Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
!=== COPYRIGHT AND LICENSE STATEMENT ===
!
! This file is part of the TensorProductMultigrid code.
!
! (c) The copyright relating to this work is owned jointly by the
! Crown, Met Office and NERC [2014]. However, it has been created
! with the help of the GungHo Consortium, whose members are identified
! at https://puma.nerc.ac.uk/trac/GungHo/wiki .
!
! Main Developer: Eike Mueller
!
! TensorProductMultigrid is free software: you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public License as
! published by the Free Software Foundation, either version 3 of the
! License, or (at your option) any later version.
!
! TensorProductMultigrid is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU Lesser General Public License for more details.
!
! You should have received a copy of the GNU Lesser General Public License
! along with TensorProductMultigrid (see files COPYING and COPYING.LESSER).
! If not, see <http://www.gnu.org/licenses/>.
!
!=== COPYRIGHT AND LICENSE STATEMENT ===
!==================================================================
!
! MPI communication routines for multigrid code
!
! Eike Mueller, University of Bath, Feb 2012
!
!==================================================================
module communication
use messages
use datatypes
use parameters
!use mpi
use modd_mpif
use timer
implicit none
public::comm_preinitialise
public::comm_initialise
public::comm_finalise
public::scalarprod

Juan Escobar
committed
public::boundary_mnh
public::haloswap
public::ihaloswap
public::collect
public::distribute
public::i_am_master_mpi
public::master_rank
public::pproc
public::MPI_COMM_HORIZ
public::comm_parameters
public::comm_measuretime
! Number of processors
! n_proc = 2^(2*pproc), with integer pproc
integer :: pproc
! Rank of master process
integer, parameter :: master_rank = 0
! Am I the master process?
logical :: i_am_master_mpi
integer, parameter :: dim = 3 ! Dimension
integer, parameter :: dim_horiz = 2 ! Horizontal dimension
integer :: MPI_COMM_HORIZ ! Communicator with horizontal partitioning
private
! Data types for halo exchange in both x- and y-direction
integer, dimension(:,:,:), allocatable :: halo_type
! MPI vector data types
! Halo for data exchange in north-south direction
integer, allocatable, dimension(:,:) :: halo_ns

Juan Escobar
committed
integer, allocatable, dimension(:,:) :: halo_nst
integer, allocatable, dimension(:,:) :: halo_wet
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
! Vector data type for interior of field a(level,m)
integer, allocatable, dimension(:,:) :: interior
! Vector data type for one quarter of interior of field
! at level a(level,m). This has the same size (and can be
! used for communications with) the interior of a(level,m+1)
integer, allocatable, dimension(:,:) :: sub_interior
! Timer for halo swaps
type(time), allocatable, dimension(:,:) :: t_haloswap
! Timer for collect and distribute
type(time), allocatable, dimension(:) :: t_collect
type(time), allocatable, dimension(:) :: t_distribute
! Parallelisation parameters
! Measure communication times?
logical :: comm_measuretime
! Parallel communication parameters
type comm_parameters
! Size of halos
integer :: halo_size
end type comm_parameters
type(comm_parameters) :: comm_param
! Data layout
! ===========
!
! The number of processes has to be of the form nproc = 2^(2*pproc) to
! ensure that data can be distributed between processes.
! The processes are arranged in a (2^pproc) x (2^pproc) cartesian grid
! in the horizontal plane (i.e. vertical columns are always local to one
! process), which is implemented via the communicator MPI_COMM_HORIZ.
! This MPI_cart_rank() and MPI_cart_shift() can then be used to
! easily identify neighbouring processes.
! The number of data grid cells in each direction has to be a multiply
! of 2**(L-1) where L is the number of levels (including the coarse
! and fine level), with the coarse level corresponding to level=1.
! Also define L_split as the level where we start to pull together
! data. For levels > L_split each position in the cartesian grid is
! included in the work, below this only a subset of processes is
! used.
!
! Each grid a(level,m) is identified by two numbers:
! (1) The multigrid level it belongs to (level)
! (2) The number of active processes that operate on it (2^(2*m)).
!
! For level > L_split, m=procp. For L_split we store a(L_split,pproc) and
! a(L_split,pproc-1), and only processes with even coordinates in both
! horizontal directions use this grid.
! Below that level, store a(L_split-1,pproc-1) and a(L_split-1,pproc-2),
! where only processes for which both horiontal coordinates are
! multiples of four use the latter. This is continued until only on
! process is left.
!
!
! level
! L a(L,pproc)
! L-1 a(L-1,pproc)
! ...
! L_split a(L_split,pproc) a(L_split ,pproc-1)
! L_split-1 a(L_split-1,pproc-1) a(L_split-1,pproc-2)
!
! ... a(3,1)
! a(2,1)
! a(1,1)
!
! When moving from left to right in the above graph the total number of
! grid cells does not change, but the number of data points per process
! increases by a factor of 4.
!
! Parallel operations
! ===================
!
! (*) Halo exchange. Update halo with data from neighbouring
! processors in cartesian grid on current (level,m)
! (*) Collect data on all processes at (level,m) on those
! processes that are still active on (level,m-1).
! (*) Distribute data at (level,m-1) and duplicate on all processes
! that are active at (level,m).
!
! Note that in the cartesian processor grid the first coordinate
! is the North-South (y-) direction, the second coordinate is the
! East-West (x-) direction, i.e. the layout is this:
!
! p_0 (0,0) p_1 (0,1) p_2 (0,2) p_3 (0,3)
!
! p_4 (1,0) p_5 (1,1) p_6 (1,2) p_7 (1,3)
!
! p_8 (2,0) p_9 (2,1) p_10 (2,2) p_11 (2,3)
!
! [...]
!
!
! Normal multigrid restriction and prolongation are used to
! move between levels with fixed m.
!
!
contains
!==================================================================
! Pre-initialise communication routines
!==================================================================
subroutine comm_preinitialise()
implicit none
integer :: nproc, ierr, rank
call mpi_comm_size(MPI_COMM_WORLD, nproc, ierr)
call mpi_comm_rank(MPI_COMM_WORLD, rank, ierr)
i_am_master_mpi = (rank == master_rank)
! Check that nproc = 2^(2*p)
pproc = floor(log(1.0d0*nproc)/log(4.0d0))
if ( (nproc - 4**pproc) .ne. 0) then
call fatalerror("Number of processors has to be 2^(2*pproc) with integer pproc.")
end if
if (i_am_master_mpi) then
write(STDOUT,'("PARALLEL RUN")')
write(STDOUT,'("Number of processors : 2^(2*pproc) = ",I10," with pproc = ",I6)') &
nproc, pproc
end if
! Create halo data types
end subroutine comm_preinitialise
!==================================================================
! Initialise communication routines
!==================================================================
subroutine comm_initialise(n_lev, & !} multigrid parameters
lev_split, & !}
grid_param, & ! Grid parameters
comm_param_in) ! Parallel communication
! parameters
implicit none
integer, intent(in) :: n_lev
integer, intent(in) :: lev_split
type(grid_parameters), intent(inout) :: grid_param
type(comm_parameters), intent(in) :: comm_param_in
integer :: n
integer :: nz
integer :: rank, nproc, ierr
integer :: count, blocklength, stride
integer, dimension(2) :: p_horiz
integer :: m, level, nlocal
logical :: reduced_m
integer :: halo_size
character(len=32) :: t_label
n = grid_param%n
nz = grid_param%nz
comm_param = comm_param_in
halo_size = comm_param%halo_size
call mpi_comm_size(MPI_COMM_WORLD, nproc, ierr)
! Create cartesian topology
call mpi_cart_create(MPI_COMM_WORLD, & ! Old communicator name
dim_horiz, & ! horizontal dimension
(/2**pproc,2**pproc/), & ! extent in each horizontal direction
(/.false.,.false./), & ! periodic?
.true., & ! reorder?
MPI_COMM_HORIZ, & ! Name of new communicator
ierr)
! calculate and display rank and corrdinates in cartesian grid
call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
! Local size of (horizontal) grid
nlocal = n/2**pproc
! === Set up data types ===
! Halo for exchange in north-south direction

Juan Escobar
committed
if (LUseO) allocate(halo_ns(n_lev,0:pproc))
if (LUseT) allocate(halo_nst(n_lev,0:pproc))
if (LUseT) allocate(halo_wet(n_lev,0:pproc))
! Interior data types
allocate(interior(n_lev,0:pproc))
allocate(sub_interior(n_lev,0:pproc))
! Timer
allocate(t_haloswap(n_lev,0:pproc))
allocate(t_collect(0:pproc))
allocate(t_distribute(0:pproc))
do m=0,pproc
write(t_label,'("t_collect(",I3,")")') m
call initialise_timer(t_collect(m),t_label)
write(t_label,'("t_distribute(",I3,")")') m
call initialise_timer(t_distribute(m),t_label)
end do
m = pproc
level = n_lev
reduced_m = .false.
do while (level > 0)
! --- Create halo data types ---

Juan Escobar
committed
if (LUseO) then
! NS- (y-) direction
count = nlocal
blocklength = (nz+2)*halo_size
stride = (nlocal+2*halo_size)*(nz+2)
call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION, &
halo_ns(level,m),ierr)
call mpi_type_commit(halo_ns(level,m),ierr)

Juan Escobar
committed
endif
! tranpose
if (LUseT) then
! NS- (y-) transpose direction
count = nz+2 ! nlocal
blocklength = nlocal*halo_size ! (nz+2)*halo_size
stride = (nlocal+2*halo_size) * (nlocal+2*halo_size) ! (nlocal+2*halo_size)*(nz+2)
call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION, &
halo_nst(level,m),ierr)
call mpi_type_commit(halo_nst(level,m),ierr)
! WE- (x-) transpose direction
count = (nz+2)*(nlocal+2*halo_size)*halo_size ! nlocal
blocklength = 1*halo_size ! (nz+2)*halo_size
stride = nlocal+2*halo_size ! (nlocal+2*halo_size)*(nz+2)
call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION, &
halo_wet(level,m),ierr)
call mpi_type_commit(halo_wet(level,m),ierr)
endif
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Commit halo_ns failed in mpi_type_commit().")
#endif
! --- Create interior data types ---
count = nlocal
blocklength = nlocal*(nz+2)
stride = (nz+2)*(nlocal+2*halo_size)
call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION,interior(level,m),ierr)
call mpi_type_commit(interior(level,m),ierr)
count = nlocal/2
blocklength = nlocal/2*(nz+2)
stride = (nlocal+2*halo_size)*(nz+2)
call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION,sub_interior(level,m),ierr)
call mpi_type_commit(sub_interior(level,m),ierr)
! --- Create timers ---
write(t_label,'("t_haloswap(",I3,",",I3,")")') level,m
call initialise_timer(t_haloswap(level,m),t_label)
! If we are below L_split, split data
if ( (level .le. lev_split) .and. (m > 0) .and. (.not. reduced_m)) then
reduced_m = .true.
m = m-1
nlocal = 2*nlocal
cycle
end if
reduced_m = .false.
level = level-1
nlocal = nlocal/2
end do
end subroutine comm_initialise
!==================================================================
! Finalise communication routines
!==================================================================
subroutine comm_finalise(n_lev, & ! }
lev_split) ! } Multigrid parameters
implicit none
integer, intent(in) :: n_lev
integer, intent(in) :: lev_split
logical :: reduced_m
integer :: level, m
integer :: ierr
character(len=80) :: s
m = pproc
level = n_lev
reduced_m = .false.
if (i_am_master_mpi) then
write(STDOUT,'(" *** Finalising communications ***")')
end if
call print_timerinfo("--- Communication timing results ---")
do while (level > 0)
write(s,'("level = ",I3,", m = ",I3)') level, m
call print_timerinfo(s)
! --- Print out timer information ---
call print_elapsed(t_haloswap(level,m),.True.,1.0_rl)
! --- Free halo data types ---

Juan Escobar
committed
if (LUseO) call mpi_type_free(halo_ns(level,m),ierr)
if (LUseT) call mpi_type_free(halo_nst(level,m),ierr)
if (LUseT) call mpi_type_free(halo_wet(level,m),ierr)
! --- Free interior data types ---
call mpi_type_free(interior(level,m),ierr)
call mpi_type_free(sub_interior(level,m),ierr)
! If we are below L_split, split data
if ( (level .le. lev_split) .and. (m > 0) .and. (.not. reduced_m)) then
reduced_m = .true.
m = m-1
cycle
end if
reduced_m = .false.
level = level-1
end do
do m=pproc,0,-1
write(s,'("m = ",I3)') m
call print_timerinfo(s)
! --- Print out timer information ---
call print_elapsed(t_collect(m),.True.,1.0_rl)
call print_elapsed(t_distribute(m),.True.,1.0_rl)
end do
! Deallocate arrays

Juan Escobar
committed
if (LUseO) deallocate(halo_ns)
if (LUseT) deallocate(halo_nst,halo_wet)
deallocate(interior)
deallocate(sub_interior)
deallocate(t_haloswap)
deallocate(t_collect)
deallocate(t_distribute)
if (i_am_master_mpi) then
write(STDOUT,'("")')
end if
end subroutine comm_finalise
!==================================================================
! Scalar product of two fields
!==================================================================
subroutine scalarprod_mnh(m, a, b, s)
implicit none
integer, intent(in) :: m
type(scalar3d), intent(in) :: a
type(scalar3d), intent(in) :: b
real(kind=rl), intent(out) :: s
integer :: nprocs, rank, ierr
integer :: p_horiz(2)
integer :: stepsize
integer, parameter :: dim_horiz = 2

Juan Escobar
committed
real(kind=rl) :: local_sum, global_sum
real(kind=rl) :: local_sumt,global_sumt

Juan Escobar
committed
integer :: ix,iy,iz
real(kind=rl) :: ddot
nlocal = a%ix_max-a%ix_min+1
nz = a%grid_param%nz
! Work out coordinates of processor
call mpi_comm_size(MPI_COMM_HORIZ,nprocs,ierr)
call mpi_comm_rank(MPI_COMM_HORIZ,rank,ierr)
stepsize = 2**(pproc-m)
if (nprocs > 1) then
! Only inlcude local sum if the processor coordinates
! are multiples of stepsize
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
if ( (stepsize == 1) .or. &
( (stepsize > 1) .and. &
(mod(p_horiz(1),stepsize)==0) .and. &
(mod(p_horiz(2),stepsize)==0) ) ) then

Juan Escobar
committed
if (LUseO) then
local_sum = 0.0_rl
do i = 1, nlocal
local_sum = local_sum &
+ ddot((nz+2)*nlocal,a%s(0,1,i),1,b%s(0,1,i),1)
end do
end if
if (LUseT) then
local_sumt = 0.0_rl
do iz=0,nz+1
do iy=a%iy_min,a%iy_max
do ix=a%ix_min,a%ix_max
local_sumt = local_sumt &
+ a%st(ix,iy,iz)*b%st(ix,iy,iz)
end do
end do
end do
end if

Juan Escobar
committed
if (LUseO) local_sum = 0.0_rl
if (LUseT) local_sumt = 0.0_rl

Juan Escobar
committed
if (LUseO) call mpi_allreduce(local_sum,global_sum,1,MPI_DOUBLE_PRECISION, &
MPI_SUM,MPI_COMM_HORIZ,ierr)
if (LUseT) call mpi_allreduce(local_sumt,global_sumt,1,MPI_DOUBLE_PRECISION, &
MPI_SUM,MPI_COMM_HORIZ,ierr)
else

Juan Escobar
committed
if (LUseO) then
global_sum = 0.0_rl
do i = 1, nlocal
global_sum = global_sum &
+ ddot((nz+2)*nlocal,a%s(0,1,i),1,b%s(0,1,i),1)
end do

Juan Escobar
committed
endif
if (LUseT) then
global_sumt = 0.0_rl
do iz=0,nz+1
do iy=a%iy_min,a%iy_max
do ix=a%ix_min,a%ix_max
global_sumt = global_sumt &
+ a%st(ix,iy,iz)*b%st(ix,iy,iz)
end do
end do
end do
endif

Juan Escobar
committed
if (LUseO) then
s = global_sum
else
s = global_sumt
end if
end subroutine scalarprod_mnh
!-------------------------------------------------------------------------------
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
subroutine scalarprod(m, a, b, s)
implicit none
integer, intent(in) :: m
type(scalar3d), intent(in) :: a
type(scalar3d), intent(in) :: b
real(kind=rl), intent(out) :: s
integer :: nprocs, rank, ierr
integer :: p_horiz(2)
integer :: stepsize
integer, parameter :: dim_horiz = 2
real(kind=rl) :: local_sum, global_sum
integer :: nlocal, nz, i
real(kind=rl) :: ddot
nlocal = a%ix_max-a%ix_min+1
nz = a%grid_param%nz
! Work out coordinates of processor
call mpi_comm_size(MPI_COMM_HORIZ,nprocs,ierr)
call mpi_comm_rank(MPI_COMM_HORIZ,rank,ierr)
stepsize = 2**(pproc-m)
if (nprocs > 1) then
! Only inlcude local sum if the processor coordinates
! are multiples of stepsize
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
if ( (stepsize == 1) .or. &
( (stepsize > 1) .and. &
(mod(p_horiz(1),stepsize)==0) .and. &
(mod(p_horiz(2),stepsize)==0) ) ) then
local_sum = 0.0_rl
do i = 1, nlocal
local_sum = local_sum &
+ ddot((nz+2)*nlocal,a%s(0,1,i),1,b%s(0,1,i),1)
end do
else
local_sum = 0.0_rl
end if
call mpi_allreduce(local_sum,global_sum,1,MPI_DOUBLE_PRECISION, &
MPI_SUM,MPI_COMM_HORIZ,ierr)
else
global_sum = 0.0_rl
do i = 1, nlocal
global_sum = global_sum &
+ ddot((nz+2)*nlocal,a%s(0,1,i),1,b%s(0,1,i),1)
end do
end if
s = global_sum
end subroutine scalarprod
!==================================================================

Juan Escobar
committed
! Boundary Neumann
!==================================================================
subroutine boundary_mnh(a) ! data field
implicit none
type(scalar3d), intent(inout) :: a

Juan Escobar
committed
!local var

Juan Escobar
committed
integer :: n, ix_min,ix_max,iy_min,iy_max

Juan Escobar
committed

Juan Escobar
committed
! Update Real Boundary for Newman case u(0) = u(1) , etc ...
n = a%grid_param%n
ix_min = a%ix_min
ix_max = a%ix_max
iy_min = a%iy_min
iy_max = a%iy_max

Juan Escobar
committed
if (LUseO) then

Juan Escobar
committed
if ( ix_min == 1 ) then
a%s(:,:,0) = a%s(:,:,1)
endif
if ( ix_max == n ) then
a%s(:,:,a%icompx_max+1) = a%s(:,:,a%icompx_max)
endif
if ( iy_min == 1 ) then
a%s(:,0,:) = a%s(:,1,:)
endif
if ( iy_max == n ) then
a%s(:,a%icompy_max+1,:) = a%s(:,a%icompy_max,:)
endif

Juan Escobar
committed
endif
if (LUseT) then
! transpose
if ( ix_min == 1 ) then
a%st(0,:,:) = a%st(1,:,:)
endif
if ( ix_max == n ) then
a%st(a%icompx_max+1,:,:) = a%st(a%icompx_max,:,:)
endif
if ( iy_min == 1 ) then
a%st(:,0,:) = a%st(:,1,:)
endif
if ( iy_max == n ) then
a%st(:,a%icompy_max+1,:) = a%st(:,a%icompy_max,:)
endif
endif

Juan Escobar
committed
!
! corner ( inutile , deja réalisé au dessus )
!
!!$ if ( ( ix_min == 1 ) .and. ( iy_min == 1 ) ) then
!!$ a%s(:,0,0) = a%s(:,1,1)
!!$ endif
!!$ if ( ( ix_min == 1 ) .and. ( iy_max == n ) ) then
!!$ a%s(:,a%icompy_max+1,0) = a%s(:,a%icompy_max,1)
!!$ end if
!!$ if ( ( ix_max == n ) .and. ( iy_min == 1 ) ) then
!!$ a%s(:,0,a%icompx_max+1) = a%s(:,1,a%icompx_max)
!!$ end if
!!$ if ( ( ix_max == n ) .and. ( iy_max == n ) ) then
!!$ a%s(:,a%icompy_max+1,a%icompx_max+1) = a%s(:,a%icompy_max,a%icompx_max)
!!$ end if

Juan Escobar
committed
end subroutine boundary_mnh
!==================================================================
! Initiate asynchronous halo exchange
!
! For all processes with horizontal indices that are multiples
! of 2^(pproc-m), update halos with information held by
! neighbouring processes, e.g. for pproc-m = 1, stepsize=2
!
! N (0,2)
! ^
! !
! v
!
! W (2,0) <--> (2,2) <--> E (2,4)
!
! ^
! !
! v
! S (4,2)
!
!==================================================================
subroutine ihaloswap_mnh(level,m, & ! multigrid- and processor- level
a, & ! data field
send_requests, & ! send requests (OUT)

Juan Escobar
committed
recv_requests, & ! recv requests (OUT)
send_requestsT, & ! send requests T (OUT)
recv_requestsT & ! recv requests T (OUT)
)
implicit none
integer, intent(in) :: level
integer, intent(in) :: m
integer, intent(out), dimension(4) :: send_requests
integer, intent(out), dimension(4) :: recv_requests

Juan Escobar
committed
integer, intent(out), dimension(4) :: send_requestsT
integer, intent(out), dimension(4) :: recv_requestsT
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
type(scalar3d), intent(inout) :: a
integer :: a_n ! horizontal grid size
integer :: nz ! vertical grid size
integer, dimension(2) :: p_horiz
integer :: stepsize
integer :: ierr, rank, sendtag, recvtag
integer :: stat(MPI_STATUS_SIZE)
integer :: halo_size
integer :: neighbour_n_rank
integer :: neighbour_s_rank
integer :: neighbour_e_rank
integer :: neighbour_w_rank
integer :: yoffset, blocklength
halo_size = comm_param%halo_size
! Do nothing if we are only using one processor
if (m > 0) then
a_n = a%ix_max-a%ix_min+1
nz = a%grid_param%nz
stepsize = 2**(pproc-m)
! Work out rank, only execute on relevant processes
call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
! Work out ranks of neighbours
! W -> E
call mpi_cart_shift(MPI_COMM_HORIZ,1, stepsize, &
neighbour_w_rank,neighbour_e_rank,ierr)
! N -> S
call mpi_cart_shift(MPI_COMM_HORIZ,0, stepsize, &
neighbour_n_rank,neighbour_s_rank,ierr)
if ( (stepsize == 1) .or. &
( (mod(p_horiz(1),stepsize) == 0) .and. &
(mod(p_horiz(2),stepsize) == 0) ) ) then
if (halo_size == 1) then
! Do not include corners in send/recv
yoffset = 1
blocklength = a_n*(nz+2)*halo_size
else
yoffset = 1-halo_size
blocklength = (a_n+2*halo_size)*(nz+2)*halo_size
end if
! Receive from north

Juan Escobar
committed
recvtag = 1002
if (LUseO) call mpi_irecv(a%s(0,0-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_n_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(1), ierr)

Juan Escobar
committed
recvtag = 1012
if (LUseT) call mpi_irecv(a%st(1,0-(halo_size-1),0),1, &
halo_nst(level,m),neighbour_n_rank,recvtag, &
MPI_COMM_HORIZ, recv_requestsT(1), ierr)

Juan Escobar
committed
recvtag = 1003
if (LUseO) call mpi_irecv(a%s(0,a_n+1,1),1, &
halo_ns(level,m),neighbour_s_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(2), ierr)

Juan Escobar
committed
recvtag = 1013
if (LUseT) call mpi_irecv(a%st(1,a_n+1,0),1, &
halo_nst(level,m),neighbour_s_rank,recvtag, &
MPI_COMM_HORIZ, recv_requestsT(2), ierr)

Juan Escobar
committed
sendtag = 1002
if (LUseO) call mpi_isend(a%s(0,a_n-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_s_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(1), ierr)

Juan Escobar
committed
sendtag = 1012
if (LUseT) call mpi_isend(a%st(1,a_n-(halo_size-1),0),1, &
halo_nst(level,m),neighbour_s_rank,sendtag, &
MPI_COMM_HORIZ, send_requestsT(1), ierr)

Juan Escobar
committed
sendtag = 1003
if (LUseO) call mpi_isend(a%s(0,1,1),1, &
halo_ns(level,m),neighbour_n_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(2), ierr)

Juan Escobar
committed
sendtag = 1013
if (LUseT) call mpi_isend(a%st(1,1,0),1, &
halo_nst(level,m),neighbour_n_rank,sendtag, &
MPI_COMM_HORIZ, send_requestsT(2), ierr)

Juan Escobar
committed
recvtag = 1000
if (LUseO) call mpi_irecv(a%s(0,yoffset,0-(halo_size-1)),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_w_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(3), ierr)

Juan Escobar
committed
recvtag = 1010
if (LUseT) call mpi_irecv(a%st(0-(halo_size-1),0,0),1, &
halo_wet(level,m),neighbour_w_rank,recvtag, &
MPI_COMM_HORIZ, recv_requestsT(3), ierr)

Juan Escobar
committed
sendtag = 1001
if (LUseO) call mpi_irecv(a%s(0,yoffset,a_n+1),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_e_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(4), ierr)

Juan Escobar
committed
sendtag = 1011
if (LUseT) call mpi_irecv(a%st(a_n+1,0,0),1, &
halo_wet(level,m),neighbour_e_rank,recvtag, &
MPI_COMM_HORIZ, recv_requestsT(4), ierr)

Juan Escobar
committed
sendtag = 1000
if (LUseO) call mpi_isend(a%s(0,yoffset,a_n-(halo_size-1)),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_e_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(3), ierr)

Juan Escobar
committed
sendtag = 1010
if (LUseT) call mpi_isend(a%st(a_n-(halo_size-1),0,0),1, &
halo_wet(level,m),neighbour_e_rank,sendtag, &
MPI_COMM_HORIZ, send_requestsT(3), ierr)

Juan Escobar
committed
recvtag = 1001
if (LUseO) call mpi_isend(a%s(0,yoffset,1),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_w_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(4), ierr)

Juan Escobar
committed
recvtag = 1011
if (LUseT) call mpi_isend(a%st(1,0,0),1, &
halo_wet(level,m),neighbour_w_rank,sendtag, &
MPI_COMM_HORIZ, send_requestsT(4), ierr)
end if
end if
end subroutine ihaloswap_mnh
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
!==================================================================
subroutine ihaloswap(level,m, & ! multigrid- and processor- level
a, & ! data field
send_requests, & ! send requests (OUT)
recv_requests & ! recv requests (OUT)
)
implicit none
integer, intent(in) :: level
integer, intent(in) :: m
integer, intent(out), dimension(4) :: send_requests
integer, intent(out), dimension(4) :: recv_requests
type(scalar3d), intent(inout) :: a
integer :: a_n ! horizontal grid size
integer :: nz ! vertical grid size
integer, dimension(2) :: p_horiz
integer :: stepsize
integer :: ierr, rank, sendtag, recvtag
integer :: stat(MPI_STATUS_SIZE)
integer :: halo_size
integer :: neighbour_n_rank
integer :: neighbour_s_rank
integer :: neighbour_e_rank
integer :: neighbour_w_rank
integer :: yoffset, blocklength
halo_size = comm_param%halo_size
! Do nothing if we are only using one processor
if (m > 0) then
a_n = a%ix_max-a%ix_min+1
nz = a%grid_param%nz
stepsize = 2**(pproc-m)
! Work out rank, only execute on relevant processes
call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
! Work out ranks of neighbours
! W -> E
call mpi_cart_shift(MPI_COMM_HORIZ,1, stepsize, &
neighbour_w_rank,neighbour_e_rank,ierr)
! N -> S
call mpi_cart_shift(MPI_COMM_HORIZ,0, stepsize, &
neighbour_n_rank,neighbour_s_rank,ierr)
if ( (stepsize == 1) .or. &
( (mod(p_horiz(1),stepsize) == 0) .and. &
(mod(p_horiz(2),stepsize) == 0) ) ) then
if (halo_size == 1) then
! Do not include corners in send/recv
yoffset = 1
blocklength = a_n*(nz+2)*halo_size
else
yoffset = 1-halo_size
blocklength = (a_n+2*halo_size)*(nz+2)*halo_size
end if
! Receive from north
recvtag = 2
call mpi_irecv(a%s(0,0-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_n_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(1), ierr)
! Receive from south
recvtag = 3
call mpi_irecv(a%s(0,a_n+1,1),1, &
halo_ns(level,m),neighbour_s_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(2), ierr)
! Send to south
sendtag = 2
call mpi_isend(a%s(0,a_n-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_s_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(1), ierr)
! Send to north
sendtag = 3
call mpi_isend(a%s(0,1,1),1, &
halo_ns(level,m),neighbour_n_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(2), ierr)
! Receive from west
recvtag = 0
call mpi_irecv(a%s(0,yoffset,0-(halo_size-1)),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_w_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(3), ierr)
! Receive from east
sendtag = 1
call mpi_irecv(a%s(0,yoffset,a_n+1),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_e_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(4), ierr)
! Send to east
sendtag = 0
call mpi_isend(a%s(0,yoffset,a_n-(halo_size-1)),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_e_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(3), ierr)
! Send to west
recvtag = 1
call mpi_isend(a%s(0,yoffset,1),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_w_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(4), ierr)
end if
end if
end subroutine ihaloswap
!==================================================================
! Halo exchange
!
! For all processes with horizontal indices that are multiples
! of 2^(pproc-m), update halos with information held by
! neighbouring processes, e.g. for pproc-m = 1, stepsize=2
!
! N (0,2)
! ^
! !
! v
!
! W (2,0) <--> (2,2) <--> E (2,4)
!
! ^
! !
! v
! S (4,2)
!
!==================================================================
subroutine haloswap_mnh(level,m, & ! multigrid- and processor- level
a) ! data field
implicit none
integer, intent(in) :: level
integer, intent(in) :: m
type(scalar3d), intent(inout) :: a

Juan Escobar
committed
!local var
integer :: a_n ! horizontal grid size
integer :: nz ! vertical grid size
integer, dimension(2) :: p_horiz
integer :: stepsize
integer :: ierr, rank, sendtag, recvtag
integer :: stat(MPI_STATUS_SIZE)
integer :: halo_size
integer :: neighbour_n_rank
integer :: neighbour_s_rank
integer :: neighbour_e_rank
integer :: neighbour_w_rank
integer :: yoffset, blocklength
integer, dimension(4) :: requests_ns
integer, dimension(4) :: requests_ew

Juan Escobar
committed
integer, dimension(4) :: requests_nsT
integer, dimension(4) :: requests_ewT
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
halo_size = comm_param%halo_size
! Do nothing if we are only using one processor
if (m > 0) then
if (comm_measuretime) then
call start_timer(t_haloswap(level,m))
end if
a_n = a%ix_max-a%ix_min+1
nz = a%grid_param%nz
stepsize = 2**(pproc-m)
! Work out rank, only execute on relevant processes
call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
! Work out ranks of neighbours
! W -> E
call mpi_cart_shift(MPI_COMM_HORIZ,1, stepsize, &
neighbour_w_rank,neighbour_e_rank,ierr)
! N -> S
call mpi_cart_shift(MPI_COMM_HORIZ,0, stepsize, &
neighbour_n_rank,neighbour_s_rank,ierr)
if ( (stepsize == 1) .or. &
( (mod(p_horiz(1),stepsize) == 0) .and. &
(mod(p_horiz(2),stepsize) == 0) ) ) then
if (halo_size == 1) then
! Do not include corners in send/recv
yoffset = 1
blocklength = a_n*(nz+2)*halo_size
else
yoffset = 1-halo_size
blocklength = (a_n+2*halo_size)*(nz+2)*halo_size
end if
! Receive from north

Juan Escobar
committed
recvtag = 1002
if (LUseO) call mpi_irecv(a%s(0,0-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_n_rank,recvtag, &
MPI_COMM_HORIZ, requests_ns(1), ierr)

Juan Escobar
committed
recvtag = 1012
if (LUseT) call mpi_irecv(a%st(1,0-(halo_size-1),0),1, &
halo_nst(level,m),neighbour_n_rank,recvtag, &
MPI_COMM_HORIZ, requests_nsT(1), ierr)

Juan Escobar
committed
recvtag = 1003
if (LUseO) call mpi_irecv(a%s(0,a_n+1,1),1, &
halo_ns(level,m),neighbour_s_rank,recvtag, &
MPI_COMM_HORIZ, requests_ns(2), ierr)

Juan Escobar
committed
recvtag = 1013
if (LUseT) call mpi_irecv(a%st(1,a_n+1,0),1, &
halo_nst(level,m),neighbour_s_rank,recvtag, &
MPI_COMM_HORIZ, requests_nsT(2), ierr)

Juan Escobar
committed
sendtag = 1002
if (LUseO) call mpi_isend(a%s(0,a_n-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_s_rank,sendtag, &
MPI_COMM_HORIZ, requests_ns(3), ierr)

Juan Escobar
committed
sendtag = 1012
if (LUseT) call mpi_isend(a%st(1,a_n-(halo_size-1),0),1, &
halo_nst(level,m),neighbour_s_rank,sendtag, &
MPI_COMM_HORIZ, requests_nsT(3), ierr)

Juan Escobar
committed
sendtag = 1003
if (LUseO) call mpi_isend(a%s(0,1,1),1, &
halo_ns(level,m),neighbour_n_rank,sendtag, &
MPI_COMM_HORIZ, requests_ns(4), ierr)

Juan Escobar
committed
sendtag = 1013
if (LUseT) call mpi_isend(a%st(1,1,0),1, &
halo_nst(level,m),neighbour_n_rank,sendtag, &
MPI_COMM_HORIZ, requests_nsT(4), ierr)
if (halo_size > 1) then
! Wait for North <-> South communication to complete

Juan Escobar
committed
if (LUseO) call mpi_waitall(4,requests_ns, MPI_STATUSES_IGNORE, ierr)
if (LUseT) call mpi_waitall(4,requests_nsT, MPI_STATUSES_IGNORE, ierr)
end if
! Receive from west

Juan Escobar
committed
recvtag = 1000
if (LUseO) call mpi_irecv(a%s(0,yoffset,0-(halo_size-1)),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_w_rank,recvtag, &
MPI_COMM_HORIZ, requests_ew(1), ierr)

Juan Escobar
committed
recvtag = 1010
if (LUseT) call mpi_irecv(a%st(0-(halo_size-1),0,0),1, &
halo_wet(level,m),neighbour_w_rank,recvtag, &
MPI_COMM_HORIZ, requests_ewT(1), ierr)

Juan Escobar
committed
sendtag = 1001
if (LUseO) call mpi_irecv(a%s(0,yoffset,a_n+1),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_e_rank,recvtag, &
MPI_COMM_HORIZ, requests_ew(2), ierr)

Juan Escobar
committed
sendtag = 1011
if (LUseT) call mpi_irecv(a%st(a_n+1,0,0),1, &
halo_wet(level,m),neighbour_e_rank,recvtag, &
MPI_COMM_HORIZ, requests_ewT(2), ierr)

Juan Escobar
committed
sendtag = 1000
if (LUseO) call mpi_isend(a%s(0,yoffset,a_n-(halo_size-1)),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_e_rank,sendtag, &
MPI_COMM_HORIZ, requests_ew(3), ierr)

Juan Escobar
committed
sendtag = 1010
if (LUseT) call mpi_isend(a%st(a_n-(halo_size-1),0,0),1, &
halo_wet(level,m),neighbour_e_rank,sendtag, &
MPI_COMM_HORIZ, requests_ewT(3), ierr)

Juan Escobar
committed
recvtag = 1001