Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
!MNH_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
! #######################
MODULE MODI_EOL_ALM
! #######################
!
INTERFACE
!
SUBROUTINE EOL_ALM(KTCOUNT, PTSTEP, &
PDXX, PDYY, PDZZ, &
PRHO_M, &
PUT_M, PVT_M, PWT_M, &
PFX_RG, PFY_RG, PFZ_RG )
!
INTEGER, INTENT(IN) :: KTCOUNT ! iteration count
REAL, INTENT(IN) :: PTSTEP ! timestep except
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDXX,PDYY,PDZZ ! mesh size
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHO_M ! dry Density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PUT_M,PVT_M,PWT_M ! Wind speed at mass point
!
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PFX_RG ! Aerodynamic force ..
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PFY_RG ! .. cartesian mesh ..
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PFZ_RG ! .. global frame)
!
!
END SUBROUTINE EOL_ALM
!
END INTERFACE
!
END MODULE MODI_EOL_ALM
!
! ###################################################################
SUBROUTINE EOL_ALM(KTCOUNT, PTSTEP, &
PDXX, PDYY, PDZZ, &
PRHO_M, &
PUT_M, PVT_M, PWT_M, &
PFX_RG, PFY_RG, PFZ_RG )
! ###################################################################
!
!!**** *MODI_EOL_ALM* -
!!
!! PURPOSE
!! -------
!! It is possible to include wind turbines parameterization in Meso-NH,
!! and several methods are available. One of the models is the Actuator
!! Line Method (ALM). It allows to compute aerodynamic forces according
!! the wind speed and the caracteristics of the wind turbine.
!!
!!** METHOD
!! ------
!! The ALM consists in modeling each blade by one line divided into blade
!! element points (Sørensen and Shen, 2002). These points are applying
!! aerodynamic forces into the flow.
!! Each point carries a two-dimensional (2D) airfoil, and its characteris-
!! tics, as lift and drag coefficients. Knowing these coefficients, and
!! the angle of attack, the lift and drag forces can be evaluated.
!!
!! REFERENCE
!! ---------
!! PA. Joulin PhD Thesis. 2020.
!!
!!
!! AUTHOR
!! ------
!! PA. Joulin *CNRM & IFPEN*
!!
!! MODIFICATIONS
!! -------------
!! Original 24/01/17
!! Modification 14/10/20 (PA. Joulin) Updated for a main version
!!
!!---------------------------------------------------------------
!
!
!* 0. DECLARATIONS
! ------------
!
! To work with wind turbines
USE MODD_EOL_ALM
USE MODD_EOL_KINE_ALM
!
USE MODD_EOL_SHARED_IO, ONLY: CINTERP
USE MODD_EOL_SHARED_IO, ONLY: XTHRUT, XTORQT, XPOWT
!
USE MODI_EOL_MATHS
USE MODI_EOL_READER, ONLY: GET_AIRFOIL_ID
USE MODI_EOL_PRINTER, ONLY: PRINT_TSPLIT
USE MODI_EOL_ERROR, ONLY: EOL_WTCFL_ERROR
! Math
USE MODD_CST, ONLY: XPI
! To know the grid
USE MODD_GRID_n, ONLY: XXHAT,XYHAT,XZS,XZZ
USE MODE_ll, ONLY: GET_INDICE_ll
USE MODD_PARAMETERS, ONLY: JPVEXT
! MPI stuffs
USE MODD_VAR_ll, ONLY: NMNH_COMM_WORLD
USE MODD_PRECISION, ONLY: MNHREAL_MPI
USE MODD_MPIF, ONLY: MPI_SUM
USE MODE_SUM_ll, ONLY: MIN_ll
USE MODD_VAR_ll, ONLY: IP
!
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
INTEGER, INTENT(IN) :: KTCOUNT ! iteration count
REAL, INTENT(IN) :: PTSTEP ! timestep except
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDXX,PDYY,PDZZ ! mesh size
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHO_M ! dry Density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PUT_M,PVT_M,PWT_M ! Wind speed at mass point
!
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PFX_RG ! Aerodynamic force ..
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PFY_RG ! .. cartesian mesh ..
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PFZ_RG ! .. global frame)
!
!
!* 0.2 Declarations of local variables :
!
! Indicies Compteurs
INTEGER :: IIB,IJB,IKB ! Begin of a CPU domain
INTEGER :: IIE,IJE,IKE ! End of a CPU domain
INTEGER :: IKU ! Vertical size of the domain
INTEGER :: JI, JJ, JK ! Loop index
INTEGER :: JROT, JBLA, JBELT ! Rotor, blade, and blade element indicies
!
! Averages variables over all sub-timestep (if Time splitting)
REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT) :: ZAOA_ATS ! Angle of attack of an element, hub frame [rad]
REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT) :: ZFLIFT_ATS ! Aerodynamic lift force, parallel to Urel [N]
REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT) :: ZFDRAG_ATS ! Aerodynamic drag force, perpendicular to Urel [N]
REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT,3) :: ZFAERO_RE_ATS ! Aerodynamic force (lift+drag) in RE [N]
REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT,3) :: ZFAERO_RG_ATS ! Aerodynamic force (lift+drag) in RG [N]
! -- Wind --
REAL :: ZRHO_I ! Interpolated density [kg/m3]
REAL :: ZUT_I ! Interpolated wind speed U (RG) [m/s]
REAL :: ZVT_I ! Interpolated wind speed V (RG) [m/s]
REAL :: ZWT_I ! Interpolated wind speed W (RG) [m/s]
REAL, DIMENSION(3) :: ZWIND_VEL_RG ! Wind velocity in RG frame [m/s]
REAL, DIMENSION(3) :: ZWIND_VEL_RE ! Wind velocity in RE frame [m/s]
REAL, DIMENSION(3) :: ZWINDREL_VEL_RE ! Relative wind velocity in RE frame [m/s]
REAL :: ZWINDREL_VEL ! Norm of the relative wind velocity [m/s]
REAL, DIMENSION(SIZE(PUT_M,1),SIZE(PUT_M,2),SIZE(PUT_M,3)) :: ZZH ! True heigth to interpolate 8NB
!
! -- Wind turbine --
INTEGER :: INB_WT, INB_B, INB_BELT ! Total numbers
REAL :: ZRAD ! Blade radius [m]
INTEGER :: IAID ! Airfoil index [-]
!
! -- Aero --
REAL :: ZAOA ! Attack angle of an element [rad]
REAL :: ZCDRAG ! Drag coefficient of an element []
REAL :: ZCLIFT ! Lift coefficient of an element []
REAL :: ZFDRAG ! Drag force of an element, parallel to Urel [N]
REAL :: ZFLIFT ! Lift force of an element, perpendicular to Urel [N]
REAL, DIMENSION(3) :: ZFAERO_RE ! Aerodynamic force (lift+drag) in RE [N]
REAL, DIMENSION(3) :: ZFAERO_RG ! Aerodynamic force (lift+drag) in RG [N]
! Tip loss
REAL :: ZFTIPL ! tip loss function
REAL :: ZPHI ! angle twist+pitch+aa
!
! Thrust, Torque and Power
REAL, DIMENSION(3) :: ZFAERO_RH ! Aerodynamic force (lift+drag) in RH [N] (thrust/torque)
REAL, DIMENSION(3) :: ZDIST_HBELT_RH ! Distance between blade element and hub, in RH [m]
REAL, DIMENSION(3) :: ZDIST_HBELT_RG ! Distances between blade element and hub, in RG [m]
REAL, DIMENSION(3) :: Z3D_TORQT ! Full torque force (3D) of the wind turbine [N]
!
! -- Time spliting --
INTEGER :: KTSUBCOUNT, INBSUBCOUNT ! sub iteration count
REAL :: ZTSUBSTEP ! sub timestep
REAL :: ZMAXTSTEP ! Max value for timestep to respect WTCFL criteria
!
! -- Numerical --
INTEGER :: IINFO ! code info return
!
!
!* 0.3 Implicit arguments
!
! A. From MODD_EOL_ALM
!TYPE(FARM) :: TFARM
!TYPE(TURBINE) :: TTURBINE
!TYPE(BLADE) :: TBLADE
!TYPE(AIRFOIL), DIMENSION(:), ALLOCATABLE :: TAIRFOIL
!
!REAL, DIMENSION(:,:,:), ALLOCATABLE :: XELT_RAD ! Blade elements radius [m]
!REAL, DIMENSION(:,:,:), ALLOCATABLE :: XAOA_GLB ! Angle of attack of an element [rad]
!REAL, DIMENSION(:,:,:), ALLOCATABLE :: XFLIFT_GLB ! Lift force, parallel to Urel [N]
!REAL, DIMENSION(:,:,:), ALLOCATABLE :: XFDRAG_GLB ! Drag force, perpendicular to Urel [N]
!REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: XFAERO_RE_GLB ! Aerodyn. force (lift+drag) in RE [N]
!REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: XFAERO_RG_GLB ! Aerodyn. force (lift+drag) in RG [N]
!
!INTEGER :: NNB_BLAELT ! Number of blade elements
!LOGICAL :: LTIMESPLIT ! Flag to apply Time splitting method
!LOGICAL :: LTIPLOSSG ! Flag to apply Glauert's tip loss correction
!LOGICAL :: LTECOUTPTS ! Flag to get Tecplot file output of element points
!
! B. From MODD_EOL_SHARED_IO:
! for namelist NAM_EOL_ALM
!CHARACTER(LEN=100) :: CFARM_CSVDATA ! Farm file to read
!CHARACTER(LEN=100) :: CTURBINE_CSVDATA ! Turbine file to read
!CHARACTER(LEN=100) :: CBLADE_CSVDATA ! Blade file to read
!CHARACTER(LEN=100) :: CAIRFOIL_CSVDATA ! Airfoil file to read
!CHARACTER(LEN=3) :: CINTERP ! Interpolation method for wind speed
! for output
!REAL, DIMENSION(:), ALLOCATABLE :: XTHRUT ! Thrust [N]
!REAL, DIMENSION(:), ALLOCATABLE :: XTORQT ! Torque [Nm]
!REAL, DIMENSION(:), ALLOCATABLE :: XPOWT ! Power [W]
!
!
!-------------------------------------------------------------------------------
!
!
!* 1. INITIALIZATIONS
! ---------------
!
!* 1.1 Subdomain (CPU) indices
!
CALL GET_INDICE_ll(IIB,IJB,IIE,IJE) ! Get begin and end domain index (CPU)
IKU = SIZE(PUT_M,3) ! Top of the domain end index
IKB=1+JPVEXT ! Vertical begin index
IKE=IKU-JPVEXT ! Vertical end index
!
!* 1.2 Some usefull integers
!
INB_WT = TFARM%NNB_TURBINES
INB_B = TTURBINE%NNB_BLADES
INB_BELT = TBLADE%NNB_BLAELT
!
!* 1.3 Vertical coordinate in case of interpolation
!
IF (CINTERP=='8NB') THEN
DO JK=1,IKU-1
ZZH(:,:,JK) = (0.5*(XZZ(:,:,JK)+XZZ(:,:,JK+1))-XZS(:,:))
END DO
ZZH(:,:,IKU) = 2*ZZH(:,:,IKU-1) - ZZH(:,:,IKU-2)
END IF
!
!* 1.4 Set to zeros at each MNH time steps
!
! Averaged variables (over time splitting)
ZAOA_ATS(:,:,:) = 0.
ZFLIFT_ATS(:,:,:) = 0.
ZFDRAG_ATS(:,:,:) = 0.
ZFAERO_RE_ATS(:,:,:,:) = 0.
ZFAERO_RG_ATS(:,:,:,:) = 0.
!
! Global variables (seen by all CPU)
XAOA_GLB(:,:,:) = 0.
XFLIFT_GLB(:,:,:) = 0.
XFDRAG_GLB(:,:,:) = 0.
XFAERO_RE_GLB(:,:,:,:) = 0.
XFAERO_RG_GLB(:,:,:,:) = 0.
!
XTHRUT(:) = 0.
XTORQT(:) = 0.
!
!
!-------------------------------------------------------------------------------
!
!* 2. COMPUTES WTCFL CRITERIA
! -----------------------
!
!* 2.1 Computing the highest timestep acceptable
ZMAXTSTEP = ABS( MIN(MIN_ll(PDXX(:,:,:),IINFO),&
MIN_ll(PDYY(:,:,:),IINFO),&
MIN_ll(PDZZ(:,:,:),IINFO))&
/(MAXVAL(TFARM%XOMEGA(:))*TTURBINE%XR_MAX))
!
IF (.NOT.LTIMESPLIT) THEN
!* 2.2 Checking conditions
! If time step too high : abort
IF (PTSTEP > ZMAXTSTEP) THEN
CALL EOL_WTCFL_ERROR(ZMAXTSTEP)
STOP
! If time step ok, continue
ELSE
INBSUBCOUNT = 1
ZTSUBSTEP = PTSTEP/INBSUBCOUNT
END IF
ELSE
!* 2.3 Timesplitting : new sub-timestep
INBSUBCOUNT = INT(PTSTEP/ZMAXTSTEP) + 1
ZTSUBSTEP = PTSTEP/INBSUBCOUNT
CALL PRINT_TSPLIT(INBSUBCOUNT, ZTSUBSTEP)
END IF
!
!* 2.4 Start looping over sub-timesteps
DO KTSUBCOUNT=1,INBSUBCOUNT
!
!
!-------------------------------------------------------------------------------
!
!* 3. KINEMATICS COMPUTATIONS
! -----------------------
!
CALL EOL_KINE_ALM(KTCOUNT, KTSUBCOUNT, ZTSUBSTEP, PTSTEP)
!
!
!-------------------------------------------------------------------------------
!
!* 4. COMPUTES AERODYNAMIC FORCES THAT ACTS ON THE BLADES DUE TO THE WIND
! --------------------------------------------------------------
!
!* 4.1 Finding the position of wind turbines
!
! Loop over domain
DO JK=IKB,IKE
DO JJ=IJB,IJE
DO JI=IIB,IIE
! Loop over wind turbines
DO JROT=1, INB_WT
DO JBLA=1, INB_B
DO JBELT=1, INB_BELT
! Position test
IF (XPOS_ELT_RG(JROT,JBLA,JBELT,1) >= XXHAT(JI) .AND. &
XPOS_ELT_RG(JROT,JBLA,JBELT,1) < XXHAT(JI) + PDXX(JI,JJ,JK)) THEN
!
IF (XPOS_ELT_RG(JROT,JBLA,JBELT,2) >= XYHAT(JJ) .AND. &
XPOS_ELT_RG(JROT,JBLA,JBELT,2) < XYHAT(JJ) + PDYY(JI,JJ,JK)) THEN
!
IF (XPOS_ELT_RG(JROT,JBLA,JBELT,3) >= XZZ(JI,JJ,JK) .AND. &
XPOS_ELT_RG(JROT,JBLA,JBELT,3) < XZZ(JI,JJ,JK) + PDZZ(JI,JJ,JK)) THEN
!
!* 4.2 Extracting the wind
!
SELECT CASE(CINTERP)
CASE('CLS')
ZUT_I = PUT_M(JI,JJ,JK)
ZVT_I = PVT_M(JI,JJ,JK)
ZWT_I = PWT_M(JI,JJ,JK)
ZRHO_I = PRHO_M(JI,JJ,JK)
CASE('8NB')
ZUT_I = INTERP_LIN8NB(XPOS_ELT_RG(JROT,JBLA,JBELT,:),&
JI,JJ,JK,PUT_M,ZZH)
ZVT_I = INTERP_LIN8NB(XPOS_ELT_RG(JROT,JBLA,JBELT,:),&
JI,JJ,JK,PVT_M,ZZH)
ZWT_I = INTERP_LIN8NB(XPOS_ELT_RG(JROT,JBLA,JBELT,:),&
JI,JJ,JK,PWT_M,ZZH)
ZRHO_I = INTERP_LIN8NB(XPOS_ELT_RG(JROT,JBLA,JBELT,:),&
JI,JJ,JK,PRHO_M,ZZH)
END SELECT
ZWIND_VEL_RG(1) = ZUT_I
ZWIND_VEL_RG(2) = ZVT_I
ZWIND_VEL_RG(3) = ZWT_I
!
!* 4.3 Calculating the wind in RE frame
!
ZWIND_VEL_RE(:) = MATMUL(XMAT_RE_RG(JROT,JBLA,JBELT,:,:), ZWIND_VEL_RG(:))
!
!* 4.4 Calculating the relative wind speed in RE frame + norm
!
ZWINDREL_VEL_RE(:) = ZWIND_VEL_RE(:) - XTVEL_ELT_RE(JROT,JBLA,JBELT,:)
ZWINDREL_VEL = NORM(ZWINDREL_VEL_RE)
!
!* 4.5 Calculating the angle of attack
!
ZAOA = ATAN2(ZWINDREL_VEL_RE(1), ZWINDREL_VEL_RE(2))
!
!* 4.6 Getting aerodynamic coefficients from tabulated data
!
ZRAD = XELT_RAD(JROT,JBLA,JBELT) ! Radius of the element
IAID = GET_AIRFOIL_ID(TTURBINE,TBLADE,TAIRFOIL,ZRAD) ! ID of the airfoil
ZCLIFT = INTERP_SPLCUB(ZAOA*180/XPI, &
TAIRFOIL(IAID)%XAA,&
TAIRFOIL(IAID)%XCL)
ZCDRAG = INTERP_SPLCUB(ZAOA*180/XPI, &
TAIRFOIL(IAID)%XAA,&
TAIRFOIL(IAID)%XCD)
!
!* 4.7 Tip loss correction (Glauert)
!
IF (LTIPLOSSG) THEN
ZPHI = + ZAOA &
+ TFARM%XBLA_PITCH(JROT) &
+ XTWIST_ELT(JROT,JBLA,JBELT)
IF (ZPHI > 0.0) THEN
ZFTIPL = (2.0/XPI)*ACOS(MIN( &
1.0, EXP(-(TTURBINE%NNB_BLADES/2.0) &
*(TTURBINE%XR_MAX-ZRAD)/(ZRAD*SIN(ZPHI)))))
ELSE
ZFTIPL = 1.0
END IF
ZCLIFT = ZFTIPL*ZCLIFT
ZCDRAG = ZFTIPL*ZCDRAG
END IF
!
!* 4.8 Computing aerodynamic forces in relative frame
! that act on blades (wind->blade)
ZFLIFT = 0.5*ZRHO_I*XSURF_ELT(JROT,JBLA,JBELT)*ZCLIFT*ZWINDREL_VEL**2
ZFDRAG = 0.5*ZRHO_I*XSURF_ELT(JROT,JBLA,JBELT)*ZCDRAG*ZWINDREL_VEL**2
!
!* 4.9 Evaluating the aerodynamiques forces in RE frame
! that act on blades (wind->blade)
ZFAERO_RE(1) = SIN(ZAOA)*ZFDRAG + COS(ZAOA)*ZFLIFT
ZFAERO_RE(2) = COS(ZAOA)*ZFDRAG - SIN(ZAOA)*ZFLIFT
ZFAERO_RE(3) = .0 ! 2D flow around arifoil assumption
!
!* 4.10 Evaluating the aerodynamiques forces in RG frame
! that act on blades (wind->blade)
ZFAERO_RG(:) = MATMUL(XMAT_RG_RE(JROT,JBLA,JBELT,:,:), ZFAERO_RE(:))
!
!* 4.11 Adding it to the cell of Meso-NH
PFX_RG(JI,JJ,JK) = PFX_RG(JI,JJ,JK) + ZFAERO_RG(1) / FLOAT(INBSUBCOUNT)
PFY_RG(JI,JJ,JK) = PFY_RG(JI,JJ,JK) + ZFAERO_RG(2) / FLOAT(INBSUBCOUNT)
PFZ_RG(JI,JJ,JK) = PFZ_RG(JI,JJ,JK) + ZFAERO_RG(3) / FLOAT(INBSUBCOUNT)
!
!* 4.12 Storing mean values over one full MNH timestep
! (all the sub-timesteps values are averaged)
ZAOA_ATS(JROT,JBLA,JBELT) = ZAOA_ATS(JROT,JBLA,JBELT) &
+ ZAOA / FLOAT(INBSUBCOUNT)
ZFLIFT_ATS(JROT,JBLA,JBELT) = ZFLIFT_ATS(JROT,JBLA,JBELT) &
+ ZFLIFT / FLOAT(INBSUBCOUNT)
ZFDRAG_ATS(JROT,JBLA,JBELT) = ZFDRAG_ATS(JROT,JBLA,JBELT) &
+ ZFDRAG / FLOAT(INBSUBCOUNT)
ZFAERO_RE_ATS(JROT,JBLA,JBELT,:)= ZFAERO_RE_ATS(JROT,JBLA,JBELT,:) &
+ ZFAERO_RE(:) / FLOAT(INBSUBCOUNT)
ZFAERO_RG_ATS(JROT,JBLA,JBELT,:)= ZFAERO_RG_ATS(JROT,JBLA,JBELT,:) &
+ ZFAERO_RG(:) / FLOAT(INBSUBCOUNT)
!
! End of position tests
END IF
END IF
END IF
! End of wind turbine loops
END DO
END DO
END DO
! End of domain loops
END DO
END DO
END DO
! End of sub-time loop
END DO
!
!
!* 4.13 Top and bottom conditions
PFX_RG(:,:,IKB-1) = PFX_RG(:,:,IKB)
PFX_RG(:,:,IKE+1) = PFX_RG(:,:,IKE)
!
PFY_RG(:,:,IKB-1) = PFY_RG(:,:,IKB)
PFY_RG(:,:,IKE+1) = PFY_RG(:,:,IKE)
!
PFZ_RG(:,:,IKB-1) = PFZ_RG(:,:,IKB)
PFZ_RG(:,:,IKE+1) = PFZ_RG(:,:,IKE)
!
!
!-------------------------------------------------------------------------------
!
!* 5. SHARING THE DATAS OVER THE CPUS
! -------------------------------
CALL MPI_ALLREDUCE(ZAOA_ATS, XAOA_GLB, SIZE(XAOA_GLB), &
MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO)
CALL MPI_ALLREDUCE(ZFLIFT_ATS, XFLIFT_GLB, SIZE(XFLIFT_GLB), &
MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO)
CALL MPI_ALLREDUCE(ZFDRAG_ATS, XFDRAG_GLB, SIZE(XFDRAG_GLB), &
MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO)
CALL MPI_ALLREDUCE(ZFAERO_RE_ATS, XFAERO_RE_GLB, SIZE(XFAERO_RE_GLB),&
MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO)
CALL MPI_ALLREDUCE(ZFAERO_RG_ATS, XFAERO_RG_GLB, SIZE(XFAERO_RG_GLB),&
MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO)
!
!
!-------------------------------------------------------------------------------
!
!* 6. COMPUTING THRUST, TORQUE AND POWER
! ---------------------------------
!
IF(IP == 1) THEN
DO JROT=1,TFARM%NNB_TURBINES
DO JBLA=1, TTURBINE%NNB_BLADES
DO JBELT=1, TBLADE%NNB_BLAELT
!
!* 6.1 Preliminaries
! Aerodynamic load (wind->blade) in RH
ZFAERO_RH(:) = MATMUL(XMAT_RH_RG(JROT,:,:), &
XFAERO_RG_GLB(JROT,JBLA,JBELT,:))
! Distance between element and hub in RG
ZDIST_HBELT_RG(:) = XPOS_ELT_RG(JROT,JBLA,JBELT,:) - XPOS_HUB_RG(JROT,:)
! Distance between element and hub in RH
ZDIST_HBELT_RH(:) = MATMUL(XMAT_RH_RG(JROT,:,:),ZDIST_HBELT_RG(:))
!
!* 6.2 Thrust (wind->rotor): in RH
XTHRUT(JROT) = XTHRUT(JROT) + ZFAERO_RH(3) ! Only Z component
!* 6.3 Torque (wind->rotor) in RH
Z3D_TORQT = CROSS(ZDIST_HBELT_RH(:),ZFAERO_RH(:))
XTORQT(JROT) = XTORQT(JROT) + Z3D_TORQT(3) ! Only Z component
END DO
END DO
!
!* 6.4 Power (wind->rotor)
XPOWT(JROT) = XTORQT(JROT) * TFARM%XOMEGA(JROT)
END DO
END IF
!
!
END SUBROUTINE EOL_ALM