Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Méso-NH code
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Méso-NH
Méso-NH code
Commits
0413cd3b
Commit
0413cd3b
authored
8 months ago
by
RODIER Quentin
Browse files
Options
Downloads
Patches
Plain Diff
P.Tulet 11/07/2024: bugfix anthropic aerosols flux
parent
ddc26937
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/SURFEX/ch_aer_emission.F90
+38
-57
38 additions, 57 deletions
src/SURFEX/ch_aer_emission.F90
with
38 additions
and
57 deletions
src/SURFEX/ch_aer_emission.F90
+
38
−
57
View file @
0413cd3b
...
...
@@ -140,11 +140,24 @@ IF (I_CH_DSTi ==-999) CALL ABOR1_SFX ('WRONG VALUE FOR I_CH_DSTi ')
IF
(
I_CH_DSTj
==
-999
)
CALL
ABOR1_SFX
(
'WRONG VALUE FOR I_CH_DSTj '
)
ZMI
(:)
=
250.
ZMI
(
JP_AER_SO4
)
=
98.
ZMI
(
JP_AER_NO3
)
=
63.
ZMI
(
JP_AER_NH3
)
=
17.
ZMI
(
JP_AER_H2O
)
=
18.
ZMI
(
JP_AER_DST
)
=
100.
ZMI
(
JP_AER_SO4
)
=
98.
ZMI
(
JP_AER_NO3
)
=
63.
ZMI
(
JP_AER_NH3
)
=
17.
ZMI
(
JP_AER_H2O
)
=
18.
ZMI
(
JP_AER_BC
)
=
12.
ZMI
(
JP_AER_DST
)
=
100.
IF
(
NSOA
.EQ.
10
)
THEN
ZMI
(
JP_AER_SOA1
)
=
88.
ZMI
(
JP_AER_SOA2
)
=
180.
ZMI
(
JP_AER_SOA3
)
=
1.5374857E+02
ZMI
(
JP_AER_SOA4
)
=
1.9586780E+02
ZMI
(
JP_AER_SOA5
)
=
195.
ZMI
(
JP_AER_SOA6
)
=
195.
ZMI
(
JP_AER_SOA7
)
=
165.
ZMI
(
JP_AER_SOA8
)
=
195.
ZMI
(
JP_AER_SOA9
)
=
270.
ZMI
(
JP_AER_SOA10
)
=
210.
END
IF
! Aerosol Density
! Cf Ackermann (all to black carbon except water)
...
...
@@ -181,52 +194,36 @@ IF ((LCO2PM).AND.(PRESENT(PFCO))) THEN
ZVALBC
=
5.
*
0.6E-10
/
0.4E-8
! CO / BC conversion factor
ZVALOC
=
5.
*
0.3E-10
/
0.4E-8
! CO / POM conversion factor
ZFCO
(:)
=
PFCO
(:)
PFLUX
(:,
I_CH_OCi
)
=
PFLUX
(:,
I_CH_OCi
)
+
ZFCO
(:)
*
ZVALOC
/
2.
PFLUX
(:,
I_CH_OCj
)
=
PFLUX
(:,
I_CH_OCj
)
+
ZFCO
(:)
*
ZVALOC
PFLUX
(:,
I_CH_BCi
)
=
PFLUX
(:,
I_CH_BCi
)
+
ZFCO
(:)
*
ZVALBC
/
2
PFLUX
(:,
I_CH_BCj
)
=
PFLUX
(:,
I_CH_BCj
)
+
ZFCO
(:)
*
ZVALBC
END
IF
! Initial aerosols fluxes have been transformed into molecu.m-2.s-1,
! conversion into are in kg.kg-1.m.s-1
! conversion in kg.kg-1.m.s-1
!
ZCONVERSION
(:)
=
XAVOGADRO
*
PRHODREF
(:)
!
PFLUX
(:,
I_CH_SO4i
)
=
PFLUX
(:,
I_CH_SO4i
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_SO4
)
*
1E-3
PFLUX
(:,
I_CH_SO4j
)
=
PFLUX
(:,
I_CH_SO4j
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_SO4
)
*
1E-3
PFLUX
(:,
I_CH_NO3i
)
=
PFLUX
(:,
I_CH_NO3i
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_NO3
)
*
1E-3
PFLUX
(:,
I_CH_NO3j
)
=
PFLUX
(:,
I_CH_NO3j
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_NO3
)
*
1E-3
PFLUX
(:,
I_CH_NH3i
)
=
PFLUX
(:,
I_CH_NH3i
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_NH3
)
*
1E-3
PFLUX
(:,
I_CH_NH3j
)
=
PFLUX
(:,
I_CH_NH3j
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_NH3
)
*
1E-3
PFLUX
(:,
I_CH_H2Oi
)
=
PFLUX
(:,
I_CH_H2Oi
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_H2O
)
*
1E-3
PFLUX
(:,
I_CH_H2Oj
)
=
PFLUX
(:,
I_CH_H2Oj
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_H2O
)
*
1E-3
PFLUX
(:,
I_CH_OCi
)
=
(
PFLUX
(:,
I_CH_OCi
)
+
ZFCO
(:)
*
ZVALOC
/
2.
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_OC
)
*
1E-3
PFLUX
(:,
I_CH_OCj
)
=
(
PFLUX
(:,
I_CH_OCj
)
+
ZFCO
(:)
*
ZVALOC
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_OC
)
*
1E-3
PFLUX
(:,
I_CH_BCi
)
=
(
PFLUX
(:,
I_CH_BCi
)
+
ZFCO
(:)
*
ZVALBC
/
2.
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_BC
)
*
1E-3
PFLUX
(:,
I_CH_BCj
)
=
(
PFLUX
(:,
I_CH_BCj
)
+
ZFCO
(:)
*
ZVALBC
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_BC
)
*
1E-3
PFLUX
(:,
I_CH_DSTi
)
=
PFLUX
(:,
I_CH_DSTi
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_DST
)
*
1E-3
PFLUX
(:,
I_CH_DSTj
)
=
PFLUX
(:,
I_CH_DSTj
)
/
ZCONVERSION
(:)
*
ZMI
(
JP_AER_DST
)
*
1E-3
!
!* 1.0 transfer aerosol mass from gas to aerosol variables
! (and conversion of
kg.kg-1.m
.s-1 --> microgram.m-2.s-1)
! (and conversion of
molecu.m-2
.s-1 --> microgram.m-2.s-1)
!
ZFCTOTA
(:,
JP_AER_SO4
,
1
)
=
PFLUX
(:,
I_CH_SO4i
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_SO4
,
2
)
=
PFLUX
(:,
I_CH_SO4j
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_SO4
,
1
)
=
PFLUX
(:,
I_CH_SO4i
)
*
1E+
6
*
ZMI
(
JP_AER_SO4
)
/
XAVOGADRO
ZFCTOTA
(:,
JP_AER_SO4
,
2
)
=
PFLUX
(:,
I_CH_SO4j
)
*
1E+
6
*
ZMI
(
JP_AER_SO4
)
/
XAVOGADRO
ZFCTOTA
(:,
JP_AER_NH3
,
1
)
=
PFLUX
(:,
I_CH_NH3i
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_NH3
,
2
)
=
PFLUX
(:,
I_CH_NH3j
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_NH3
,
1
)
=
PFLUX
(:,
I_CH_NH3i
)
*
1E+
6
*
ZMI
(
JP_AER_NH3
)
/
XAVOGADRO
ZFCTOTA
(:,
JP_AER_NH3
,
2
)
=
PFLUX
(:,
I_CH_NH3j
)
*
1E+
6
*
ZMI
(
JP_AER_NH3
)
/
XAVOGADRO
ZFCTOTA
(:,
JP_AER_NO3
,
1
)
=
PFLUX
(:,
I_CH_NO3i
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_NO3
,
2
)
=
PFLUX
(:,
I_CH_NO3j
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_NO3
,
1
)
=
PFLUX
(:,
I_CH_NO3i
)
*
1E+
6
*
ZMI
(
JP_AER_NO3
)
/
XAVOGADRO
ZFCTOTA
(:,
JP_AER_NO3
,
2
)
=
PFLUX
(:,
I_CH_NO3j
)
*
1E+
6
*
ZMI
(
JP_AER_NO3
)
/
XAVOGADRO
ZFCTOTA
(:,
JP_AER_H2O
,
1
)
=
PFLUX
(:,
I_CH_H2Oi
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_H2O
,
2
)
=
PFLUX
(:,
I_CH_H2Oj
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_H2O
,
1
)
=
PFLUX
(:,
I_CH_H2Oi
)
*
1E+
6
*
ZMI
(
JP_AER_H2O
)
/
XAVOGADRO
ZFCTOTA
(:,
JP_AER_H2O
,
2
)
=
PFLUX
(:,
I_CH_H2Oj
)
*
1E+
6
*
ZMI
(
JP_AER_H2O
)
/
XAVOGADRO
ZFCTOTA
(:,
JP_AER_OC
,
1
)
=
PFLUX
(:,
I_CH_OCi
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_OC
,
2
)
=
PFLUX
(:,
I_CH_OCj
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_OC
,
1
)
=
PFLUX
(:,
I_CH_OCi
)
*
1E+
6
*
ZMI
(
JP_AER_OC
)
/
XAVOGADRO
ZFCTOTA
(:,
JP_AER_OC
,
2
)
=
PFLUX
(:,
I_CH_OCj
)
*
1E+
6
*
ZMI
(
JP_AER_OC
)
/
XAVOGADRO
ZFCTOTA
(:,
JP_AER_BC
,
1
)
=
PFLUX
(:,
I_CH_BCi
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_BC
,
2
)
=
PFLUX
(:,
I_CH_BCj
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_BC
,
1
)
=
PFLUX
(:,
I_CH_BCi
)
*
1E+
6
*
ZMI
(
JP_AER_BC
)
/
XAVOGADRO
ZFCTOTA
(:,
JP_AER_BC
,
2
)
=
PFLUX
(:,
I_CH_BCj
)
*
1E+
6
*
ZMI
(
JP_AER_BC
)
/
XAVOGADRO
ZFCTOTA
(:,
JP_AER_DST
,
1
)
=
PFLUX
(:,
I_CH_DSTi
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_DST
,
2
)
=
PFLUX
(:,
I_CH_DSTj
)
*
1E+
9
*
PRHODREF
(:)
ZFCTOTA
(:,
JP_AER_DST
,
1
)
=
PFLUX
(:,
I_CH_DSTi
)
*
1E+
6
*
ZMI
(
JP_AER_DST
)
/
XAVOGADRO
ZFCTOTA
(:,
JP_AER_DST
,
2
)
=
PFLUX
(:,
I_CH_DSTj
)
*
1E+
6
*
ZMI
(
JP_AER_DST
)
/
XAVOGADRO
!
!* 1.1 calculate moment 3 flux from total aerosol mass
!
...
...
@@ -258,23 +255,7 @@ PFLUX(:,I_CH_M0j) = ZFM(:,4) * 1E-6 / (ZDEN2MOL * PRHODREF(:))
IF
(
LVARSIGI
)
PFLUX
(:,
I_CH_M6i
)
=
ZFM
(:,
3
)
/
(
ZDEN2MOL
*
PRHODREF
(:))
IF
(
LVARSIGJ
)
PFLUX
(:,
I_CH_M6j
)
=
ZFM
(:,
6
)
/
(
ZDEN2MOL
*
PRHODREF
(:))
!
! aerosol phase conversion kg/kg.m.s-1 into molecules.m-2.s-1
PFLUX
(:,
I_CH_SO4i
)
=
PFLUX
(:,
I_CH_SO4i
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_SO4
)
*
1E-3
)
PFLUX
(:,
I_CH_SO4j
)
=
PFLUX
(:,
I_CH_SO4j
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_SO4
)
*
1E-3
)
PFLUX
(:,
I_CH_NO3i
)
=
PFLUX
(:,
I_CH_NO3i
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_NO3
)
*
1E-3
)
PFLUX
(:,
I_CH_NO3j
)
=
PFLUX
(:,
I_CH_NO3j
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_NO3
)
*
1E-3
)
PFLUX
(:,
I_CH_NH3i
)
=
PFLUX
(:,
I_CH_NH3i
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_NH3
)
*
1E-3
)
PFLUX
(:,
I_CH_NH3j
)
=
PFLUX
(:,
I_CH_NH3j
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_NH3
)
*
1E-3
)
PFLUX
(:,
I_CH_H2Oi
)
=
PFLUX
(:,
I_CH_H2Oi
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_H2O
)
*
1E-3
)
PFLUX
(:,
I_CH_H2Oj
)
=
PFLUX
(:,
I_CH_H2Oj
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_H2O
)
*
1E-3
)
!
PFLUX
(:,
I_CH_OCi
)
=
PFLUX
(:,
I_CH_OCi
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_OC
)
*
1E-3
)
PFLUX
(:,
I_CH_OCj
)
=
PFLUX
(:,
I_CH_OCj
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_OC
)
*
1E-3
)
PFLUX
(:,
I_CH_BCi
)
=
PFLUX
(:,
I_CH_BCi
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_BC
)
*
1E-3
)
PFLUX
(:,
I_CH_BCj
)
=
PFLUX
(:,
I_CH_BCj
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_BC
)
*
1E-3
)
PFLUX
(:,
I_CH_DSTi
)
=
PFLUX
(:,
I_CH_DSTi
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_DST
)
*
1E-3
)
PFLUX
(:,
I_CH_DSTj
)
=
PFLUX
(:,
I_CH_DSTj
)
*
ZCONVERSION
(:)
/
(
ZMI
(
JP_AER_DST
)
*
1E-3
)
!
ZCONVERSION
(:)
=
XAVOGADRO
*
PRHODREF
(:)
/
XMD
! conversion M0 and M6 ppv.m.s-1 into molecules.m-2.s-1
PFLUX
(:,
I_CH_M0i
)
=
PFLUX
(:,
I_CH_M0i
)
*
ZCONVERSION
(:)
PFLUX
(:,
I_CH_M0j
)
=
PFLUX
(:,
I_CH_M0j
)
*
ZCONVERSION
(:)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment