLUOUT,FMT='("PACCLBDAS_MIN=",E13.6)') &
XACCLBDAS_MIN
WRITE(UNIT=KLUOUT,FMT='("PACCLBDAR_MIN=",E13.6)') &
XACCLBDAR_MIN
WRITE(UNIT=KLUOUT,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("IF( PRESENT(PKER_RACCSS) ) THEN")')
DO J1 = 1 , NACCLBDAS
DO J2 = 1 , NACCLBDAR
WRITE(UNIT=KLUOUT,FMT='(" PKER_RACCSS(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_RACCSS(J1,J2)
END DO
END DO
WRITE(UNIT=KLUOUT,FMT='("END IF")')
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("IF( PRESENT(PKER_RACCS ) ) THEN")')
DO J1 = 1 , NACCLBDAS
DO J2 = 1 , NACCLBDAR
WRITE(UNIT=KLUOUT,FMT='(" PKER_RACCS (",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_RACCS (J1,J2)
END DO
END DO
WRITE(UNIT=KLUOUT,FMT='("END IF")')
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("IF( PRESENT(PKER_SACCRG) ) THEN")')
DO J1 = 1 , NACCLBDAR
DO J2 = 1 , NACCLBDAS
WRITE(UNIT=KLUOUT,FMT='(" PKER_SACCRG(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_SACCRG(J1,J2)
END DO
END DO
WRITE(UNIT=KLUOUT,FMT='("END IF")')
ELSE
CALL READ_XKER_RACCS (KACCLBDAS,KACCLBDAR,KND, &
PALPHAS,PNUS,PALPHAR,PNUR,PESR,PBS,PBR,PCS,PDS,PCR,PDR, &
PACCLBDAS_MAX,PACCLBDAR_MAX,PACCLBDAS_MIN,PACCLBDAR_MIN,&
PFDINFTY,XKER_RACCSS,XKER_RACCS,XKER_SACCRG )
WRITE(UNIT=KLUOUT,FMT='(" Read XKER_RACCSS")')
WRITE(UNIT=KLUOUT,FMT='(" Read XKER_RACCS ")')
WRITE(UNIT=KLUOUT,FMT='(" Read XKER_SACCRG")')
END IF
!
!* 7.3 Constant for the conversion-melting rate
!
XFSCVMG = 2.0
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=KLUOUT,FMT='(" conversion-melting of the aggregates")')
WRITE(UNIT=KLUOUT,FMT='(" Conv. factor XFSCVMG=",E13.6)') XFSCVMG
END IF
!
!
!-------------------------------------------------------------------------------
!
!* 8. CONSTANTS FOR THE FAST COLD PROCESSES FOR THE GRAUPELN
! ------------------------------------------------------
!
!
!* 8.1 Constants for the rain contact freezing
!
XCOLIR = 1.0
!
XEXRCFRI = -XDR-5.0+ZXR
XRCFRI = ((XPI**2)/24.0)*XCCR*XRHOLW*XCOLIR*XCR*(ZRHO00**XCEXVT) &
*MOMG(XALPHAR,XNUR,XDR+5.0)
XEXICFRR = -XDR-2.0+ZXR
XICFRR = (XPI/4.0)*XCOLIR*XCR*(ZRHO00**XCEXVT) &
*XCCR*MOMG(XALPHAR,XNUR,XDR+2.0)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=KLUOUT,FMT='(" rain contact freezing")')
WRITE(UNIT=KLUOUT,FMT='(" Coll. efficiency XCOLIR=",E13.6)') XCOLIR
END IF
!
!
!* 8.2 Constants for the dry growth of the graupeln
!
!* 8.2.1 Constants for the cloud droplet collection by the graupeln
!
XFCDRYG = (XPI/4.0)*XCCG*XCG*(ZRHO00**XCEXVT)*MOMG(XALPHAG,XNUG,XDG+2.0)
!
!* 8.2.2 Constants for the cloud ice collection by the graupeln
!
XCOLIG = 0.25 ! Collection efficiency of I+G
XCOLEXIG = 0.05 ! Temperature factor of the I+G collection efficiency
XCOLIG = 0.01 ! Collection efficiency of I+G
XCOLEXIG = 0.1 ! Temperature factor of the I+G collection efficiency
WRITE (KLUOUT, FMT=*) ' NEW Constants for the cloud ice collection by the graupeln'
WRITE (KLUOUT, FMT=*) ' XCOLIG, XCOLEXIG = ',XCOLIG,XCOLEXIG
XFIDRYG = (XPI/4.0)*XCOLIG*XCCG*XCG*(ZRHO00**XCEXVT)*MOMG(XALPHAG,XNUG,XDG+2.0)
XEXFIDRYG=(XCXG-XDG-2.)/(XCXG-XBG)
XFIDRYG2=XFIDRYG/XCOLIG*(XAG*XCCG*MOMG(XALPHAG,XNUG,XBG))**(-XEXFIDRYG)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=KLUOUT,FMT='(" cloud ice collection by the graupeln")')
WRITE(UNIT=KLUOUT,FMT='(" Coll. efficiency XCOLIG=",E13.6)') XCOLIG
WRITE(UNIT=KLUOUT,FMT='(" Temp. factor XCOLEXIG=",E13.6)') XCOLEXIG
END IF
!
!* 8.2.3 Constants for the aggregate collection by the graupeln
!
XCOLSG = 0.25 ! Collection efficiency of S+G
XCOLEXSG = 0.05 ! Temperature factor of the S+G collection efficiency
XCOLSG = 0.01 ! Collection efficiency of S+G
XCOLEXSG = 0.1 ! Temperature factor of the S+G collection efficiency
WRITE (KLUOUT, FMT=*) ' NEW Constants for the aggregate collection by the graupeln'
WRITE (KLUOUT, FMT=*) ' XCOLSG, XCOLEXSG = ',XCOLSG,XCOLEXSG
XFSDRYG = (XPI/4.0)*XCOLSG*XCCG*XCCS*XAS*(ZRHO00**XCEXVT)
!
XLBSDRYG1 = MOMG(XALPHAG,XNUG,2.)*MOMG(XALPHAS,XNUS,XBS)
XLBSDRYG2 = 2.*MOMG(XALPHAG,XNUG,1.)*MOMG(XALPHAS,XNUS,XBS+1.)
XLBSDRYG3 = MOMG(XALPHAS,XNUS,XBS+2.)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=KLUOUT,FMT='(" aggregate collection by the graupeln")')
WRITE(UNIT=KLUOUT,FMT='(" Coll. efficiency XCOLSG=",E13.6)') XCOLSG
WRITE(UNIT=KLUOUT,FMT='(" Temp. factor XCOLEXSG=",E13.6)') XCOLEXSG
END IF
!
!* 8.2.4 Constants for the raindrop collection by the graupeln
!
XFRDRYG = ((XPI**2)/24.0)*XCCG*XCCR*XRHOLW*(ZRHO00**XCEXVT)
!
XLBRDRYG1 = MOMG(XALPHAG,XNUG,2.)*MOMG(XALPHAR,XNUR,3.)
XLBRDRYG2 = 2.*MOMG(XALPHAG,XNUG,1.)*MOMG(XALPHAR,XNUR,4.)
XLBRDRYG3 = MOMG(XALPHAR,XNUR,5.)
!
! Notice: One magnitude of lambda discretized over 10 points
!
NDRYLBDAR = 40
XDRYLBDAR_MIN = 1.0E3 ! Minimal value of Lbda_r to tabulate XKER_RDRYG
XDRYLBDAR_MAX = 1.0E7 ! Maximal value of Lbda_r to tabulate XKER_RDRYG
ZRATE = LOG(XDRYLBDAR_MAX/XDRYLBDAR_MIN)/REAL(NDRYLBDAR-1)
XDRYINTP1R = 1.0 / ZRATE
XDRYINTP2R = 1.0 - LOG( XDRYLBDAR_MIN ) / ZRATE
NDRYLBDAS = 80
XDRYLBDAS_MIN = 2.5E1 ! Minimal value of Lbda_s to tabulate XKER_SDRYG
XDRYLBDAS_MAX = 2.5E9 ! Maximal value of Lbda_s to tabulate XKER_SDRYG
ZRATE = LOG(XDRYLBDAS_MAX/XDRYLBDAS_MIN)/REAL(NDRYLBDAS-1)
XDRYINTP1S = 1.0 / ZRATE
XDRYINTP2S = 1.0 - LOG( XDRYLBDAS_MIN ) / ZRATE
NDRYLBDAG = 40
XDRYLBDAG_MIN = 1.0E3 ! Min value of Lbda_g to tabulate XKER_SDRYG,XKER_RDRYG
XDRYLBDAG_MAX = 1.0E7 ! Max value of Lbda_g to tabulate XKER_SDRYG,XKER_RDRYG
ZRATE = LOG(XDRYLBDAG_MAX/XDRYLBDAG_MIN)/REAL(NDRYLBDAG-1)
XDRYINTP1G = 1.0 / ZRATE
XDRYINTP2G = 1.0 - LOG( XDRYLBDAG_MIN ) / ZRATE
!
!* 8.2.5 Computations of the tabulated normalized kernels
!
IND = 50 ! Interval number, collection efficiency and infinite diameter
ZEGS = 1.0 ! factor used to integrate the dimensional distributions when
ZFDINFTY = 20.0 ! computing the kernels XKER_SDRYG
!
IF( .NOT.ALLOCATED(XKER_SDRYG) ) ALLOCATE( XKER_SDRYG(NDRYLBDAG,NDRYLBDAS) )
!
CALL READ_XKER_SDRYG (KDRYLBDAG,KDRYLBDAS,KND, &
PALPHAG,PNUG,PALPHAS,PNUS,PEGS,PBS,PCG,PDG,PCS,PDS, &
PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN, &
PFDINFTY )
IF( (KDRYLBDAG/=NDRYLBDAG) .OR. (KDRYLBDAS/=NDRYLBDAS) .OR. (KND/=IND) .OR. &
(PALPHAG/=XALPHAG) .OR. (PNUG/=XNUG) .OR. &
(PALPHAS/=XALPHAS) .OR. (PNUS/=XNUS) .OR. &
(PEGS/=ZEGS) .OR. (PBS/=XBS) .OR. &
(PCG/=XCG) .OR. (PDG/=XDG) .OR. (PCS/=XCS) .OR. (PDS/=XDS) .OR. &
(PDRYLBDAG_MAX/=XDRYLBDAG_MAX) .OR. (PDRYLBDAS_MAX/=XDRYLBDAS_MAX) .OR. &
(PDRYLBDAG_MIN/=XDRYLBDAG_MIN) .OR. (PDRYLBDAS_MIN/=XDRYLBDAS_MIN) .OR. &
(PFDINFTY/=ZFDINFTY) ) THEN
CALL RZCOLX ( IND, XALPHAG, XNUG, XALPHAS, XNUS, &
ZEGS, XBS, XCG, XDG, XCS, XDS, &
XDRYLBDAG_MAX, XDRYLBDAS_MAX, XDRYLBDAG_MIN, XDRYLBDAS_MIN, &
ZFDINFTY, XKER_SDRYG )
WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
WRITE(UNIT=KLUOUT,FMT='("**** UPDATE NEW SET OF SDRYG KERNELS ****")')
WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("KND=",I3)') IND
WRITE(UNIT=KLUOUT,FMT='("KDRYLBDAG=",I3)') NDRYLBDAG
WRITE(UNIT=KLUOUT,FMT='("KDRYLBDAS=",I3)') NDRYLBDAS
WRITE(UNIT=KLUOUT,FMT='("PALPHAG=",E13.6)') XALPHAG
WRITE(UNIT=KLUOUT,FMT='("PNUG=",E13.6)') XNUG
WRITE(UNIT=KLUOUT,FMT='("PALPHAS=",E13.6)') XALPHAS
WRITE(UNIT=KLUOUT,FMT='("PNUS=",E13.6)') XNUS
WRITE(UNIT=KLUOUT,FMT='("PEGS=",E13.6)') ZEGS
WRITE(UNIT=KLUOUT,FMT='("PBS=",E13.6)') XBS
WRITE(UNIT=KLUOUT,FMT='("PCG=",E13.6)') XCG
WRITE(UNIT=KLUOUT,FMT='("PDG=",E13.6)') XDG
WRITE(UNIT=KLUOUT,FMT='("PCS=",E13.6)') XCS
WRITE(UNIT=KLUOUT,FMT='("PDS=",E13.6)') XDS
WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAG_MAX=",E13.6)') &
XDRYLBDAG_MAX
WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAS_MAX=",E13.6)') &
XDRYLBDAS_MAX
WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAG_MIN=",E13.6)') &
XDRYLBDAG_MIN
WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAS_MIN=",E13.6)') &
XDRYLBDAS_MIN
WRITE(UNIT=KLUOUT,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("IF( PRESENT(PKER_SDRYG) ) THEN")')
DO J1 = 1 , NDRYLBDAG
DO J2 = 1 , NDRYLBDAS
WRITE(UNIT=KLUOUT,FMT='("PKER_SDRYG(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_SDRYG(J1,J2)
END DO
END DO
WRITE(UNIT=KLUOUT,FMT='("END IF")')
ELSE
CALL READ_XKER_SDRYG (KDRYLBDAG,KDRYLBDAS,KND, &
PALPHAG,PNUG,PALPHAS,PNUS,PEGS,PBS,PCG,PDG,PCS,PDS, &
PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN, &
PFDINFTY,XKER_SDRYG )
WRITE(UNIT=KLUOUT,FMT='(" Read XKER_SDRYG")')
END IF
!
!
IND = 50 ! Number of interval used to integrate the dimensional
ZEGR = 1.0 ! distributions when computing the kernel XKER_RDRYG
ZFDINFTY = 20.0
!
IF( .NOT.ALLOCATED(XKER_RDRYG) ) ALLOCATE( XKER_RDRYG(NDRYLBDAG,NDRYLBDAR) )
!
CALL READ_XKER_RDRYG (KDRYLBDAG,KDRYLBDAR,KND, &
PALPHAG,PNUG,PALPHAR,PNUR,PEGR,PBR,PCG,PDG,PCR,PDR, &
PDRYLBDAG_MAX,PDRYLBDAR_MAX,PDRYLBDAG_MIN,PDRYLBDAR_MIN, &
PFDINFTY )
IF( (KDRYLBDAG/=NDRYLBDAG) .OR. (KDRYLBDAR/=NDRYLBDAR) .OR. (KND/=IND) .OR. &
(PALPHAG/=XALPHAG) .OR. (PNUG/=XNUG) .OR. &
(PALPHAR/=XALPHAR) .OR. (PNUR/=XNUR) .OR. &
(PEGR/=ZEGR) .OR. (PBR/=XBR) .OR. &
(PCG/=XCG) .OR. (PDG/=XDG) .OR. (PCR/=XCR) .OR. (PDR/=XDR) .OR. &
(PDRYLBDAG_MAX/=XDRYLBDAG_MAX) .OR. (PDRYLBDAR_MAX/=XDRYLBDAR_MAX) .OR. &
(PDRYLBDAG_MIN/=XDRYLBDAG_MIN) .OR. (PDRYLBDAR_MIN/=XDRYLBDAR_MIN) .OR. &
(PFDINFTY/=ZFDINFTY) ) THEN
CALL RZCOLX ( IND, XALPHAG, XNUG, XALPHAR, XNUR, &
ZEGR, XBR, XCG, XDG, XCR, XDR, &
XDRYLBDAG_MAX, XDRYLBDAR_MAX, XDRYLBDAG_MIN, XDRYLBDAR_MIN, &
ZFDINFTY, XKER_RDRYG )
WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
WRITE(UNIT=KLUOUT,FMT='("**** UPDATE NEW SET OF RDRYG KERNELS ****")')
WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("KND=",I3)') IND
WRITE(UNIT=KLUOUT,FMT='("KDRYLBDAG=",I3)') NDRYLBDAG
WRITE(UNIT=KLUOUT,FMT='("KDRYLBDAR=",I3)') NDRYLBDAR
WRITE(UNIT=KLUOUT,FMT='("PALPHAG=",E13.6)') XALPHAG
WRITE(UNIT=KLUOUT,FMT='("PNUG=",E13.6)') XNUG
WRITE(UNIT=KLUOUT,FMT='("PALPHAR=",E13.6)') XALPHAR
WRITE(UNIT=KLUOUT,FMT='("PNUR=",E13.6)') XNUR
WRITE(UNIT=KLUOUT,FMT='("PEGR=",E13.6)') ZEGR
WRITE(UNIT=KLUOUT,FMT='("PBR=",E13.6)') XBR
WRITE(UNIT=KLUOUT,FMT='("PCG=",E13.6)') XCG
WRITE(UNIT=KLUOUT,FMT='("PDG=",E13.6)') XDG
WRITE(UNIT=KLUOUT,FMT='("PCR=",E13.6)') XCR
WRITE(UNIT=KLUOUT,FMT='("PDR=",E13.6)') XDR
WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAG_MAX=",E13.6)') &
XDRYLBDAG_MAX
WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAR_MAX=",E13.6)') &
XDRYLBDAR_MAX
WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAG_MIN=",E13.6)') &
XDRYLBDAG_MIN
WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAR_MIN=",E13.6)') &
XDRYLBDAR_MIN
WRITE(UNIT=KLUOUT,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("IF( PRESENT(PKER_RDRYG) ) THEN")')
DO J1 = 1 , NDRYLBDAG
DO J2 = 1 , NDRYLBDAR
WRITE(UNIT=KLUOUT,FMT='("PKER_RDRYG(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_RDRYG(J1,J2)
END DO
END DO
WRITE(UNIT=KLUOUT,FMT='("END IF")')
ELSE
CALL READ_XKER_RDRYG (KDRYLBDAG,KDRYLBDAR,KND, &
PALPHAG,PNUG,PALPHAR,PNUR,PEGR,PBR,PCG,PDG,PCR,PDR, &
PDRYLBDAG_MAX,PDRYLBDAR_MAX,PDRYLBDAG_MIN,PDRYLBDAR_MIN, &
PFDINFTY,XKER_RDRYG )
WRITE(UNIT=KLUOUT,FMT='(" Read XKER_RDRYG")')
END IF
!
!
!-------------------------------------------------------------------------------
!
!* 9. CONSTANTS FOR THE FAST COLD PROCESSES FOR THE HAILSTONES
! --------------------------------------------------------
!
!* 9.2 Constants for the wet growth of the hailstones
!
!
!* 9.2.1 Constant for the cloud droplet and cloud ice collection
! by the hailstones
!
XCOLIH = 0.01 ! Collection efficiency of I+H
XCOLEXIH = 0.1 ! Temperature factor of the I+H collection efficiency
XFWETH = (XPI/4.0)*XCCH*XCH*(ZRHO00**XCEXVT)*MOMG(XALPHAH,XNUH,XDH+2.0)
!
!* 9.2.2 Constants for the aggregate collection by the hailstones
!
XCOLSH = 0.01 ! Collection efficiency of S+H
XCOLEXSH = 0.1 ! Temperature factor of the S+H collection efficiency
XFSWETH = (XPI/4.0)*XCCH*XCCS*XAS*(ZRHO00**XCEXVT)
!
XLBSWETH1 = MOMG(XALPHAH,XNUH,2.)*MOMG(XALPHAS,XNUS,XBS)
XLBSWETH2 = 2.*MOMG(XALPHAH,XNUH,1.)*MOMG(XALPHAS,XNUS,XBS+1.)
XLBSWETH3 = MOMG(XALPHAS,XNUS,XBS+2.)
!
!* 9.2.3 Constants for the graupel collection by the hailstones
!
XCOLGH = 0.01 ! Collection efficiency of G+H
XCOLEXGH = 0.1 ! Temperature factor of the G+H collection efficiency
XFGWETH = (XPI/4.0)*XCCH*XCCG*XAG*(ZRHO00**XCEXVT)
!
XLBGWETH1 = MOMG(XALPHAH,XNUH,2.)*MOMG(XALPHAG,XNUG,XBG)
XLBGWETH2 = 2.*MOMG(XALPHAH,XNUH,1.)*MOMG(XALPHAG,XNUG,XBG+1.)
XLBGWETH3 = MOMG(XALPHAG,XNUG,XBG+2.)
!
!* 9.2.3 bis Constants for the rain collection by the hailstones
!
XFRWETH = (XPI/4.0)*XCCH*XCCR*XAR*(ZRHO00**XCEXVT)
!
XLBRWETH1 = MOMG(XALPHAH,XNUH,2.)*MOMG(XALPHAR,XNUR,XBR)
XLBRWETH2 = 2.*MOMG(XALPHAH,XNUH,1.)*MOMG(XALPHAR,XNUR,XBR+1.)
XLBRWETH3 = MOMG(XALPHAR,XNUR,XBR+2.)
!
! Notice: One magnitude of lambda discretized over 10 points
!
NWETLBDAS = 80
XWETLBDAS_MIN = 2.5E1 ! Minimal value of Lbda_s to tabulate XKER_SWETH
XWETLBDAS_MAX = 2.5E9 ! Maximal value of Lbda_s to tabulate XKER_SWETH
ZRATE = LOG(XWETLBDAS_MAX/XWETLBDAS_MIN)/REAL(NWETLBDAS-1)
XWETINTP1S = 1.0 / ZRATE
XWETINTP2S = 1.0 - LOG( XWETLBDAS_MIN ) / ZRATE
NWETLBDAG = 40
XWETLBDAG_MIN = 1.0E3 ! Min value of Lbda_g to tabulate XKER_GWETH
XWETLBDAG_MAX = 1.0E7 ! Max value of Lbda_g to tabulate XKER_GWETH
ZRATE = LOG(XWETLBDAG_MAX/XWETLBDAG_MIN)/REAL(NWETLBDAG-1)
XWETINTP1G = 1.0 / ZRATE
XWETINTP2G = 1.0 - LOG( XWETLBDAG_MIN ) / ZRATE
NWETLBDAR = 40
XWETLBDAR_MIN = 1.0E3 ! Minimal value of Lbda_r to tabulate XKER_RWETH
XWETLBDAR_MAX = 1.0E7 ! Maximal value of Lbda_r to tabulate XKER_RWETH
ZRATE = LOG(XWETLBDAR_MAX/XWETLBDAR_MIN)/REAL(NWETLBDAR-1)
XWETINTP1R = 1.0 / ZRATE
XWETINTP2R = 1.0 - LOG( XWETLBDAR_MIN ) / ZRATE
NWETLBDAH = 40
XWETLBDAH_MIN = 1.0E3 ! Min value of Lbda_h to tabulate XKER_SWETH,XKER_GWETH,XKER_RWETH
XWETLBDAH_MAX = 1.0E7 ! Max value of Lbda_h to tabulate XKER_SWETH,XKER_GWETH,XKER_RWETH
ZRATE = LOG(XWETLBDAH_MAX/XWETLBDAH_MIN)/REAL(NWETLBDAH-1)
XWETINTP1H = 1.0 / ZRATE
XWETINTP2H = 1.0 - LOG( XWETLBDAH_MIN ) / ZRATE
!
!* 9.2.4 Computations of the tabulated normalized kernels
!
IND = 50 ! Interval number, collection efficiency and infinite diameter
ZEHS = 1.0 ! factor used to integrate the dimensional distributions when
ZFDINFTY = 20.0 ! computing the kernels XKER_SWETH
!
IF( .NOT.ALLOCATED(XKER_SWETH) ) ALLOCATE( XKER_SWETH(NWETLBDAH,NWETLBDAS) )
!
CALL READ_XKER_SWETH (KWETLBDAH,KWETLBDAS,KND, &
PALPHAH,PNUH,PALPHAS,PNUS,PEHS,PBS,PCH,PDH,PCS,PDS, &
PWETLBDAH_MAX,PWETLBDAS_MAX,PWETLBDAH_MIN,PWETLBDAS_MIN, &
PFDINFTY )
IF( (KWETLBDAH/=NWETLBDAH) .OR. (KWETLBDAS/=NWETLBDAS) .OR. (KND/=IND) .OR. &
(PALPHAH/=XALPHAH) .OR. (PNUH/=XNUH) .OR. &
(PALPHAS/=XALPHAS) .OR. (PNUS/=XNUS) .OR. &
(PEHS/=ZEHS) .OR. (PBS/=XBS) .OR. &
(PCH/=XCH) .OR. (PDH/=XDH) .OR. (PCS/=XCS) .OR. (PDS/=XDS) .OR. &
(PWETLBDAH_MAX/=XWETLBDAH_MAX) .OR. (PWETLBDAS_MAX/=XWETLBDAS_MAX) .OR. &
(PWETLBDAH_MIN/=XWETLBDAH_MIN) .OR. (PWETLBDAS_MIN/=XWETLBDAS_MIN) .OR. &
(PFDINFTY/=ZFDINFTY) ) THEN
CALL RZCOLX ( IND, XALPHAH, XNUH, XALPHAS, XNUS, &
ZEHS, XBS, XCH, XDH, XCS, XDS, &
XWETLBDAH_MAX, XWETLBDAS_MAX, XWETLBDAH_MIN, XWETLBDAS_MIN, &
ZFDINFTY, XKER_SWETH )
WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
WRITE(UNIT=KLUOUT,FMT='("**** UPDATE NEW SET OF SWETH KERNELS ****")')
WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("KND=",I3)') IND
WRITE(UNIT=KLUOUT,FMT='("KWETLBDAH=",I3)') NWETLBDAH
WRITE(UNIT=KLUOUT,FMT='("KWETLBDAS=",I3)') NWETLBDAS
WRITE(UNIT=KLUOUT,FMT='("PALPHAH=",E13.6)') XALPHAH
WRITE(UNIT=KLUOUT,FMT='("PNUH=",E13.6)') XNUH
WRITE(UNIT=KLUOUT,FMT='("PALPHAS=",E13.6)') XALPHAS
WRITE(UNIT=KLUOUT,FMT='("PNUS=",E13.6)') XNUS
WRITE(UNIT=KLUOUT,FMT='("PEHS=",E13.6)') ZEHS
WRITE(UNIT=KLUOUT,FMT='("PBS=",E13.6)') XBS
WRITE(UNIT=KLUOUT,FMT='("PCH=",E13.6)') XCH
WRITE(UNIT=KLUOUT,FMT='("PDH=",E13.6)') XDH
WRITE(UNIT=KLUOUT,FMT='("PCS=",E13.6)') XCS
WRITE(UNIT=KLUOUT,FMT='("PDS=",E13.6)') XDS
WRITE(UNIT=KLUOUT,FMT='("PWETLBDAH_MAX=",E13.6)') &
XWETLBDAH_MAX
WRITE(UNIT=KLUOUT,FMT='("PWETLBDAS_MAX=",E13.6)') &
XWETLBDAS_MAX
WRITE(UNIT=KLUOUT,FMT='("PWETLBDAH_MIN=",E13.6)') &
XWETLBDAH_MIN
WRITE(UNIT=KLUOUT,FMT='("PWETLBDAS_MIN=",E13.6)') &
XWETLBDAS_MIN
WRITE(UNIT=KLUOUT,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("IF( PRESENT(PKER_SWETH) ) THEN")')
DO J1 = 1 , NWETLBDAH
DO J2 = 1 , NWETLBDAS
WRITE(UNIT=KLUOUT,FMT='("PKER_SWETH(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_SWETH(J1,J2)
END DO
END DO
WRITE(UNIT=KLUOUT,FMT='("END IF")')
ELSE
CALL READ_XKER_SWETH (KWETLBDAH,KWETLBDAS,KND, &
PALPHAH,PNUH,PALPHAS,PNUS,PEHS,PBS,PCH,PDH,PCS,PDS, &
PWETLBDAH_MAX,PWETLBDAS_MAX,PWETLBDAH_MIN,PWETLBDAS_MIN, &
PFDINFTY,XKER_SWETH )
WRITE(UNIT=KLUOUT,FMT='(" Read XKER_SWETH")')
END IF
!
!
IND = 50 ! Number of interval used to integrate the dimensional
ZEHG = 1.0 ! distributions when computing the kernel XKER_GWETH
ZFDINFTY = 20.0
!
IF( .NOT.ALLOCATED(XKER_GWETH) ) ALLOCATE( XKER_GWETH(NWETLBDAH,NWETLBDAG) )
!
CALL READ_XKER_GWETH (KWETLBDAH,KWETLBDAG,KND, &
PALPHAH,PNUH,PALPHAG,PNUG,PEHG,PBG,PCH,PDH,PCG,PDG, &
PWETLBDAH_MAX,PWETLBDAG_MAX,PWETLBDAH_MIN,PWETLBDAG_MIN, &
PFDINFTY )
IF( (KWETLBDAH/=NWETLBDAH) .OR. (KWETLBDAG/=NWETLBDAG) .OR. (KND/=IND) .OR. &
(PALPHAH/=XALPHAH) .OR. (PNUH/=XNUH) .OR. &
(PALPHAG/=XALPHAG) .OR. (PNUG/=XNUG) .OR. &
(PEHG/=ZEHG) .OR. (PBG/=XBG) .OR. &
(PCH/=XCH) .OR. (PDH/=XDH) .OR. (PCG/=XCG) .OR. (PDG/=XDG) .OR. &
(PWETLBDAH_MAX/=XWETLBDAH_MAX) .OR. (PWETLBDAG_MAX/=XWETLBDAG_MAX) .OR. &
(PWETLBDAH_MIN/=XWETLBDAH_MIN) .OR. (PWETLBDAG_MIN/=XWETLBDAG_MIN) .OR. &
(PFDINFTY/=ZFDINFTY) ) THEN
CALL RZCOLX ( IND, XALPHAH, XNUH, XALPHAG, XNUG, &
ZEHG, XBG, XCH, XDH, XCG, XDG, &
XWETLBDAH_MAX, XWETLBDAG_MAX, XWETLBDAH_MIN, XWETLBDAG_MIN, &
ZFDINFTY, XKER_GWETH )
WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
WRITE(UNIT=KLUOUT,FMT='("**** UPDATE NEW SET OF GWETH KERNELS ****")')
WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("KND=",I3)') IND
WRITE(UNIT=KLUOUT,FMT='("KWETLBDAH=",I3)') NWETLBDAH
WRITE(UNIT=KLUOUT,FMT='("KWETLBDAG=",I3)') NWETLBDAG
WRITE(UNIT=KLUOUT,FMT='("PALPHAH=",E13.6)') XALPHAH
WRITE(UNIT=KLUOUT,FMT='("PNUH=",E13.6)') XNUH
WRITE(UNIT=KLUOUT,FMT='("PALPHAG=",E13.6)') XALPHAG
WRITE(UNIT=KLUOUT,FMT='("PNUG=",E13.6)') XNUG
WRITE(UNIT=KLUOUT,FMT='("PEHG=",E13.6)') ZEHG
WRITE(UNIT=KLUOUT,FMT='("PBG=",E13.6)') XBG
WRITE(UNIT=KLUOUT,FMT='("PCH=",E13.6)') XCH
WRITE(UNIT=KLUOUT,FMT='("PDH=",E13.6)') XDH
WRITE(UNIT=KLUOUT,FMT='("PCG=",E13.6)') XCG
WRITE(UNIT=KLUOUT,FMT='("PDG=",E13.6)') XDG
WRITE(UNIT=KLUOUT,FMT='("PWETLBDAH_MAX=",E13.6)') &
XWETLBDAH_MAX
WRITE(UNIT=KLUOUT,FMT='("PWETLBDAG_MAX=",E13.6)') &
XWETLBDAG_MAX
WRITE(UNIT=KLUOUT,FMT='("PWETLBDAH_MIN=",E13.6)') &
XWETLBDAH_MIN
WRITE(UNIT=KLUOUT,FMT='("PWETLBDAG_MIN=",E13.6)') &
XWETLBDAG_MIN
WRITE(UNIT=KLUOUT,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("IF( PRESENT(PKER_GWETH) ) THEN")')
DO J1 = 1 , NWETLBDAH
DO J2 = 1 , NWETLBDAG
WRITE(UNIT=KLUOUT,FMT='("PKER_GWETH(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_GWETH(J1,J2)
END DO
END DO
WRITE(UNIT=KLUOUT,FMT='("END IF")')
ELSE
CALL READ_XKER_GWETH (KWETLBDAH,KWETLBDAG,KND, &
PALPHAH,PNUH,PALPHAG,PNUG,PEHG,PBG,PCH,PDH,PCG,PDG, &
PWETLBDAH_MAX,PWETLBDAG_MAX,PWETLBDAH_MIN,PWETLBDAG_MIN, &
PFDINFTY,XKER_GWETH )
WRITE(UNIT=KLUOUT,FMT='(" Read XKER_GWETH")')
END IF
!
!
IND = 50 ! Number of interval used to integrate the dimensional
ZEHR = 1.0 ! distributions when computing the kernel XKER_RWETH
ZFDINFTY = 20.0
!
IF( .NOT.ALLOCATED(XKER_RWETH) ) ALLOCATE( XKER_RWETH(NWETLBDAH,NWETLBDAR) )
!
CALL READ_XKER_RWETH (KWETLBDAH,KWETLBDAR,KND, &
PALPHAH,PNUH,PALPHAR,PNUR,PEHR,PBR,PCH,PDH,PCR,PDR, &
PWETLBDAH_MAX,PWETLBDAR_MAX,PWETLBDAH_MIN,PWETLBDAR_MIN, &
PFDINFTY )
IF( (KWETLBDAH/=NWETLBDAH) .OR. (KWETLBDAR/=NWETLBDAR) .OR. (KND/=IND) .OR. &
(PALPHAH/=XALPHAH) .OR. (PNUH/=XNUH) .OR. &
(PALPHAR/=XALPHAR) .OR. (PNUR/=XNUR) .OR. &
(PEHR/=ZEHR) .OR. (PBR/=XBR) .OR. &
(PCH/=XCH) .OR. (PDH/=XDH) .OR. (PCR/=XCR) .OR. (PDR/=XDR) .OR. &
(PWETLBDAH_MAX/=XWETLBDAH_MAX) .OR. (PWETLBDAR_MAX/=XWETLBDAR_MAX) .OR. &
(PWETLBDAH_MIN/=XWETLBDAH_MIN) .OR. (PWETLBDAR_MIN/=XWETLBDAR_MIN) .OR. &
(PFDINFTY/=ZFDINFTY) ) THEN
CALL RZCOLX ( IND, XALPHAH, XNUH, XALPHAR, XNUR, &
ZEHR, XBR, XCH, XDH, XCR, XDR, &
XWETLBDAH_MAX, XWETLBDAR_MAX, XWETLBDAH_MIN, XWETLBDAR_MIN, &
ZFDINFTY, XKER_RWETH )
WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
WRITE(UNIT=KLUOUT,FMT='("**** UPDATE NEW SET OF RWETH KERNELS ****")')
WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("KND=",I3)') IND
WRITE(UNIT=KLUOUT,FMT='("KWETLBDAH=",I3)') NWETLBDAH
WRITE(UNIT=KLUOUT,FMT='("KWETLBDAR=",I3)') NWETLBDAR
WRITE(UNIT=KLUOUT,FMT='("PALPHAH=",E13.6)') XALPHAH
WRITE(UNIT=KLUOUT,FMT='("PNUH=",E13.6)') XNUH
WRITE(UNIT=KLUOUT,FMT='("PALPHAR=",E13.6)') XALPHAR
WRITE(UNIT=KLUOUT,FMT='("PNUR=",E13.6)') XNUR
WRITE(UNIT=KLUOUT,FMT='("PEHR=",E13.6)') ZEHR
WRITE(UNIT=KLUOUT,FMT='("PBR=",E13.6)') XBR
WRITE(UNIT=KLUOUT,FMT='("PCH=",E13.6)') XCH
WRITE(UNIT=KLUOUT,FMT='("PDH=",E13.6)') XDH
WRITE(UNIT=KLUOUT,FMT='("PCR=",E13.6)') XCR
WRITE(UNIT=KLUOUT,FMT='("PDR=",E13.6)') XDR
WRITE(UNIT=KLUOUT,FMT='("PWETLBDAH_MAX=",E13.6)') &
XWETLBDAH_MAX
WRITE(UNIT=KLUOUT,FMT='("PWETLBDAR_MAX=",E13.6)') &
XWETLBDAR_MAX
WRITE(UNIT=KLUOUT,FMT='("PWETLBDAH_MIN=",E13.6)') &
XWETLBDAH_MIN
WRITE(UNIT=KLUOUT,FMT='("PWETLBDAR_MIN=",E13.6)') &
XWETLBDAR_MIN
WRITE(UNIT=KLUOUT,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=KLUOUT,FMT='("!")')
WRITE(UNIT=KLUOUT,FMT='("IF( PRESENT(PKER_RWETH) ) THEN")')
DO J1 = 1 , NWETLBDAH
DO J2 = 1 , NWETLBDAR
WRITE(UNIT=KLUOUT,FMT='("PKER_RWETH(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_RWETH(J1,J2)
END DO
END DO
WRITE(UNIT=KLUOUT,FMT='("END IF")')
ELSE
CALL READ_XKER_RWETH (KWETLBDAH,KWETLBDAR,KND, &
PALPHAH,PNUH,PALPHAR,PNUR,PEHR,PBR,PCH,PDH,PCR,PDR, &
PWETLBDAH_MAX,PWETLBDAR_MAX,PWETLBDAH_MIN,PWETLBDAR_MIN, &
PFDINFTY,XKER_RWETH )
WRITE(UNIT=KLUOUT,FMT='(" Read XKER_RWETH")')
END IF
!
!
!-------------------------------------------------------------------------------
!
!* 10. SOME PRINTS FOR CONTROL
! -----------------------
!
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=KLUOUT,FMT='(" Summary of the ice particule characteristics")')
WRITE(UNIT=KLUOUT,FMT='(" PRISTINE ICE")')
WRITE(UNIT=KLUOUT,FMT='(" masse: A=",E13.6," B=",E13.6)') &
XAI,XBI
WRITE(UNIT=KLUOUT,FMT='(" vitesse: C=",E13.6," D=",E13.6)') &
XC_I,XDI
WRITE(UNIT=KLUOUT,FMT='(" distribution:AL=",E13.6,"NU=",E13.6)') &
XALPHAI,XNUI
WRITE(UNIT=KLUOUT,FMT='(" SNOW")')
WRITE(UNIT=KLUOUT,FMT='(" masse: A=",E13.6," B=",E13.6)') &
XAS,XBS
WRITE(UNIT=KLUOUT,FMT='(" vitesse: C=",E13.6," D=",E13.6)') &
XCS,XDS
WRITE(UNIT=KLUOUT,FMT='(" concentration:CC=",E13.6," x=",E13.6)') &
XCCS,XCXS
WRITE(UNIT=KLUOUT,FMT='(" distribution:AL=",E13.6,"NU=",E13.6)') &
XALPHAS,XNUS
WRITE(UNIT=KLUOUT,FMT='(" GRAUPEL")')
WRITE(UNIT=KLUOUT,FMT='(" masse: A=",E13.6," B=",E13.6)') &
XAG,XBG
WRITE(UNIT=KLUOUT,FMT='(" vitesse: C=",E13.6," D=",E13.6)') &
XCG,XDG
WRITE(UNIT=KLUOUT,FMT='(" concentration:CC=",E13.6," x=",E13.6)') &
XCCG,XCXG
WRITE(UNIT=KLUOUT,FMT='(" distribution:AL=",E13.6,"NU=",E13.6)') &
XALPHAG,XNUG
WRITE(UNIT=KLUOUT,FMT='(" HAIL")')
WRITE(UNIT=KLUOUT,FMT='(" masse: A=",E13.6," B=",E13.6)') &
XAH,XBH
WRITE(UNIT=KLUOUT,FMT='(" vitesse: C=",E13.6," D=",E13.6)') &
XCH,XDH
WRITE(UNIT=KLUOUT,FMT='(" concentration:CC=",E13.6," x=",E13.6)') &
XCCH,XCXH
WRITE(UNIT=KLUOUT,FMT='(" distribution:AL=",E13.6,"NU=",E13.6)') &
XALPHAH,XNUH
END IF
IF (LHOOK) CALL DR_HOOK('INI_RAIN_ICE',1,ZHOOK_HANDLE)
CONTAINS
!
!------------------------------------------------------------------------------
!
FUNCTION MOMG(PALPHA,PNU,PP) RESULT (PMOMG)
!
! auxiliary routine used to compute the Pth moment order of the generalized
! gamma law
!
USE MODI_GAMMA
!
IMPLICIT NONE
!
REAL :: PALPHA ! first shape parameter of the dimensionnal distribution
REAL :: PNU ! second shape parameter of the dimensionnal distribution
REAL :: PP ! order of the moment
REAL :: PMOMG ! result: moment of order ZP
!
!------------------------------------------------------------------------------
!
!
PMOMG = GAMMA(PNU+PP/PALPHA)/GAMMA(PNU)
!
END FUNCTION MOMG
!
!-------------------------------------------------------------------------------
!
!
END SUBROUTINE INI_RAIN_ICE