Skip to content
Snippets Groups Projects
eol_alm.f90 20.2 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
!MNH_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt  
!MNH_LIC for details. version 1.
!     #######################
       MODULE MODI_EOL_ALM
!     #######################
!
INTERFACE
!
SUBROUTINE EOL_ALM(KTCOUNT, PTSTEP,        &
                   PDXX, PDYY, PDZZ,       &
                   PRHO_M,                 &
                   PUT_M, PVT_M, PWT_M,    &
                   PFX_RG, PFY_RG, PFZ_RG  )

!
INTEGER,                  INTENT(IN)    :: KTCOUNT           ! iteration count
REAL,                     INTENT(IN)    :: PTSTEP            ! timestep except
!
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PDXX,PDYY,PDZZ    ! mesh size
!
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRHO_M            ! dry Density
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PUT_M,PVT_M,PWT_M ! Wind speed at mass point
!
REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PFX_RG            ! Aerodynamic force ..
REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PFY_RG            ! .. cartesian mesh ..
REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PFZ_RG            ! .. global frame)
!
!
END SUBROUTINE EOL_ALM
!
END INTERFACE
!
END MODULE MODI_EOL_ALM
!
!     ###################################################################
        SUBROUTINE EOL_ALM(KTCOUNT, PTSTEP,        &
                           PDXX, PDYY, PDZZ,       &
                           PRHO_M,                 &
                           PUT_M, PVT_M, PWT_M,    &
                           PFX_RG, PFY_RG, PFZ_RG  )
!     ###################################################################
!
!!****  *MODI_EOL_ALM* -
!!
!!    PURPOSE
!!    -------
!!       It is possible to include wind turbines parameterization in Meso-NH,
!!       and several methods are available. One of the models is the Actuator 
!!       Line Method (ALM). It allows to compute aerodynamic forces according 
!!       the wind speed and the caracteristics of the wind turbine. 
!! 
!!**  METHOD
!!    ------
!!      The ALM consists in modeling each blade by one line divided into blade
!!      element points (Sørensen and Shen, 2002). These points are applying 
!!      aerodynamic forces into the flow. 
!!      Each point carries a two-dimensional (2D) airfoil, and its characteris-
!!      tics, as lift and drag coefficients. Knowing these coefficients, and 
!!      the angle of attack, the lift and drag forces can be evaluated.
!!
!!    REFERENCE
!!    ---------
!!     PA. Joulin PhD Thesis. 2020.
!!      
!!
!!    AUTHOR
!!    ------
!!     PA. Joulin 		*CNRM & IFPEN*
!!
!!    MODIFICATIONS
!!    -------------
!!    Original     24/01/17
!!    Modification 14/10/20 (PA. Joulin) Updated for a main version
!!
!!---------------------------------------------------------------
!
!
!*       0.    DECLARATIONS
!              ------------
!
! To work with wind turbines
USE MODD_EOL_ALM
USE MODD_EOL_KINE_ALM
!
USE MODD_EOL_SHARED_IO, ONLY: CINTERP
USE MODD_EOL_SHARED_IO, ONLY: XTHRUT, XTORQT, XPOWT
!
USE MODI_EOL_MATHS
USE MODI_EOL_READER,    ONLY: GET_AIRFOIL_ID
USE MODI_EOL_PRINTER,   ONLY: PRINT_TSPLIT
USE MODI_EOL_ERROR,     ONLY: EOL_WTCFL_ERROR
! Math
USE MODD_CST,           ONLY: XPI
! To know the grid 
USE MODD_GRID_n,        ONLY: XXHAT,XYHAT,XZS,XZZ
USE MODE_ll,            ONLY: GET_INDICE_ll
USE MODD_PARAMETERS,    ONLY: JPVEXT
! MPI stuffs
USE MODD_VAR_ll,        ONLY: NMNH_COMM_WORLD
USE MODD_PRECISION,     ONLY: MNHREAL_MPI
USE MODD_MPIF,          ONLY: MPI_SUM
USE MODE_SUM_ll,        ONLY: MIN_ll
USE MODD_VAR_ll,        ONLY: IP
!
!
IMPLICIT NONE
!
!*       0.1   Declarations of dummy arguments :
!
INTEGER,                  INTENT(IN)    :: KTCOUNT           ! iteration count
REAL,                     INTENT(IN)    :: PTSTEP            ! timestep except
!
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PDXX,PDYY,PDZZ    ! mesh size
!
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRHO_M            ! dry Density
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PUT_M,PVT_M,PWT_M ! Wind speed at mass point
!
REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PFX_RG            ! Aerodynamic force ..
REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PFY_RG            ! .. cartesian mesh ..
REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PFZ_RG            ! .. global frame)
!
!
!*       0.2   Declarations of local variables :
!
! Indicies Compteurs
INTEGER   :: IIB,IJB,IKB        ! Begin of a CPU domain
INTEGER   :: IIE,IJE,IKE        ! End of a CPU domain
INTEGER   :: IKU                ! Vertical size of the domain
INTEGER   :: JI, JJ, JK         ! Loop index
INTEGER   :: JROT, JBLA, JBELT  ! Rotor, blade, and blade element indicies
!
! Averages variables over all sub-timestep (if Time splitting) 
REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT)   :: ZAOA_ATS      ! Angle of attack of an element, hub frame [rad]
REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT)   :: ZFLIFT_ATS    ! Aerodynamic lift force, parallel to Urel [N]
REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT)   :: ZFDRAG_ATS    ! Aerodynamic drag force, perpendicular to Urel [N]
REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT,3) :: ZFAERO_RE_ATS ! Aerodynamic force (lift+drag) in RE [N]
REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT,3) :: ZFAERO_RG_ATS ! Aerodynamic force (lift+drag) in RG [N]


! -- Wind -- 
REAL                :: ZRHO_I                  ! Interpolated density [kg/m3]
REAL                :: ZUT_I                   ! Interpolated wind speed U (RG) [m/s] 
REAL                :: ZVT_I                   ! Interpolated wind speed V (RG) [m/s]
REAL                :: ZWT_I                   ! Interpolated wind speed W (RG) [m/s]
REAL, DIMENSION(3)  :: ZWIND_VEL_RG            ! Wind velocity in RG frame [m/s]
REAL, DIMENSION(3)  :: ZWIND_VEL_RE            ! Wind velocity in RE frame [m/s]
REAL, DIMENSION(3)  :: ZWINDREL_VEL_RE         ! Relative wind velocity in RE frame [m/s]
REAL                :: ZWINDREL_VEL            ! Norm of the relative wind velocity [m/s]
REAL, DIMENSION(SIZE(PUT_M,1),SIZE(PUT_M,2),SIZE(PUT_M,3)) :: ZZH ! True heigth to interpolate 8NB
!
! -- Wind turbine --
INTEGER             :: INB_WT, INB_B, INB_BELT ! Total numbers
REAL                :: ZRAD                    ! Blade radius [m]
INTEGER             :: IAID                    ! Airfoil index [-]
!
! -- Aero -- 
REAL                :: ZAOA                    ! Attack angle of an element [rad]
REAL                :: ZCDRAG                  ! Drag coefficient of an element []
REAL                :: ZCLIFT                  ! Lift coefficient of an element []
REAL                :: ZFDRAG                  ! Drag force of an element, parallel to Urel [N]
REAL                :: ZFLIFT                  ! Lift force of an element, perpendicular to Urel [N]
REAL, DIMENSION(3)  :: ZFAERO_RE               ! Aerodynamic force (lift+drag) in RE [N]
REAL, DIMENSION(3)  :: ZFAERO_RG               ! Aerodynamic force (lift+drag) in RG [N]
! Tip loss
REAL                :: ZFTIPL                  ! tip loss function
REAL                :: ZPHI                    ! angle twist+pitch+aa
!
! Thrust, Torque and Power
REAL, DIMENSION(3)  :: ZFAERO_RH               ! Aerodynamic force (lift+drag) in RH [N] (thrust/torque)
REAL, DIMENSION(3)  :: ZDIST_HBELT_RH          ! Distance between blade element and hub, in RH [m]
REAL, DIMENSION(3)  :: ZDIST_HBELT_RG          ! Distances between blade element and hub, in RG [m]
REAL, DIMENSION(3)  :: Z3D_TORQT               ! Full torque force (3D) of the wind turbine [N]
!
! -- Time spliting --
INTEGER             :: KTSUBCOUNT, INBSUBCOUNT ! sub iteration count
REAL                :: ZTSUBSTEP               ! sub timestep 
REAL                :: ZMAXTSTEP               ! Max value for timestep to respect WTCFL criteria
!
! -- Numerical --  
INTEGER             :: IINFO                   ! code info return
!
!
!*       0.3     Implicit arguments
!
! A. From MODD_EOL_ALM
!TYPE(FARM)                                :: TFARM
!TYPE(TURBINE)                             :: TTURBINE
!TYPE(BLADE)                               :: TBLADE
!TYPE(AIRFOIL), DIMENSION(:), ALLOCATABLE  :: TAIRFOIL 
!
!REAL, DIMENSION(:,:,:),   ALLOCATABLE     :: XELT_RAD      ! Blade elements radius [m]
!REAL, DIMENSION(:,:,:),   ALLOCATABLE     :: XAOA_GLB      ! Angle of attack of an element [rad]
!REAL, DIMENSION(:,:,:),   ALLOCATABLE     :: XFLIFT_GLB    ! Lift force, parallel to Urel [N]
!REAL, DIMENSION(:,:,:),   ALLOCATABLE     :: XFDRAG_GLB    ! Drag force, perpendicular to Urel [N]
!REAL, DIMENSION(:,:,:,:), ALLOCATABLE     :: XFAERO_RE_GLB ! Aerodyn. force (lift+drag) in RE [N]
!REAL, DIMENSION(:,:,:,:), ALLOCATABLE     :: XFAERO_RG_GLB ! Aerodyn. force (lift+drag) in RG [N]
!
!INTEGER                                   :: NNB_BLAELT        ! Number of blade elements
!LOGICAL                                   :: LTIMESPLIT        ! Flag to apply Time splitting method
!LOGICAL                                   :: LTIPLOSSG         ! Flag to apply Glauert's tip loss correction
!LOGICAL                                   :: LTECOUTPTS        ! Flag to get Tecplot file output of element points
!
! B. From MODD_EOL_SHARED_IO:
! for namelist NAM_EOL_ALM
!CHARACTER(LEN=100)                        :: CFARM_CSVDATA     ! Farm file to read 
!CHARACTER(LEN=100)                        :: CTURBINE_CSVDATA  ! Turbine file to read  
!CHARACTER(LEN=100)                        :: CBLADE_CSVDATA    ! Blade file to read  
!CHARACTER(LEN=100)                        :: CAIRFOIL_CSVDATA  ! Airfoil file to read  
!CHARACTER(LEN=3)                          :: CINTERP           ! Interpolation method for wind speed
! for output
!REAL, DIMENSION(:),       ALLOCATABLE     :: XTHRUT        ! Thrust [N]
!REAL, DIMENSION(:),       ALLOCATABLE     :: XTORQT        ! Torque [Nm]
!REAL, DIMENSION(:),       ALLOCATABLE     :: XPOWT         ! Power [W]
!
!
!-------------------------------------------------------------------------------
!
!
!*      1.     INITIALIZATIONS
!              ---------------
!
!*       1.1     Subdomain (CPU) indices
!
CALL GET_INDICE_ll(IIB,IJB,IIE,IJE) ! Get begin and end domain index (CPU)
IKU = SIZE(PUT_M,3)                 ! Top of the domain end index
IKB=1+JPVEXT                        ! Vertical begin index
IKE=IKU-JPVEXT                      ! Vertical end index
!
!*       1.2     Some usefull integers
!
INB_WT   = TFARM%NNB_TURBINES
INB_B    = TTURBINE%NNB_BLADES
INB_BELT = TBLADE%NNB_BLAELT
!
!*       1.3     Vertical coordinate in case of interpolation
!
IF (CINTERP=='8NB') THEN
 DO JK=1,IKU-1
  ZZH(:,:,JK) = (0.5*(XZZ(:,:,JK)+XZZ(:,:,JK+1))-XZS(:,:))
 END DO
 ZZH(:,:,IKU) = 2*ZZH(:,:,IKU-1) - ZZH(:,:,IKU-2)
END IF
!
!*       1.4     Set to zeros at each MNH time steps
!
! Averaged variables (over time splitting)
ZAOA_ATS(:,:,:)             = 0.
ZFLIFT_ATS(:,:,:)           = 0.
ZFDRAG_ATS(:,:,:)           = 0.
ZFAERO_RE_ATS(:,:,:,:)      = 0.
ZFAERO_RG_ATS(:,:,:,:)      = 0.
!
! Global variables (seen by all CPU) 
XAOA_GLB(:,:,:)             = 0.
XFLIFT_GLB(:,:,:)           = 0.
XFDRAG_GLB(:,:,:)           = 0.
XFAERO_RE_GLB(:,:,:,:)      = 0.
XFAERO_RG_GLB(:,:,:,:)      = 0.
!
XTHRUT(:)                   = 0.
XTORQT(:)                   = 0.
!
!
!-------------------------------------------------------------------------------
!
!*       2.     COMPUTES WTCFL CRITERIA
!               -----------------------
!
!*       2.1     Computing the highest timestep acceptable
ZMAXTSTEP = ABS( MIN(MIN_ll(PDXX(:,:,:),IINFO),&
                     MIN_ll(PDYY(:,:,:),IINFO),&
                     MIN_ll(PDZZ(:,:,:),IINFO))&
                /(MAXVAL(TFARM%XOMEGA(:))*TTURBINE%XR_MAX))
!
IF (.NOT.LTIMESPLIT) THEN
!*       2.2     Checking conditions
! If time step too high : abort
 IF (PTSTEP > ZMAXTSTEP) THEN
  CALL EOL_WTCFL_ERROR(ZMAXTSTEP)
  STOP
! If time step ok, continue
 ELSE
  INBSUBCOUNT = 1
  ZTSUBSTEP   = PTSTEP/INBSUBCOUNT
 END IF
ELSE 
!*       2.3     Timesplitting : new sub-timestep
 INBSUBCOUNT  = INT(PTSTEP/ZMAXTSTEP) + 1
 ZTSUBSTEP    = PTSTEP/INBSUBCOUNT
 CALL PRINT_TSPLIT(INBSUBCOUNT, ZTSUBSTEP)
END IF
!
!*       2.4     Start looping over sub-timesteps
DO KTSUBCOUNT=1,INBSUBCOUNT
!
!
!-------------------------------------------------------------------------------
!
!*       3.     KINEMATICS COMPUTATIONS
!               -----------------------
!
 CALL EOL_KINE_ALM(KTCOUNT, KTSUBCOUNT, ZTSUBSTEP, PTSTEP)
!
!
!-------------------------------------------------------------------------------
!
!*       4.     COMPUTES AERODYNAMIC FORCES THAT ACTS ON THE BLADES DUE TO THE WIND
!               --------------------------------------------------------------
!
!*       4.1     Finding the position of wind turbines
!
! Loop over domain 
 DO JK=IKB,IKE
  DO JJ=IJB,IJE
   DO JI=IIB,IIE
    ! Loop over wind turbines
    DO JROT=1, INB_WT
     DO JBLA=1, INB_B
      DO JBELT=1, INB_BELT
       ! Position test
       IF (XPOS_ELT_RG(JROT,JBLA,JBELT,1) >= XXHAT(JI) .AND. &
           XPOS_ELT_RG(JROT,JBLA,JBELT,1) <  XXHAT(JI) + PDXX(JI,JJ,JK)) THEN
!
        IF (XPOS_ELT_RG(JROT,JBLA,JBELT,2) >= XYHAT(JJ) .AND. &
            XPOS_ELT_RG(JROT,JBLA,JBELT,2) <  XYHAT(JJ) + PDYY(JI,JJ,JK)) THEN
!
         IF (XPOS_ELT_RG(JROT,JBLA,JBELT,3) >= XZZ(JI,JJ,JK) .AND. &
             XPOS_ELT_RG(JROT,JBLA,JBELT,3) <  XZZ(JI,JJ,JK) + PDZZ(JI,JJ,JK)) THEN
!
!*       4.2     Extracting the wind
!
          SELECT CASE(CINTERP)
           CASE('CLS')
            ZUT_I  = PUT_M(JI,JJ,JK)
            ZVT_I  = PVT_M(JI,JJ,JK)
            ZWT_I  = PWT_M(JI,JJ,JK)
            ZRHO_I = PRHO_M(JI,JJ,JK)
           CASE('8NB')
            ZUT_I  = INTERP_LIN8NB(XPOS_ELT_RG(JROT,JBLA,JBELT,:),&
                                   JI,JJ,JK,PUT_M,ZZH)
            ZVT_I  = INTERP_LIN8NB(XPOS_ELT_RG(JROT,JBLA,JBELT,:),&
                                   JI,JJ,JK,PVT_M,ZZH)
            ZWT_I  = INTERP_LIN8NB(XPOS_ELT_RG(JROT,JBLA,JBELT,:),&
                                   JI,JJ,JK,PWT_M,ZZH)
            ZRHO_I = INTERP_LIN8NB(XPOS_ELT_RG(JROT,JBLA,JBELT,:),&
                                   JI,JJ,JK,PRHO_M,ZZH)
          END SELECT
          ZWIND_VEL_RG(1) = ZUT_I
          ZWIND_VEL_RG(2) = ZVT_I
          ZWIND_VEL_RG(3) = ZWT_I
!
!*       4.3     Calculating the wind in RE frame
!
          ZWIND_VEL_RE(:) = MATMUL(XMAT_RE_RG(JROT,JBLA,JBELT,:,:), ZWIND_VEL_RG(:))
!
!*       4.4     Calculating the relative wind speed in RE frame + norm
!
          ZWINDREL_VEL_RE(:) = ZWIND_VEL_RE(:) - XTVEL_ELT_RE(JROT,JBLA,JBELT,:)
          ZWINDREL_VEL       = NORM(ZWINDREL_VEL_RE)
!
!*       4.5     Calculating the angle of attack
!
          ZAOA   = ATAN2(ZWINDREL_VEL_RE(1), ZWINDREL_VEL_RE(2))      
!
!*       4.6     Getting aerodynamic coefficients from tabulated data
!
          ZRAD   = XELT_RAD(JROT,JBLA,JBELT)            ! Radius of the element
          IAID   = GET_AIRFOIL_ID(TTURBINE,TBLADE,TAIRFOIL,ZRAD)   ! ID of the airfoil   
          ZCLIFT = INTERP_SPLCUB(ZAOA*180/XPI,      &
                                 TAIRFOIL(IAID)%XAA,&
                                 TAIRFOIL(IAID)%XCL)
          ZCDRAG = INTERP_SPLCUB(ZAOA*180/XPI,      &
                                 TAIRFOIL(IAID)%XAA,&
                                 TAIRFOIL(IAID)%XCD)
!
!*       4.7     Tip loss correction (Glauert)
!
          IF (LTIPLOSSG) THEN
           ZPHI   = + ZAOA                                      &
                    + TFARM%XBLA_PITCH(JROT)                    &
                    + XTWIST_ELT(JROT,JBLA,JBELT)
           IF (ZPHI > 0.0) THEN
            ZFTIPL   = (2.0/XPI)*ACOS(MIN(                       &
                        1.0, EXP(-(TTURBINE%NNB_BLADES/2.0)      &
                       *(TTURBINE%XR_MAX-ZRAD)/(ZRAD*SIN(ZPHI)))))
           ELSE
            ZFTIPL = 1.0
           END IF
           ZCLIFT = ZFTIPL*ZCLIFT
           ZCDRAG = ZFTIPL*ZCDRAG
          END IF
!
!*       4.8     Computing aerodynamic forces in relative frame
!                  that act on blades (wind->blade)
          ZFLIFT = 0.5*ZRHO_I*XSURF_ELT(JROT,JBLA,JBELT)*ZCLIFT*ZWINDREL_VEL**2
          ZFDRAG = 0.5*ZRHO_I*XSURF_ELT(JROT,JBLA,JBELT)*ZCDRAG*ZWINDREL_VEL**2
!
!*       4.9     Evaluating the aerodynamiques forces in RE frame
!                  that act on blades (wind->blade)
          ZFAERO_RE(1) = SIN(ZAOA)*ZFDRAG + COS(ZAOA)*ZFLIFT
          ZFAERO_RE(2) = COS(ZAOA)*ZFDRAG - SIN(ZAOA)*ZFLIFT
          ZFAERO_RE(3) = .0 ! 2D flow around arifoil assumption
!
!*       4.10     Evaluating the aerodynamiques forces in RG frame
!                  that act on blades (wind->blade)
          ZFAERO_RG(:) = MATMUL(XMAT_RG_RE(JROT,JBLA,JBELT,:,:), ZFAERO_RE(:))
!
!*       4.11     Adding it to the cell of Meso-NH
          PFX_RG(JI,JJ,JK) = PFX_RG(JI,JJ,JK) + ZFAERO_RG(1) / FLOAT(INBSUBCOUNT)
          PFY_RG(JI,JJ,JK) = PFY_RG(JI,JJ,JK) + ZFAERO_RG(2) / FLOAT(INBSUBCOUNT)
          PFZ_RG(JI,JJ,JK) = PFZ_RG(JI,JJ,JK) + ZFAERO_RG(3) / FLOAT(INBSUBCOUNT)
!
!*       4.12     Storing mean values over one full MNH timestep
!               (all the sub-timesteps values are averaged)
          ZAOA_ATS(JROT,JBLA,JBELT)       = ZAOA_ATS(JROT,JBLA,JBELT)        &
                                          + ZAOA         / FLOAT(INBSUBCOUNT)
          ZFLIFT_ATS(JROT,JBLA,JBELT)     = ZFLIFT_ATS(JROT,JBLA,JBELT)      &
                                          + ZFLIFT       / FLOAT(INBSUBCOUNT)
          ZFDRAG_ATS(JROT,JBLA,JBELT)     = ZFDRAG_ATS(JROT,JBLA,JBELT)      &
                                          + ZFDRAG       / FLOAT(INBSUBCOUNT)
          ZFAERO_RE_ATS(JROT,JBLA,JBELT,:)= ZFAERO_RE_ATS(JROT,JBLA,JBELT,:) &
                                          + ZFAERO_RE(:) / FLOAT(INBSUBCOUNT)
          ZFAERO_RG_ATS(JROT,JBLA,JBELT,:)= ZFAERO_RG_ATS(JROT,JBLA,JBELT,:) &
                                          + ZFAERO_RG(:) / FLOAT(INBSUBCOUNT)
!
         ! End of position tests 
         END IF
        END IF
       END IF
      ! End of wind turbine loops  
      END DO
     END DO
    END DO
   ! End of domain loops
   END DO
  END DO
 END DO
! End of sub-time loop
END DO 
!
!
!*       4.13     Top and bottom conditions
PFX_RG(:,:,IKB-1) = PFX_RG(:,:,IKB)
PFX_RG(:,:,IKE+1) = PFX_RG(:,:,IKE)
!
PFY_RG(:,:,IKB-1) = PFY_RG(:,:,IKB)
PFY_RG(:,:,IKE+1) = PFY_RG(:,:,IKE)
!
PFZ_RG(:,:,IKB-1) = PFZ_RG(:,:,IKB)
PFZ_RG(:,:,IKE+1) = PFZ_RG(:,:,IKE)
!
!
!-------------------------------------------------------------------------------
!
!*       5.     SHARING THE DATAS OVER THE CPUS
!               -------------------------------
CALL MPI_ALLREDUCE(ZAOA_ATS,      XAOA_GLB,      SIZE(XAOA_GLB),     &
        MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO)
CALL MPI_ALLREDUCE(ZFLIFT_ATS,    XFLIFT_GLB,    SIZE(XFLIFT_GLB),   &
        MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO)
CALL MPI_ALLREDUCE(ZFDRAG_ATS,    XFDRAG_GLB,    SIZE(XFDRAG_GLB),   &
        MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO)
CALL MPI_ALLREDUCE(ZFAERO_RE_ATS, XFAERO_RE_GLB, SIZE(XFAERO_RE_GLB),&
        MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO)
CALL MPI_ALLREDUCE(ZFAERO_RG_ATS, XFAERO_RG_GLB, SIZE(XFAERO_RG_GLB),&
        MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO)
!
!
!-------------------------------------------------------------------------------
!
!*       6.     COMPUTING THRUST, TORQUE AND POWER
!               ---------------------------------
!
IF(IP == 1) THEN
 DO JROT=1,TFARM%NNB_TURBINES
  DO JBLA=1, TTURBINE%NNB_BLADES
   DO JBELT=1, TBLADE%NNB_BLAELT
!
!*       6.1     Preliminaries
! Aerodynamic load (wind->blade) in RH
    ZFAERO_RH(:)      = MATMUL(XMAT_RH_RG(JROT,:,:), &
                        XFAERO_RG_GLB(JROT,JBLA,JBELT,:))
! Distance between element and hub in RG 
    ZDIST_HBELT_RG(:) = XPOS_ELT_RG(JROT,JBLA,JBELT,:) - XPOS_HUB_RG(JROT,:)
! Distance between element and hub in RH
    ZDIST_HBELT_RH(:) = MATMUL(XMAT_RH_RG(JROT,:,:),ZDIST_HBELT_RG(:))
!
!*       6.2     Thrust (wind->rotor): in RH
    XTHRUT(JROT)      = XTHRUT(JROT) + ZFAERO_RH(3)    ! Only Z component
!*       6.3     Torque (wind->rotor) in RH
    Z3D_TORQT         = CROSS(ZDIST_HBELT_RH(:),ZFAERO_RH(:))
    XTORQT(JROT)      = XTORQT(JROT) + Z3D_TORQT(3)    ! Only Z component 
   END DO
  END DO
!
!*       6.4     Power (wind->rotor)
  XPOWT(JROT) = XTORQT(JROT) * TFARM%XOMEGA(JROT)
 END DO
END IF
!
!
END SUBROUTINE EOL_ALM