Skip to content
Snippets Groups Projects
read_MNHfile.py 18.9 KiB
Newer Older
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
MNH_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier
MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
MNH_LIC for details. version 1.
"""
import netCDF4 as nc
import numpy as np


def read_withEPY(LnameFiles, Dvar_input, Dvar_output={}, path='.'):
    """Read a netCDF4 Meso-NH file, LFI, FA or GRIB 1/2 file with the Epygram Meteo-France library
    Parameters
    ----------
    LnameFiles : list of str
        list of Meso-NH netCDF4 file (diachronic or synchronous)

    Dvar_input : Dict{'keyFile' : [field_identifier]}
    where
    'keyFile' is a str corresponding to a key for the file number in LnameFiles (by order)
    [field_identifier] is
        - GRIB1      [indicatorOfParameter, paramId, indicatorOfTypeOfLevel, level, casual name] for GRIB1
        - GRIB2      [discipline, parameterCategory, typeOfFirstFixedSurface, parameterNumber, level, casual name] for GRIB2
        - MNH netcdf ('variable string', level) for netcdf MNH; set level=0 for 2D variables
        - LFI        ('variable string', level) for LFI; set level=0 for 2D variables
        - FA         'variable string'

    path : str or list
        path(s) of the files to read

    Returns
    -------
    Dvar : Dict
        Dvar[ifile]['var_name']   an epygram list of resources

    """
    for i, keyFiles in enumerate(Dvar_input.keys()):
        if isinstance(path, list):
            ipath = path[i]
        else:
            ipath = path
        theFile = epygram.formats.resource(ipath + LnameFiles[i], 'r')
        Dvar_output[keyFiles] = {}  # initialize dic for each files
        for var in Dvar_input[keyFiles]:  # For each files
            #  Read variables
            if(theFile.format == 'FA'):
                Dvar_output[keyFiles][var] = theFile.readfield(var)
            elif(theFile.format == 'LFI'):
                if(var[1] is None or var[1] == 0):  # 2D Field
                    Dvar_output[keyFiles][var[0]] = theFile.readfield(var)
                else:  # 3D Field
                    Dvar_output[keyFiles][var[0] + str(var[1])] = theFile.readfield(var).getlevel(k=var[1])
                if(var[1] is None or var[1] == 0):  # 2D Field
                    Dvar_output[keyFiles][var[0]] = theFile.readfield(var[0])
                else:
                    Dvar_output[keyFiles][var[0] + str(var[1])] = theFile.readfield(var[0]).getlevel(k=var[1])
            elif(theFile.format == 'GRIB'):
                if len(var) == 6:  # GRIB2
                    Dvar_output[keyFiles][var[5]] = theFile.readfield(
                        {'discipline': var[0], 'parameterCategory': var[1], 'typeOfFirstFixedSurface': var[2], 'parameterNumber': var[3], 'level': var[4]})
                elif len(var) == 5:  # GRIB1
                    Dvar_output[keyFiles][var[4]] = theFile.readfield(
                        {'indicatorOfParameter': var[0], 'paramId': var[1], 'indicatorOfTypeOfLevel': var[2], 'level': var[3]})
                else:
                    epygramError(
                        "GRIB format error. GRIB1 expects 4 values : [indicatorOfParameter, paramId, indicatorOfTypeOfLevel, level, 'casual name'], GRIB2 expects 5 values [discipline, parameterCategory, typeOfFirstFixedSurface, parameterNumber, level, casual name]")
            else:
                raise epygramError("Unknown format file, please use FA, LFI, GRIB or MNH NetCDF")
        theFile.close()

    #  Transform spectral data to physics space (for AROME and ARPEGE)
    for f in Dvar_output:
        for var in Dvar_output[f]:
                if(Dvar_output[f][var].spectral):
                    Dvar_output[f][var].sp2gp()
def read_netcdf(LnameFiles, Dvar_input, path='.', get_data_only=True, del_empty_dim=True, removeHALO=True):
    """Read a netCDF4 Meso-NH file
    For each file, call functions to read diachronic or synchronous file
    Parameters
    ----------
    LnameFiles : list of str
        list of Meso-NH netCDF4 file (diachronic or synchronous)
    Dvar_input : Dict{'keyFile' : 'var_name',('group_name','var_name')}
        'keyFile' is a str corresponding to a key for the file number in LnameFiles (by order)
        'var_name' is the exact str of the netCDF4 variable name
        ('group_name','var_name') is the exact tuple of the (sub-)groups name and the netCDF4 variable name
        e.g. : {'f1':['ZS', 'WT','ni', 'level'],
                'f2':[('/LES_budgets/Cartesian/Not_time_averaged/Not_normalized/cart/',MEAN_TH'),('/Budgets/RI','AVEF')]
                }
    get_data_only : bool, default: True
        if True,  the function returns Dvar as masked_array (only data)
        if False, the function returns Dvar as netCDF4._netCDF4.Variable
    del_empty_dim : bool, default: True
        if get_data_only=True and del_empty_dim=True, returns Dvar as an array without dimensions with size 1 and 0
        e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50)
        if True, remove first and last (NHALO=1) point [1:-1] if get_data_only=True on each
        level, level_w, ni, ni_u, ni_v, nj, nj_u, nj_v dimensions
        Dvar[ifile]['var_name']                if the group contains only one variable
        Dvar[ifile][('group_name','var_name')] if the group contains more than one variable
    """
    Dvar = {}
    for i, keyFiles in enumerate(Dvar_input.keys()):
        if isinstance(path, list):
            ipath = path[i]
        else:
            ipath = path
        print(ipath + LnameFiles[i])
        theFile = nc.Dataset(ipath + LnameFiles[i], 'r')
            if theFile['MASDEV'][0] <= 54:
                raise TypeError('The python lib is available for MNH >= 5.5')
            else:
                Dvar[keyFiles] = read_TIMESfiles_55(theFile, Dvar_input[keyFiles], Dvar[keyFiles], get_data_only, del_empty_dim, removeHALO)
            Dvar[keyFiles] = read_BACKUPfile(theFile, Dvar_input[keyFiles], Dvar[keyFiles], get_data_only, del_empty_dim, removeHALO)
        # theFile.close()
def read_var(theFile, Dvar, var_name, get_data_only, del_empty_dim=True, removeHALO=True):
    Parameters
    ----------
    theFile : netCDF4._netCDF4.Dataset
        a Meso-NH diachronic netCDF4 file
    var_name : str
        a Meso-NH netCDF4 variable name
    get_data_only : bool, default: True
        if True,  the function returns Dvar as masked_array (only data)
        if False, the function returns Dvar as netCDF4._netCDF4.Variable
    del_empty_dim : bool, default: True
        if get_data_only=True and del_empty_dim=True, returns Dvar as an array without dimensions with size 1 and 0
        e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50)
        if True, remove first and last (NHALO=1) point [1:-1] if get_data_only=True on each
        level, level_w, ni, ni_u, ni_v, nj, nj_u, nj_v dimensions
        Dvar['var_name']                if the group contains only one variable
        Dvar[('group_name','var_name')] if the group contains more than one variable
    """
    try:
        var_dim = theFile.variables[var_name].ndim
        var_dim_name = theFile.variables[var_name].dimensions
    except BaseException:
        raise KeyError(
            "Group and variable name not found in the file, check the group/variable name with ncdump -h YourMNHFile.000.nc. You asked for variable : " +
            var_name)
    if not get_data_only:
        Dvar[var_name] = theFile.variables[var_name]
        if var_dim == 0:
            Dvar[var_name] = theFile.variables[var_name][0].data
        elif var_dim == 1:
            Dvar[var_name] = theFile.variables[var_name][:]
        elif var_dim == 2:
            Dvar[var_name] = theFile.variables[var_name][:, :]
            Dvar[var_name] = theFile.variables[var_name][:, :, :]
            Dvar[var_name] = theFile.variables[var_name][:, :, :, :]
            Dvar[var_name] = theFile.variables[var_name][:, :, :, :, :]
            Dvar[var_name] = theFile.variables[var_name][:, :, :, :, :, :]
            Dvar[var_name] = theFile.variables[var_name][:, :, :, :, :, :, :]
                    if var_dim_name[i] == 'level' or var_dim_name[i] == 'level_w' or \
                            var_dim_name[i] == 'ni' or var_dim_name[i] == 'ni_u' or var_dim_name[i] == 'ni_v' or \
                            var_dim_name[i] == 'nj' or var_dim_name[i] == 'nj_u' or var_dim_name[i] == 'nj_v':
                            Dvar[var_name] = removetheHALO(i + 1, Dvar[var_name])
                except BaseException:
            var_shape = theFile.variables[var_name].shape
            for i in range(8):
                try:
                    if var_shape[i] == 1:
                        Ldimtosqueeze.append(i)
            Ldimtosqueeze = tuple(Ldimtosqueeze)
            Dvar[var_name] = np.squeeze(Dvar[var_name], axis=Ldimtosqueeze)

def read_from_group(theFile, Dvar, group_name, var_name, get_data_only, del_empty_dim=True, removeHALO=True):
    """Read a variable from a netCDF4 group

    Parameters
    ----------
    theFile : netCDF4._netCDF4.Dataset
        a Meso-NH diachronic netCDF4 file
    group_name : str
        a Meso-NH netCDF4 group name
    var_name : str
        a Meso-NH netCDF4 variable name
    get_data_only : bool, default: True
        if True,  the function returns Dvar as masked_array (only data)
        if False, the function returns Dvar as netCDF4._netCDF4.Variable
    del_empty_dim : bool, default: True
        if get_data_only=True and del_empty_dim=True, returns Dvar as an array without dimensions with size 1 and 0
        e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50)
        if True, remove first and last (NHALO=1) point [1:-1] if get_data_only=True on each
        level, level_w, ni, ni_u, ni_v, nj, nj_u, nj_v dimensions
        Dvar['var_name']                if the group contains only one variable
        Dvar[('group_name','var_name')] if the group contains more than one variable
    """
    try:
        var_dim = theFile[group_name].variables[var_name].ndim
        var_dim_name = theFile[group_name].variables[var_name].dimensions
    except BaseException:
        raise KeyError(
            "Group and variable name not found in the file, check the group/variable name with ncdump -h YourMNHFile.000.nc. You asked for group/variable : " +
            group_name +
            var_name)

        Dvar[(group_name, var_name)] = theFile[group_name].variables[var_name]
            Dvar[(group_name, var_name)] = theFile[group_name].variables[var_name][0].data
            Dvar[(group_name, var_name)] = theFile[group_name].variables[var_name][:]
            Dvar[(group_name, var_name)] = theFile[group_name].variables[var_name][:, :]
            Dvar[(group_name, var_name)] = theFile[group_name].variables[var_name][:, :, :]
            Dvar[(group_name, var_name)] = theFile[group_name].variables[var_name][:, :, :, :]
            Dvar[(group_name, var_name)] = theFile[group_name].variables[var_name][:, :, :, :, :]
            Dvar[(group_name, var_name)] = theFile[group_name].variables[var_name][:, :, :, :, :, :]
            Dvar[(group_name, var_name)] = theFile[group_name].variables[var_name][:, :, :, :, :, :, :]
                    if var_dim_name[i] == 'level' or var_dim_name[i] == 'level_w' or \
                            var_dim_name[i] == 'ni' or var_dim_name[i] == 'ni_u' or var_dim_name[i] == 'ni_v' or \
                            var_dim_name[i] == 'nj' or var_dim_name[i] == 'nj_u' or var_dim_name[i] == 'nj_v':
                            Dvar[(group_name, var_name)] = removetheHALO(i + 1, Dvar[(group_name, var_name)])
                except BaseException:
            Ldimtosqueeze = []
            var_shape = Dvar[(group_name, var_name)].shape
                    if var_shape[i] == 1:
                        Ldimtosqueeze.append(i)
            Ldimtosqueeze = tuple(Ldimtosqueeze)
            Dvar[(group_name, var_name)] = np.squeeze(Dvar[(group_name, var_name)], axis=Ldimtosqueeze)

        # LES budget, ZTSERIES needs to be transposed to use psection functions without specifying .T each time
        if 'LES_budget' in group_name or 'ZTSERIES' in group_name or 'XTSERIES' in group_name:
            Dvar[(group_name, var_name)] = Dvar[(group_name, var_name)].T
def read_BACKUPfile(theFile, Dvar_input, Dvar, get_data_only, del_empty_dim=True, removeHALO=True):
    """Read variables from Meso-NH MASDEV >= 5.5.0 synchronous file
    For all variables in Dvar_input of one file, call functions to read the variable of the group+variable
    Parameters
    ----------
    theFile : netCDF4._netCDF4.Dataset
        a Meso-NH diachronic netCDF4 file
    Dvar_input : Dict{'var_name',('group_name','var_name')}
        with
        'var_name' is the exact str of the netCDF4 variable name
        ('group_name','var_name') is the exact tuple of the (sub-)groups name and the netCDF4 variable name
        e.g. : {'f1':['ZS', 'WT','ni', 'level'],
                'f2':[('/LES_budgets/Cartesian/Not_time_averaged/Not_normalized/cart/',MEAN_TH'),('/Budgets/RI','AVEF')]
                }
    get_data_only: bool, default: True
        if True,  the function returns Dvar as masked_array (only data)
        if False, the function returns Dvar as netCDF4._netCDF4.Variable
    del_empty_dim: bool, default: True
        if get_data_only=True and del_empty_dim=True, returns Dvar as masked_array without dimensions with size 1 and 0
        e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50)
    Dvar['var_name']                if the group contains only one variable
    Dvar[('group_name','var_name')] if the group contains more than one variable
    """
    #  Reading date since beginning of the model run if theFile is a Meso-NH netCDF file
    if 'MNH_cleanly_closed' in theFile.ncattrs():
        try:
            Dvar['time'] = theFile.variables['time'][0]
            Dvar['date'] = nc.num2date(Dvar['time'], units=theFile.variables['time'].units, calendar=theFile.variables['time'].calendar)
        except BaseException:
            pass
            Dvar = read_from_group(theFile, Dvar, var[0], var[1], get_data_only, del_empty_dim, removeHALO)
        else:
            Dvar = read_var(theFile, Dvar, var, get_data_only, del_empty_dim, removeHALO)
            #  For all variables except scalars, change Fill_Value to NaN
                Dvar[var] = np.where(Dvar[var] != -99999.0, Dvar[var], np.nan)
                Dvar[var] = np.where(Dvar[var] != 999.0, Dvar[var], np.nan)
def read_TIMESfiles_55(theFile, Dvar_input, Dvar, get_data_only, del_empty_dim=True, removeHALO=True):
    """Read variables from Meso-NH MASDEV >= 5.5.0 diachronic file
    For all variables in Dvar_input of one file, call functions to read the variable of the group+variable
    Parameters
    ----------
    theFile : netCDF4._netCDF4.Dataset
        a Meso-NH diachronic netCDF4 file
    Dvar_input : Dict{'var_name',('group_name','var_name')}
        with
        'var_name' is the exact str of the netCDF4 variable name
        ('group_name','var_name') is the exact tuple of the (sub-)groups name and the netCDF4 variable name
        e.g. : {'f1':['ZS', 'WT','ni', 'level'],
                'f2':[('/LES_budgets/Cartesian/Not_time_averaged/Not_normalized/cart/',MEAN_TH'),('/Budgets/RI','AVEF')]
                }
    get_data_only: bool, default: True
        if True,  the function returns Dvar as masked_array (only data)
        if False, the function returns Dvar as netCDF4._netCDF4.Variable
    del_empty_dim: bool, default: True
        if get_data_only=True and del_empty_dim=True, returns Dvar as masked_array without dimensions with size 1 and 0
        e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50)
    Dvar[ifile]['var_name']                if the group contains only one variable
    Dvar[ifile][('group_name','var_name')] if the group contains more than one variable
            Dvar = read_from_group(theFile, Dvar, var[0], var[1], get_data_only, del_empty_dim, removeHALO)
            Dvar = read_var(theFile, Dvar, var, get_data_only, del_empty_dim, removeHALO)
    return Dvar
def removetheHALO(idim, var):
    """Remove a NHALO=1 point [1:-1] at a given dimension idim of a variable var
    TODO: with NHALO=3 with WENO5
    TODO: with the use of get_data_only=False (NetCDF4 output)
    Parameters
    ----------
    idim: int
        the dimension over which remove the first and last point