Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
!MNH_LIC Copyright 1995-2022 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! ########################
MODULE MODI_PHYS_PARAM_n
! ########################
!
!
INTERFACE
!
SUBROUTINE PHYS_PARAM_n( KTCOUNT, TPFILE, &
PRAD, PSHADOWS, PKAFR, PGROUND, PMAFL, PDRAG,PEOL, PTURB, &
PTRACER, PTIME_BU, PWETDEPAER, OMASKkids, OCLOUD_ONLY )
!
USE MODD_IO, ONLY: TFILEDATA
use modd_precision, only: MNHTIME
!
INTEGER, INTENT(IN) :: KTCOUNT ! temporal iteration count
TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Synchronous output file
! advection schemes
REAL(kind=MNHTIME), DIMENSION(2), INTENT(INOUT) :: PRAD,PSHADOWS,PKAFR,PGROUND,PTURB,PMAFL,PDRAG,PTRACER,PEOL ! to store CPU
! time for computing time
REAL(kind=MNHTIME), DIMENSION(2), INTENT(INOUT) :: PTIME_BU ! time used in budget&LES budgets statistics
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PWETDEPAER
LOGICAL, DIMENSION(:,:), INTENT(IN) :: OMASKkids ! kids domains mask
LOGICAL, INTENT(OUT) :: OCLOUD_ONLY ! conditionnal radiation computations for
! the only cloudy columns
!
END SUBROUTINE PHYS_PARAM_n
!
END INTERFACE
!
END MODULE MODI_PHYS_PARAM_n
!
! ########################################################################################
SUBROUTINE PHYS_PARAM_n( KTCOUNT, TPFILE, &
PRAD, PSHADOWS, PKAFR, PGROUND, PMAFL, PEOL, PDRAG, PTURB, &
PTRACER, PTIME_BU, PWETDEPAER, OMASKkids, OCLOUD_ONLY )
! ########################################################################################
!
!!**** *PHYS_PARAM_n * -monitor of the parameterizations used by model _n
!!
!! PURPOSE
!! -------
! The purpose of this routine is to update the sources by adding the
! parameterized terms. This is realized by sequentially calling the
! specialized routines.
!
!!** METHOD
!! ------
!! The first parametrization is the radiation scheme:
!! ----------------
!! * CRAD = 'FIXE'
!! In this case, a temporal interpolation is performed for the downward
!! surface fluxes XFLALWD and XFLASWD.
!! * CRAD = 'ECMWF'
!! Several tests are performed before calling the radiation computations
!! interface with the ECMWF radiation scheme code. A control is made to
!! ensure that:
!! - the full radiation code is called at the first model timestep
!! - there is a priority for calling the full radiation instead of the
!! cloud-only approximation if both must be called at the current
!! timestep
!! - the cloud-only option (approximation) is coherent with the
!! occurence of one cloudy vertical column at least
!! If all the above conditions are fulfilled (GRAD is .TRUE.) then the
!! position of the sun is computed in routine SUNPOS_n and the interfacing
!! routine RADIATIONS is called to update the radiative tendency XDTHRAD
!! and the downward surface fluxes XFLALWD and XFLASWD. Finally, the
!! radiative tendency is integrated as a source term in the THETA prognostic
!! equation.
!!
!! The second parameterization is the soil scheme:
!! -----------
!!
!! externalized surface
!!
!! The third parameterization is the turbulence scheme:
!! -----------------
!! * CTURB='NONE'
!! no turbulent mixing is taken into account
!! * CTURB='TKEL'
!! The turbulent fluxes are computed according to a one and half order
!! closure of the hydrodynamical equations. This scheme is based on a
!! prognostic for the turbulent kinetic energy and a mixing length
!! computation ( the mesh size or a physically based length). Other
!! turbulent moments are diagnosed according to a stationarization of the
!! second order turbulent moments. This turbulent scheme forecasts
!! either a purely vertical turbulent mixing or 3-dimensional mixing
!! according to its internal degrees of freedom.
!!
!!
!! The LAST parameterization is the chemistry scheme:
!! -----------------
!! The chemistry part of MesoNH has two namelists, NAM_SOLVER for the
!! parameters concerning the stiff solver, and NAM_MNHCn concerning the
!! configuration and options of the chemistry module itself.
!! The switch LUSECHEM in NAM_CONF acitvates or deactivates the chemistry.
!! The only variables of MesoNH that are modified by chemistry are the
!! scalar variables. If calculation of chemical surface fluxes is
!! requested, those fluxes are calculated before
!! entering the turbulence scheme, since those fluxes are taken into
!! account by TURB as surface boundary conditions.
!! CAUTION: chemistry has allways to be called AFTER ALL OTHER TERMS
!! that affect the scalar variables (dynamical terms, forcing,
!! parameterizations (like TURB, CONVECTION), since it uses the variables
!! XRSVS as input in case of the time-split option.
!!
!! EXTERNAL
!! --------
!! Subroutine SUNPOS_n : computes the position of the sun
!! Subroutine RADIATIONS : computes the radiative tendency and fluxes
!! Subroutine TSZ0 : computes the surface from temporally
!! interpolated Ts and given z0
!! Subroutine ISBA : computes the surface fluxes from a soil scheme
!! Subroutine TURB : computes the turbulence source terms
!! Subroutine CONVECTION : computes the convection source term
!! Subroutine CH_SURFACE_FLUX_n: computes the surface flux for chemical
!! species
!! Subroutine CH_MONITOR_n : computes the chemistry source terms
!! that are applied to the scalar variables
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! USE MODD_DYN
!! USE MODD_CONF
!! USE MODD_CONF_n
!! USE MODD_CURVCOR_n
!! USE MODD_DYN_n
!! USE MODD_FIELD_n
!! USE MODD_GR_FIELD_n
!! USE MODD_LSFIELD_n
!! USE MODD_GRID_n
!! USE MODD_LBC_n
!! USE MODD_PARAM_RAD_n
!! USE MODD_RADIATIONS_n
!! USE MODD_REF_n
!! USE MODD_LUNIT_n
!! USE MODD_TIME_n
!! USE MODD_CH_MNHC_n
!!
!! REFERENCE
!! ---------
!! None
!!
!! AUTHOR
!! ------
!! J. Stein * Meteo-France *
!!
!! MODIFICATIONS
!! -------------
!! Original 05/01/95
!! Modifications Feb 14, 1995 (J.Cuxart) add the I/O arguments,
!! the director cosinus and change the names of the surface fluxes
!! Modifications March 21, 1995 (J.M.Carriere) take into account liquid
!! water
!! June 30,1995 (J.Stein) initialize at 0 the surf. fluxes
!! Modifications Sept. 1, 1995 (S.Belair) ISBA scheme
!! Modifications Sept.25, 1995 (J.Stein) switch on the radiation scheme
!! Modifications Sept. 11, 1995 (J.-P. Pinty) radiation scheme
!! Nov. 15, 1995 (J.Stein) cleaning + change the temporal
!! algorithm for the soil scheme-turbulence
!! Jan. 23, 1996 (J.Stein) add a new option for the surface
!! fluxes where Ts and z0 are given
!! March 18, 1996 (J.Stein) add the cloud fraction
!! March 28, 1996 (J.Stein) the soil scheme gives energy
!! fluxes + cleaning
!! June 17, 1996 (Lafore) statistics of computing time
!! August 4, 1996 (K. Suhre) add chemistry
!! Oct. 12, 1996 (J.Stein) use XSRCM in the turbulence
!! scheme
!! Nov. 18, 1996 (J.-P. Pinty) add domain translation
!! change arg. in radiations
!! Fev. 4, 1997 (J.Viviand) change isba's calling for ice
!! Jun. 22, 1997 (J.Stein) change the equation system and use
!! the absolute pressure
!! Jul. 09, 1997 (V.Masson) add directional z0
!! Jan. 24, 1998 (P.Bechtold) add convective transport for tracers
!! Jan. 24, 1998 (J.-P. Pinty) split SW and LW part for radiation
!! Mai. 10, 1999 (P.Bechtold) shallow convection
!! Oct. 20, 1999 (P.Jabouille) domain translation for turbulence
!! Jan. 04, 2000 (V.Masson) removes TSZ0 case
!! Jan. 04, 2000 (V.Masson) modifies albedo computation
! Jul 02, 2000 (F.Solmon/V.Masson) adaptation for patch approach
!! Nov. 15, 2000 (V.Masson) LES routines
!! Nov. 15, 2000 (V.Masson) effect of slopes on surface fluxes
!! Feb. 02, 2001 (P.Tulet) add friction velocities and aerodynamical
!! resistance (patch approach)
!! Jan. 04, 2000 (V.Masson) modify surf_rad_modif computation
!! Mar. 04, 2002 (F.Solmon) new interface for radiation call
!! Nov. 06, 2002 (V.Masson) LES budgets & budget time counters
!! Jan. 2004 (V.Masson) surface externalization
!! Jan. 13, 2004 (J.Escobar) bug correction : compute "GRAD" in parallel
!! Jan. 20, 2005 (P. Tulet) add dust sedimentation
!! Jan. 20, 2005 (P. Tulet) climatologic SSA
!! Jan. 20, 2005 (P. Tulet) add aerosol / dust scavenging
!! Jul. 2005 (N. Asencio) use the two-way result-fields
!! before ground_param call
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
!! May 2006 Remove EPS
!! Oct. 2007 (J.Pergaud) Add shallow_MF
!! Oct. 2009 (C.Lac) Introduction of different PTSTEP according to the
!! advection schemes
!! Oct. 2009 (V. MAsson) optimization of Pergaud et al massflux scheme
!! Aug. 2010 (V.Masson, C.Lac) Exchange of SBL_DEPTH for
!! reproducibility
!! Oct. 2010 (J.Escobar) init ZTIME_LES_MF ( pb detected with g95 )
!! Feb. 2011 (V.Masson, C.Lac) SBL_DEPTH values on outer pts
!! for RMC01
!! Sept.2011 (J.Escobar) init YINST_SFU ='M'
!!
!! Specific for 2D modeling :
!!
!! 06/2010 (P.Peyrille) add Call to aerozon.f90 if LAERO_FT=T
!! to update
!! aerosols and ozone climatology at each call to
!! phys_param otherwise it is constant to monthly average
!! 03/2013 (C.Lac) FIT temporal scheme
!! 01/2014 (C.Lac) correction for the nesting of 2D surface
!! fields if the number of the son model does not
!! follow the number of the dad model
!! J.Escobar 21/03/2013: for HALOK comment all NHALO=1 test
!! 2014 (M.Faivre)
!! 06/2016 (G.Delautier) phasage surfex 8
!! 2016 B.VIE LIMA
!! M. Leriche 02/2017 Avoid negative fluxes if sv=0 outside the physics domain
!! C.Lac 10/2017 : ch_monitor and aer_monitor extracted from phys_param
!! to be called directly by modeln as the last process
!! 02/2018 Q.Libois ECRAD
! P. Wautelet 28/03/2018: replace TEMPORAL_DIST by DATETIME_DISTANCE
! P. Wautelet 05/2016-04/2018: new data structures and calls for I/O
! P. Wautelet 28/03/2019: use MNHTIME for time measurement variables
! P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
! P. Wautelet 20/05/2019: add name argument to ADDnFIELD_ll + new ADD4DFIELD_ll subroutine
! P. Wautelet 21/11/2019: ZRG_HOUR and ZRAT_HOUR are now parameter arrays
! C. Lac 11/2019: correction in the drag formula and application to building in addition to tree
! F. Auguste 02/2021: add IBM
! JL Redelsperger 03/2021: add the SW flux penetration for Ocean model case
! P. Wautelet 30/11/2022: compute XTHW_FLUX, XRCW_FLUX and XSVW_FLUX only when needed
! A. Costes 12/2021: add Blaze fire model

RODIER Quentin
committed
! Q. Rodier 2022: integration with PHYEX
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
!!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_ADV_n, ONLY : XRTKEMS
USE MODD_AIRCRAFT_BALLOON, ONLY: LFLYER
USE MODD_ARGSLIST_ll, ONLY : LIST_ll
USE MODD_BLOWSNOW, ONLY : LBLOWSNOW,XRSNOW
USE MODD_BUDGET, ONLY: NBUDGET_TH, NBUDGET_RV, NBUDGET_RC, NBUDGET_RI, NBUDGET_SV1, &
TBUDGETS, xtime_bu_process, TBUCONF
USE MODD_CH_AEROSOL
USE MODD_CH_MNHC_n, ONLY : LUSECHEM, &! indicates if chemistry is used
LCH_CONV_SCAV, &
LCH_CONV_LINOX
USE MODD_CLOUD_MF_n
USE MODD_CONDSAMP
USE MODD_CONF
USE MODD_CONF_n
USE MODD_CST, ONLY : CST
USE MODD_CTURB, ONLY : CSTURB
USE MODD_CURVCOR_n
USE MODD_DEEP_CONVECTION_n
USE MODD_DEF_EDDY_FLUX_n ! Ajout PP
USE MODD_DEF_EDDYUV_FLUX_n ! Ajout PP
USE MODD_DIAG_IN_RUN, ONLY: LDIAG_IN_RUN, XCURRENT_TKE_DISS
USE MODD_DIM_n, ONLY: NIMAX_ll, NJMAX_ll
USE MODD_DRAGBLDG_n
USE MODD_DRAGTREE_n
USE MODD_DUST
USE MODD_DYN
USE MODD_DYN_n
USE MODD_EOL_MAIN, ONLY: LMAIN_EOL, CMETH_EOL, NMODEL_EOL
USE MODD_FIELD_n
USE MODD_FRC
USE MODD_FRC_n
USE MODD_GRID
USE MODD_GRID_n
USE MODD_IBM_PARAM_n, ONLY: LIBM, XIBM_EPSI, XIBM_LS, XIBM_XMUT
USE MODD_ICE_C1R3_DESCR, ONLY : XRTMIN_C1R3=>XRTMIN
USE MODD_IO, ONLY: TFILEDATA
USE MODD_LATZ_EDFLX
USE MODD_LBC_n
USE MODD_LES
USE MODD_LES_BUDGET
USE MODD_LSFIELD_n
USE MODD_LUNIT_n
USE MODD_METRICS_n
USE MODD_MNH_SURFEX_n
USE MODD_NESTING, ONLY : XWAY,NDAD, NDXRATIO_ALL, NDYRATIO_ALL
USE MODD_NSV, ONLY : NSV, NSV_LGBEG, NSV_LGEND, &
NSV_SLTBEG,NSV_SLTEND,NSV_SLT,&
NSV_AERBEG,NSV_AEREND, &
NSV_DSTBEG,NSV_DSTEND, NSV_DST,&
NSV_LIMA_NR,NSV_LIMA_NS,NSV_LIMA_NG,NSV_LIMA_NH
USE MODD_OCEANH
USE MODD_OUT_n
USE MODD_PARAM_C2R2, ONLY : LSEDC
USE MODD_PARAMETERS
USE MODD_PARAM_ICE, ONLY : LSEDIC
USE MODD_PARAM_KAFR_n
USE MODD_PARAM_LIMA, ONLY : MSEDC => LSEDC, XRTMIN_LIMA=>XRTMIN
USE MODD_PARAM_MFSHALL_n
USE MODD_PARAM_n
USE MODD_PARAM_RAD_n
USE MODD_PASPOL
USE MODD_PASPOL_n
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
USE MODD_PRECIP_n
use modd_precision, only: MNHTIME
USE MODD_RADIATIONS_n
USE MODD_RAIN_ICE_DESCR, ONLY: XRTMIN
USE MODD_REF, ONLY: LCOUPLES
USE MODD_REF_n
USE MODD_SALT
USE MODD_SHADOWS_n
USE MODD_SUB_PHYS_PARAM_n
USE MODD_TIME_n
USE MODD_TIME_n
USE MODD_TIME, ONLY : TDTEXP ! Ajout PP
USE MODD_TURB_CLOUD, ONLY : CTURBLEN_CLOUD,NMODEL_CLOUD, &
XCEI,XCEI_MIN,XCEI_MAX,XCOEF_AMPL_SAT
USE MODD_TURB_FLUX_AIRCRAFT_BALLOON, ONLY : XTHW_FLUX, XRCW_FLUX, XSVW_FLUX
USE MODD_TURB_n
USE MODE_AERO_PSD
use mode_budget, only: Budget_store_end, Budget_store_init
USE MODE_DATETIME
USE MODE_DUST_PSD
USE MODE_ll
USE MODE_GATHER_ll
USE MODE_MNH_TIMING
USE MODE_MODELN_HANDLER
USE MODE_MPPDB
USE MODE_FILL_DIMPHYEX, ONLY: FILL_DIMPHYEX
USE MODE_SALT_PSD
USE MODI_AEROZON ! Ajout PP
USE MODI_CONDSAMP
USE MODI_CONVECTION
USE MODI_DRAG_BLD
USE MODI_DRAG_VEG
USE MODI_DUST_FILTER
USE MODI_EDDY_FLUX_n ! Ajout PP
USE MODI_EDDY_FLUX_ONE_WAY_n ! Ajout PP
USE MODI_EDDYUV_FLUX_n ! Ajout PP
USE MODI_EDDYUV_FLUX_ONE_WAY_n ! Ajout PP
USE MODI_EOL_MAIN
USE MODI_GROUND_PARAM_n
USE MODI_GRADIENT_M
USE MODI_GRADIENT_W
USE MODI_PASPOL
USE MODI_RADIATIONS
USE MODI_SALT_FILTER
USE MODI_SEDIM_DUST
USE MODI_SEDIM_SALT
USE MODI_SHALLOW_MF_PACK
USE MODI_SUNPOS_n
USE MODI_SURF_RAD_MODIF
USE MODI_SWITCH_SBG_LES_N
USE MODI_TURB
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
INTEGER, INTENT(IN) :: KTCOUNT ! temporal iteration count
TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Synchronous output file
! advection schemes
REAL(kind=MNHTIME), DIMENSION(2), INTENT(INOUT) :: PRAD,PSHADOWS,PKAFR,PGROUND,PTURB,PMAFL,PDRAG,PTRACER,PEOL ! to store CPU
! time for computing time
REAL(kind=MNHTIME), DIMENSION(2), INTENT(INOUT) :: PTIME_BU ! time used in budget&LES budgets statistics
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PWETDEPAER
LOGICAL, DIMENSION(:,:), INTENT(IN) :: OMASKkids ! kids domains mask
LOGICAL, INTENT(OUT) :: OCLOUD_ONLY ! conditionnal radiation computations for
! the only cloudy columns
!
!
!* 0.2 declarations of local variables
!
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFU ! surface flux of x and
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFV ! y component of wind
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFTH ! surface flux of theta
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFRV ! surface flux of vapor
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSFSV ! surface flux of scalars
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFCO2! surface flux of CO2
!
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZDIR_ALB ! direct albedo
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSCA_ALB ! diffuse albedo
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZEMIS ! emissivity
REAL, DIMENSION(:,:), ALLOCATABLE :: ZTSRAD ! surface temperature
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZRGDST,ZSIGDST,ZNDST,ZSVDST
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZRGSLT,ZSIGSLT,ZNSLT,ZSVSLT
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZRGAER,ZSIGAER,ZNAER,ZSVAER
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZSVT
!
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZEXN ! Atmospheric density and Exner
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSIGMF ! MF contribution to XSIGS
!
REAL, DIMENSION(0:24), parameter :: ZRG_HOUR = (/ 0., 0., 0., 0., 0., 32.04, 114.19, &
228.01, 351.25, 465.49, 557.24, &
616.82, 638.33, 619.43, 566.56, &
474.71, 359.20, 230.87, 115.72, &
32.48, 0., 0., 0., 0., 0. /)
!
REAL, DIMENSION(0:24), parameter :: ZRAT_HOUR = (/ 326.00, 325.93, 325.12, 324.41, &
323.16, 321.95, 322.51, 325.16, &
328.01, 331.46, 335.58, 340.00, &
345.20, 350.32, 354.20, 356.58, &
356.56, 355.33, 352.79, 351.34, &
347.00, 342.00, 337.00, 332.00, &
326.00 /)
!
!
character(len=6) :: ynum
INTEGER :: IHOUR ! parameters necessary for the temporal
REAL :: ZTIME, ZDT ! interpolation
REAL :: ZTEMP_DIST ! time between 2 instants (in seconds)
!
LOGICAL :: GRAD ! conditionnal call for the full radiation
! computations
REAL :: ZRAD_GLOB_ll ! 'real' global parallel mask of 'GRAD'
INTEGER :: INFO_ll ! error report of parallel routines
! the only cloudy columns
!
REAL(kind=MNHTIME), DIMENSION(2) :: ZTIME1, ZTIME2, ZTIME3, ZTIME4 ! for computing time analysis
REAL(kind=MNHTIME), DIMENSION(2) :: ZTIME_LES_MF ! time spent in LES computation in shallow conv.
LOGICAL :: GDCONV ! conditionnal call for the deep convection
! computations
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZRC, ZRI, ZWT ! additional dummies
REAL, DIMENSION(:,:), ALLOCATABLE :: ZDXDY ! grid area
! for rc, ri, w required if main variables not allocated
!
INTEGER :: IIU, IJU, IKU ! dimensional indexes
!
INTEGER :: JSV ! Loop index for Scalar Variables
INTEGER :: JSWB ! loop on SW spectral bands
INTEGER :: IIB,IIE,IJB,IJE, IKB, IKE, JI,JJ
INTEGER :: IMODEIDX
! index values for the Beginning or the End of the physical
! domain in x and y directions
TYPE(LIST_ll), POINTER :: TZFIELDS_ll ! list of fields to exchange
INTEGER :: IINFO_ll ! return code of parallel routine
!
!* variables for writing in a fm file
!
INTEGER :: IRESP ! IRESP : return-code if a problem appears
!in LFI subroutines at the open of the file
INTEGER :: ILUOUT ! logical unit numbers of output-listing
INTEGER :: IMI ! model index
INTEGER :: JKID ! loop index to look for the KID models
REAL :: ZINIRADIUSI, ZINIRADIUSJ ! ORILAM initial radius
REAL, DIMENSION(NMODE_DST) :: ZINIRADIUS ! DUST initial radius
REAL, DIMENSION(NMODE_SLT) :: ZINIRADIUS_SLT ! Sea Salt initial radius
REAL, DIMENSION(SIZE(XRSVS,1), SIZE(XRSVS,2), SIZE(XRSVS,3), SIZE(XRSVS,4)) :: ZRSVS
LOGICAL :: GCLD ! conditionnal call for dust wet deposition
! * arrays to store the surface fields before radiation and convection scheme
! calls
INTEGER :: IMODSON ! Number of son models of IMI with XWAY=2
INTEGER :: IKIDM ! index loop
INTEGER :: IGRADIENTS ! Number of horizontal gradients in turb
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSAVE_INPRR,ZSAVE_INPRS,ZSAVE_INPRG,ZSAVE_INPRH
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSAVE_INPRC,ZSAVE_PRCONV,ZSAVE_PRSCONV
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZSAVE_DIRFLASWD, ZSAVE_SCAFLASWD,ZSAVE_DIRSRFSWD
! for ocean model
INTEGER :: JKM , JSW ! vertical index loop
REAL :: ZSWA,TINTSW ! index for SW interpolation and int time betwenn forcings (ocean model)
REAL, DIMENSION(:), ALLOCATABLE :: ZIZOCE(:) ! Solar flux penetrating in ocean
REAL, DIMENSION(:), ALLOCATABLE :: ZPROSOL1(:),ZPROSOL2(:) ! Funtions for penetrating solar flux
!
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZLENGTHM, ZLENGTHH, ZMFMOIST !OHARAT turb option from AROME (not allocated in MNH)
! to be moved as optional args for turb
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZTDIFF, ZTDISS
REAL, DIMENSION(:),ALLOCATABLE :: ZXHAT_ll,ZYHAT_ll ! Position x/y in the conformal
! plane (array on the complete domain)
REAL, DIMENSION(:,:), ALLOCATABLE :: ZDIST ! distance from the center of the cooling
!
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZHGRAD ! horizontal gradient used in turb
TYPE(DIMPHYEX_t) :: YLDIMPHYEX
LOGICAL :: GCOMPUTE_SRC ! flag to define dimensions of SIGS and SRCT variables
!-----------------------------------------------------------------------------
NULLIFY(TZFIELDS_ll)
IMI=GET_CURRENT_MODEL_INDEX()
!
ILUOUT = TLUOUT%NLU
CALL GET_DIM_EXT_ll ('B',IIU,IJU)
IKU=SIZE(XTHT,3)
IKB = 1 + JPVEXT
IKE = IKU - JPVEXT
!
CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
CALL FILL_DIMPHYEX(YLDIMPHYEX, SIZE(XTHT,1), SIZE(XTHT,2), SIZE(XTHT,3),.TRUE.)
!
ZTIME1 = 0.0_MNHTIME
ZTIME2 = 0.0_MNHTIME
ZTIME3 = 0.0_MNHTIME
ZTIME4 = 0.0_MNHTIME
PTIME_BU = 0._MNHTIME
ZTIME_LES_MF = 0.0_MNHTIME
PWETDEPAER(:,:,:,:) = 0.
!
!* allocation of variables used in more than one parameterization
!
ALLOCATE(ZSFU (IIU,IJU)) ! surface schemes + turbulence
ALLOCATE(ZSFV (IIU,IJU))
ALLOCATE(ZSFTH (IIU,IJU))
ALLOCATE(ZSFRV (IIU,IJU))
ALLOCATE(ZSFSV (IIU,IJU,NSV))
ALLOCATE(ZSFCO2(IIU,IJU))
!
!* if XWAY(son)=2 save surface fields before radiation or convective scheme
! calls
!
IMODSON = 0
DO JKID = IMI+1,NMODEL ! min value of the possible kids
IF (IMI == NDAD(JKID) .AND. XWAY(JKID) == 2. .AND. CPROGRAM=='MESONH' &
.AND. (CCONF == 'RESTA' .OR. (CCONF == 'START' .AND. KTCOUNT /= 1))) THEN
IMODSON = IMODSON + 1
END IF
END DO
!
IF (IMODSON /= 0 ) THEN
IF (LUSERC .AND. ( &
(LSEDIC .AND. CCLOUD(1:3) == 'ICE') .OR. &
(LSEDC .AND. (CCLOUD == 'C2R2' .OR. CCLOUD == 'KHKO')) .OR. &
(MSEDC .AND. CCLOUD=='LIMA') &
)) THEN
ALLOCATE( ZSAVE_INPRC(SIZE(XINPRC,1),SIZE(XINPRC,2),IMODSON))
ELSE
ALLOCATE( ZSAVE_INPRC(0,0,0))
END IF
IF (LUSERR) THEN
ALLOCATE( ZSAVE_INPRR(SIZE(XINPRR,1),SIZE(XINPRR,2),IMODSON))
ELSE
ALLOCATE( ZSAVE_INPRR(0,0,0))
END IF
IF (LUSERS) THEN
ALLOCATE( ZSAVE_INPRS(SIZE(XINPRS,1),SIZE(XINPRS,2),IMODSON))
ELSE
ALLOCATE( ZSAVE_INPRS(0,0,0))
END IF
IF (LUSERG) THEN
ALLOCATE( ZSAVE_INPRG(SIZE(XINPRG,1),SIZE(XINPRG,2),IMODSON))
ELSE
ALLOCATE( ZSAVE_INPRG(0,0,0))
END IF
IF (LUSERH) THEN
ALLOCATE( ZSAVE_INPRH(SIZE(XINPRH,1),SIZE(XINPRH,2),IMODSON))
ELSE
ALLOCATE( ZSAVE_INPRH(0,0,0))
END IF
IF (CDCONV /= 'NONE') THEN
ALLOCATE( ZSAVE_PRCONV(SIZE(XPRCONV,1),SIZE(XPRCONV,2),IMODSON))
ALLOCATE( ZSAVE_PRSCONV(SIZE(XPRSCONV,1),SIZE(XPRSCONV,2),IMODSON))
ELSE
ALLOCATE( ZSAVE_PRCONV(0,0,0))
ALLOCATE( ZSAVE_PRSCONV(0,0,0))
END IF
IF (CRAD /= 'NONE') THEN
ALLOCATE( ZSAVE_DIRFLASWD(SIZE(XDIRFLASWD,1),SIZE(XDIRFLASWD,2),SIZE(XDIRFLASWD,3),IMODSON))
ALLOCATE( ZSAVE_SCAFLASWD(SIZE(XSCAFLASWD,1),SIZE(XSCAFLASWD,2),SIZE(XSCAFLASWD,3),IMODSON))
ALLOCATE( ZSAVE_DIRSRFSWD(SIZE(XDIRSRFSWD,1),SIZE(XDIRSRFSWD,2),SIZE(XDIRSRFSWD,3),IMODSON))
ELSE
ALLOCATE( ZSAVE_DIRFLASWD(0,0,0,0))
ALLOCATE( ZSAVE_SCAFLASWD(0,0,0,0))
ALLOCATE( ZSAVE_DIRSRFSWD(0,0,0,0))
END IF
ENDIF
!
IKIDM=0
DO JKID = IMI+1,NMODEL ! min value of the possible kids
IF (IMI == NDAD(JKID) .AND. XWAY(JKID) == 2. .AND. CPROGRAM=='MESONH' &
.AND. (CCONF == 'RESTA' .OR. (CCONF == 'START' .AND. KTCOUNT /= 1))) THEN
! BUG if number of the son does not follow the number of the dad
! IKIDM = JKID-IMI
IKIDM = IKIDM + 1
IF (LUSERC .AND. ( &
(LSEDIC .AND. CCLOUD(1:3) == 'ICE') .OR. &
(LSEDC .AND. (CCLOUD == 'C2R2' .OR. CCLOUD == 'KHKO')) .OR. &
(MSEDC .AND. CCLOUD=='LIMA') &
)) THEN
ZSAVE_INPRC(:,:,IKIDM) = XINPRC(:,:)
END IF
IF (LUSERR) THEN
ZSAVE_INPRR(:,:,IKIDM) = XINPRR(:,:)
END IF
IF (LUSERS) THEN
ZSAVE_INPRS(:,:,IKIDM) = XINPRS(:,:)
END IF
IF (LUSERG) THEN
ZSAVE_INPRG(:,:,IKIDM) = XINPRG(:,:)
END IF
IF (LUSERH) THEN
ZSAVE_INPRH(:,:,IKIDM) = XINPRH(:,:)
END IF
IF (CDCONV /= 'NONE') THEN
ZSAVE_PRCONV(:,:,IKIDM) = XPRCONV(:,:)
ZSAVE_PRSCONV(:,:,IKIDM) = XPRSCONV(:,:)
END IF
IF (CRAD /= 'NONE') THEN
ZSAVE_DIRFLASWD(:,:,:,IKIDM) = XDIRFLASWD(:,:,:)
ZSAVE_SCAFLASWD(:,:,:,IKIDM) = XSCAFLASWD(:,:,:)
ZSAVE_DIRSRFSWD(:,:,:,IKIDM) = XDIRSRFSWD(:,:,:)
END IF
ENDIF
END DO
!
!-----------------------------------------------------------------------------
!
!* 1. RADIATION SCHEME
! ----------------
!
!
XTIME_BU_PROCESS = 0.
XTIME_LES_BU_PROCESS = 0.
!
CALL SECOND_MNH2(ZTIME1)
!
!
!* 1.1 Tests to control how the radiation package should be called (at the current timestep)
! -----------------------------------------------------------
!
!
GRAD = .FALSE.
OCLOUD_ONLY = .FALSE.
!
IF (CRAD /='NONE') THEN
!
! test to see if the partial radiations for cloudy must be called
!
IF (CRAD =='ECMW' .OR. CRAD =='ECRA') THEN
CALL DATETIME_DISTANCE(TDTRAD_CLONLY,TDTCUR,ZTEMP_DIST)
IF( MOD(NINT(ZTEMP_DIST/XTSTEP),NINT(XDTRAD_CLONLY/XTSTEP))==0 ) THEN
TDTRAD_CLONLY = TDTCUR
GRAD = .TRUE.
OCLOUD_ONLY = .TRUE.
END IF
END IF
!
! test to see if the full radiations must be called
!
CALL DATETIME_DISTANCE(TDTCUR,TDTRAD_FULL,ZTEMP_DIST)
IF( MOD(NINT(ZTEMP_DIST/XTSTEP),NINT(XDTRAD/XTSTEP))==0 ) THEN
TDTRAD_FULL = TDTCUR
GRAD = .TRUE.
OCLOUD_ONLY = .FALSE.
END IF
!
! tests to see if any cloud exists
!
IF (CRAD =='ECMW' .OR. CRAD =='ECRA') THEN
IF (GRAD .AND. NRR.LE.3 ) THEN
IF( MAX(MAXVAL(XCLDFR(:,:,:)),MAXVAL(XICEFR(:,:,:))).LE. 1.E-10 .AND. OCLOUD_ONLY ) THEN
GRAD = .FALSE. ! only the cloudy verticals would be
! refreshed but there is no clouds
END IF
END IF
!
IF (GRAD .AND. NRR.GE.4 ) THEN
IF( CCLOUD(1:3)=='ICE' )THEN
IF( MAXVAL(XRT(:,:,:,2)).LE.XRTMIN(2) .AND. &
MAXVAL(XRT(:,:,:,4)).LE.XRTMIN(4) .AND. OCLOUD_ONLY ) THEN
GRAD = .FALSE. ! only the cloudy verticals would be
! refreshed but there is no cloudwater and ice
END IF
END IF
IF( CCLOUD=='C3R5' )THEN
IF( MAXVAL(XRT(:,:,:,2)).LE.XRTMIN_C1R3(2) .AND. &
MAXVAL(XRT(:,:,:,4)).LE.XRTMIN_C1R3(4) .AND. OCLOUD_ONLY ) THEN
GRAD = .FALSE. ! only the cloudy verticals would be
! refreshed but there is no cloudwater and ice
END IF
END IF
IF( CCLOUD=='LIMA' )THEN
IF( MAXVAL(XRT(:,:,:,2)).LE.XRTMIN_LIMA(2) .AND. &
MAXVAL(XRT(:,:,:,4)).LE.XRTMIN_LIMA(4) .AND. OCLOUD_ONLY ) THEN
GRAD = .FALSE. ! only the cloudy verticals would be
! refreshed but there is no cloudwater and ice
END IF
END IF
END IF
END IF
!
END IF
!
! global parallel mask for 'GRAD'
ZRAD_GLOB_ll = 0.0
IF (GRAD) ZRAD_GLOB_ll = 1.0
CALL REDUCESUM_ll(ZRAD_GLOB_ll,INFO_ll)
if (ZRAD_GLOB_ll .NE. 0.0 ) GRAD = .TRUE.
!
!
IF( GRAD ) THEN
ALLOCATE(ZCOSZEN(IIU,IJU))
ALLOCATE(ZSINZEN(IIU,IJU))
ALLOCATE(ZAZIMSOL(IIU,IJU))
!
!
!* 1.2. Astronomical computations
! -------------------------
!
! Ajout PP
IF (.NOT. OCLOUD_ONLY .AND. KTCOUNT /= 1) THEN
IF (LAERO_FT) THEN
CALL AEROZON (XPABST,XTHT,XTSRAD,XLAT,XLON,TDTCUR,TDTEXP, &
NDLON,NFLEV,CAER,NAER,NSTATM, &
XSINDEL,XCOSDEL,XTSIDER,XCORSOL, &
XSTATM,XOZON, XAER)
XAER_CLIM = XAER
END IF
END IF
!
CALL SUNPOS_n ( XZENITH, ZCOSZEN, ZSINZEN, ZAZIMSOL )
!
!* 1.3 Call to radiation scheme
! ------------------------
!
SELECT CASE ( CRAD )
!
!* 1.3.1 TOP of Atmposphere radiation
! ----------------------------
CASE('TOPA')
!
XFLALWD (:,:) = 300.
DO JSWB=1,NSWB_MNH
XDIRFLASWD(:,:,JSWB) = CST%XI0 * MAX(COS(XZENITH(:,:)),0.)/REAL(NSWB_MNH)
XSCAFLASWD(:,:,JSWB) = 0.
END DO
XDTHRAD(:,:,:) = 0.
!
!* 1.3.1 FIXEd radiative surface fluxes
! ------------------------------
!
CASE('FIXE')
ZTIME = MOD(TDTCUR%xtime +XLON0*240., CST%XDAY)
IHOUR = INT( ZTIME/3600. )
IF (IHOUR < 0) IHOUR=IHOUR + 24
ZDT = ZTIME/3600. - REAL(IHOUR)
XDIRFLASWD(:,:,:) =(( ZRG_HOUR(IHOUR+1)-ZRG_HOUR(IHOUR) )*ZDT + ZRG_HOUR(IHOUR)) / REAL(NSWB_MNH)
XFLALWD (:,:) = (ZRAT_HOUR(IHOUR+1)-ZRAT_HOUR(IHOUR))*ZDT + ZRAT_HOUR(IHOUR)
DO JSWB=1,NSWB_MNH
WHERE(ZCOSZEN(:,:)<0.) XDIRFLASWD(:,:,JSWB) = 0.
END DO
XSCAFLASWD(:,:,:) = XDIRFLASWD(:,:,:) * 0.2
XDIRFLASWD(:,:,:) = XDIRFLASWD(:,:,:) * 0.8
XDTHRAD(:,:,:) = 0.
!
!
!* 1.3.2 ECMWF or ECRAD radiative surface and atmospheric fluxes
! ----------------------------------------------
!
CASE('ECMW' , 'ECRA')
IF (LLES_MEAN) OCLOUD_ONLY=.FALSE.
XRADEFF(:,:,:)=0.0
XSWU(:,:,:)=0.0
XSWD(:,:,:)=0.0
XLWU(:,:,:)=0.0
XLWD(:,:,:)=0.0
XDTHRADSW(:,:,:)=0.0
XDTHRADLW(:,:,:)=0.0
CALL RADIATIONS( TPFILE, &
LCLEAR_SKY, OCLOUD_ONLY, NCLEARCOL_TM1, CEFRADL, CEFRADI, COPWSW, COPISW, &
COPWLW, COPILW, XFUDG, &
NDLON, NFLEV, NRAD_DIAG, NFLUX, NRAD, NAER, NSWB_OLD, NSWB_MNH, NLWB_MNH, &
NSTATM, NRAD_COLNBR, ZCOSZEN, XSEA, XCORSOL, &
XDIR_ALB, XSCA_ALB, XEMIS, MAX(XCLDFR,XICEFR), XCCO2, XTSRAD, XSTATM, XTHT, XRT, &
XPABST, XOZON, XAER,XDST_WL, XAER_CLIM, XSVT, &
XDTHRAD, XFLALWD, XDIRFLASWD, XSCAFLASWD, XRHODREF, XZZ , &
XRADEFF, XSWU, XSWD, XLWU, XLWD, XDTHRADSW, XDTHRADLW )
!
WRITE(UNIT=ILUOUT,FMT='(" RADIATIONS called for KTCOUNT=",I6, &
& "with the CLOUD_ONLY option set ",L2)') KTCOUNT,OCLOUD_ONLY
!
!
WHERE (XDIRFLASWD.LT.0.0)
XDIRFLASWD=0.0
ENDWHERE
!
WHERE (XDIRFLASWD.GT.1500.0)
XDIRFLASWD=1500.0
ENDWHERE
!
WHERE (XSCAFLASWD.LT.0.0)
XSCAFLASWD=0.0
ENDWHERE
!
WHERE (XSCAFLASWD.GT.1500.0)
XSCAFLASWD=1500.0
ENDWHERE
!
WHERE( XDIRFLASWD(:,:,1) + XSCAFLASWD(:,:,1) >0. )
XALBUV(:,:) = ( XDIR_ALB(:,:,1) * XDIRFLASWD(:,:,1) &
+ XSCA_ALB(:,:,1) * XSCAFLASWD(:,:,1) ) &
/ (XDIRFLASWD(:,:,1) + XSCAFLASWD(:,:,1) )
ELSEWHERE
XALBUV(:,:) = XDIR_ALB(:,:,1)
END WHERE
!
END SELECT
!
CALL SECOND_MNH2(ZTIME2)
!
PRAD = PRAD + ZTIME2 - ZTIME1
!
ZTIME1 = ZTIME2
!

RODIER Quentin
committed
CALL SURF_RAD_MODIF (XMAP, XDXHAT, XDYHAT, XXHAT, XYHAT, &
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
ZCOSZEN, ZSINZEN, ZAZIMSOL, XZS, XZS_XY, &
XDIRFLASWD, XDIRSRFSWD )
!
!* Azimuthal angle to be sent later to surface processes
! Defined in radian, clockwise, from North
!
XAZIM = ZAZIMSOL
!
CALL SECOND_MNH2(ZTIME2)
!
PSHADOWS = PSHADOWS + ZTIME2 - ZTIME1
!
ZTIME1 = ZTIME2
!
DEALLOCATE(ZCOSZEN)
DEALLOCATE(ZSINZEN)
DEALLOCATE(ZAZIMSOL)
!
END IF
!
!
!* 1.4 control prints
! --------------
!
!* 1.5 Radiative tendency integration
! ------------------------------
!
IF (CRAD /='NONE') THEN
if ( TBUCONF%LBUDGET_th ) call Budget_store_init( TBUDGETS(NBUDGET_TH), 'RAD', xrths(:, :, :) )
XRTHS(:,:,:) = XRTHS(:,:,:) + XRHODJ(:,:,:)*XDTHRAD(:,:,:)
if ( TBUCONF%LBUDGET_th ) call Budget_store_end ( TBUDGETS(NBUDGET_TH), 'RAD', xrths(:, :, :) )
END IF
!
!
!* 1.6 Ocean case:
! Sfc turbulent fluxes & Radiative tendency due to SW penetrating ocean
!
IF (LCOUPLES) THEN
ZSFU(:,:)= XSSUFL_C(:,:,1)
ZSFV(:,:)= XSSVFL_C(:,:,1)
ZSFTH(:,:)= XSSTFL_C(:,:,1)
ZSFRV(:,:)=XSSRFL_C(:,:,1)
ELSE
IF (LOCEAN) THEN
!
ALLOCATE( ZIZOCE(IKU)); ZIZOCE(:)=0.
ALLOCATE( ZPROSOL1(IKU))
ALLOCATE( ZPROSOL2(IKU))
ALLOCATE(XSSOLA(IIU,IJU))
! Time interpolation
JSW = INT(TDTCUR%xtime/REAL(NINFRT))
ZSWA = TDTCUR%xtime/REAL(NINFRT)-REAL(JSW)
ZSFRV = 0.
ZSFTH = (XSSTFL_T(JSW+1)*(1.-ZSWA)+XSSTFL_T(JSW+2)*ZSWA)
ZSFU = (XSSUFL_T(JSW+1)*(1.-ZSWA)+XSSUFL_T(JSW+2)*ZSWA)
ZSFV = (XSSVFL_T(JSW+1)*(1.-ZSWA)+XSSVFL_T(JSW+2)*ZSWA)
!
ZIZOCE(IKU) = XSSOLA_T(JSW+1)*(1.-ZSWA)+XSSOLA_T(JSW+2)*ZSWA
ZPROSOL1(IKU) = CST%XROC*ZIZOCE(IKU)
ZPROSOL2(IKU) = (1.-CST%XROC)*ZIZOCE(IKU)
if ( TBUCONF%LBUDGET_th ) call Budget_store_init( TBUDGETS(NBUDGET_TH), 'OCEAN', xrths(:, :, :) )
DO JKM=IKU-1,2,-1
ZPROSOL1(JKM) = ZPROSOL1(JKM+1)* exp(-XDZZ(2,2,JKM)/CST%XD1)
ZPROSOL2(JKM) = ZPROSOL2(JKM+1)* exp(-XDZZ(2,2,JKM)/CST%XD2)
ZIZOCE(JKM) = (ZPROSOL1(JKM+1)-ZPROSOL1(JKM) + ZPROSOL2(JKM+1)-ZPROSOL2(JKM))/XDZZ(2,2,JKM)
! Adding to temperature tendency, the solar radiation penetrating in ocean
XRTHS(:,:,JKM) = XRTHS(:,:,JKM) + XRHODJ(:,:,JKM)*ZIZOCE(JKM)
END DO
if ( TBUCONF%LBUDGET_th ) call Budget_store_end ( TBUDGETS(NBUDGET_TH), 'OCEAN', xrths(:, :, :) )
DEALLOCATE (XSSOLA)
DEALLOCATE( ZIZOCE)
DEALLOCATE (ZPROSOL1)
DEALLOCATE (ZPROSOL2)
END IF! LOCEAN NO LCOUPLES
END IF!NO LCOUPLES
!
!
CALL SECOND_MNH2(ZTIME2)
!
PRAD = PRAD + ZTIME2 - ZTIME1 &
- XTIME_LES_BU_PROCESS - XTIME_BU_PROCESS
!
PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS
!
!
!-----------------------------------------------------------------------------
!
!* 2. DEEP CONVECTION SCHEME
! ----------------------
!
ZTIME1 = ZTIME2
XTIME_BU_PROCESS = 0.
XTIME_LES_BU_PROCESS = 0.
!
CALL SECOND_MNH2(ZTIME1)
!
IF( CDCONV == 'KAFR' .OR. CSCONV == 'KAFR' ) THEN
if ( TBUCONF%LBUDGET_th ) call Budget_store_init( TBUDGETS(NBUDGET_TH), 'DCONV', xrths(:, :, :) )
if ( TBUCONF%LBUDGET_rv ) call Budget_store_init( TBUDGETS(NBUDGET_RV), 'DCONV', xrrs (:, :, :, 1) )
if ( TBUCONF%LBUDGET_rc ) call Budget_store_init( TBUDGETS(NBUDGET_RC), 'DCONV', xrrs (:, :, :, 2) )
if ( TBUCONF%LBUDGET_ri ) call Budget_store_init( TBUDGETS(NBUDGET_RI), 'DCONV', xrrs (:, :, :, 4) )
if ( TBUCONF%LBUDGET_sv .and. lchtrans ) then
do jsv = 1, size( xrsvs, 4 )
call Budget_store_init( TBUDGETS(NBUDGET_SV1 - 1 + jsv), 'DCONV', xrsvs (:, :, :, jsv) )
end do
end if
!
! test to see if the deep convection scheme should be called
!
GDCONV = .FALSE.
!
CALL DATETIME_DISTANCE(TDTDCONV,TDTCUR,ZTEMP_DIST)
IF( MOD(NINT(ZTEMP_DIST/XTSTEP),NINT(XDTCONV/XTSTEP))==0 ) THEN
TDTDCONV = TDTCUR
GDCONV = .TRUE.
END IF
!
IF( GDCONV ) THEN
IF (CDCONV == 'KAFR' .OR. CSCONV == 'KAFR' ) THEN
ALLOCATE( ZRC(IIU,IJU,IKU) )
ALLOCATE( ZRI(IIU,IJU,IKU) )
ALLOCATE( ZWT(IIU,IJU,IKU) )
ALLOCATE( ZDXDY(IIU,IJU) )
! Compute grid area
ZDXDY(:,:) = SPREAD(XDXHAT(1:IIU),2,IJU) * SPREAD(XDYHAT(1:IJU),1,IIU)
!
IF( LUSERC .AND. LUSERI ) THEN
ZRC(:,:,:) = XRT(:,:,:,2)
ZRI(:,:,:) = XRT(:,:,:,4)
ELSE IF( LUSERC .AND. (.NOT. LUSERI) ) THEN
ZRC(:,:,:) = XRT(:,:,:,2)
ZRI(:,:,:) = 0.0
ELSE
ZRC(:,:,:) = 0.0
ZRI(:,:,:) = 0.0
END IF
WRITE(UNIT=ILUOUT,FMT='(" CONVECTION called for KTCOUNT=",I6)') &
KTCOUNT
IF ( LFORCING .AND. L1D ) THEN
ZWT(:,:,:) = XWTFRC(:,:,:)
ELSE
ZWT(:,:,:) = XWT(:,:,:)
ENDIF
IF (LDUST) CALL DUST_FILTER(XSVT(:,:,:,NSV_DSTBEG:NSV_DSTEND), XRHODREF(:,:,:))
IF (LSALT) CALL SALT_FILTER(XSVT(:,:,:,NSV_SLTBEG:NSV_SLTEND), XRHODREF(:,:,:))
IF (LCH_CONV_LINOX) THEN
CALL CONVECTION( XDTCONV, CDCONV, CSCONV, LREFRESH_ALL, LDOWN, NICE, &
LSETTADJ, XTADJD, XTADJS, LDIAGCONV, NENSM, &
XPABST, XZZ, ZDXDY, &
XTHT, XRT(:,:,:,1), ZRC, ZRI, XUT, XVT, &
ZWT,XTKET(:,:,IKB), &
NCOUNTCONV, XDTHCONV, XDRVCONV, XDRCCONV, XDRICONV, &
XPRCONV, XPRSCONV, &
XUMFCONV,XDMFCONV,XMFCONV,XPRLFLXCONV,XPRSFLXCONV, &
XCAPE, NCLTOPCONV, NCLBASCONV, &
LCHTRANS, XSVT, XDSVCONV, &
LUSECHEM, LCH_CONV_SCAV, LCH_CONV_LINOX, &
LDUST, LSALT, &
XRHODREF, XIC_RATE, XCG_RATE )
ELSE
CALL CONVECTION( XDTCONV, CDCONV, CSCONV, LREFRESH_ALL, LDOWN, NICE, &
LSETTADJ, XTADJD, XTADJS, LDIAGCONV, NENSM, &
XPABST, XZZ, ZDXDY, &
XTHT, XRT(:,:,:,1), ZRC, ZRI, XUT, XVT, &
ZWT,XTKET(:,:,IKB), &
NCOUNTCONV, XDTHCONV, XDRVCONV, XDRCCONV, XDRICONV, &
XPRCONV, XPRSCONV, &
XUMFCONV,XDMFCONV,XMFCONV,XPRLFLXCONV,XPRSFLXCONV, &
XCAPE, NCLTOPCONV, NCLBASCONV, &
LCHTRANS, XSVT, XDSVCONV, &
LUSECHEM, LCH_CONV_SCAV, LCH_CONV_LINOX, &
LDUST, LSALT, &
XRHODREF )
END IF
!
DEALLOCATE( ZRC )
DEALLOCATE( ZRI )
DEALLOCATE( ZWT )
DEALLOCATE( ZDXDY )
END IF
END IF
!
! Deep convection tendency integration
!
XRTHS(:,:,:) = XRTHS(:,:,:) + XRHODJ(:,:,:) * XDTHCONV(:,:,:)
XRRS(:,:,:,1) = XRRS(:,:,:,1) + XRHODJ(:,:,:) * XDRVCONV(:,:,:)
!
!
! Aerosols size distribution
! Compute Rg and sigma before tracers convection tendency (for orilam, dust and sea
! salt)
!
IF ( LCHTRANS ) THEN ! update tracers for chemical transport
IF (LORILAM) ZRSVS(:,:,:,:) = XRSVS(:,:,:,:) !
IF ((LDUST)) THEN ! dust convective balance
ALLOCATE(ZSIGDST(IIU,IJU,IKU,NMODE_DST))
ALLOCATE(ZRGDST(IIU,IJU,IKU,NMODE_DST))
ALLOCATE(ZNDST(IIU,IJU,IKU,NMODE_DST))
ALLOCATE(ZSVDST(IIU,IJU,IKU,NSV_DST))
!
DO JSV=1,NMODE_DST
IMODEIDX = JPDUSTORDER(JSV)
IF (CRGUNITD=="MASS") THEN
ZINIRADIUS(JSV) = XINIRADIUS(IMODEIDX) * EXP(-3.*(LOG(XINISIG(IMODEIDX)))**2)
ELSE
ZINIRADIUS(JSV) = XINIRADIUS(IMODEIDX)
END IF
ZSIGDST(:,:,:,JSV) = XINISIG(IMODEIDX)
ZRGDST(:,:,:,JSV) = ZINIRADIUS(JSV)
ZNDST(:,:,:,JSV) = XN0MIN(IMODEIDX)
ENDDO
!
IF (CPROGRAM == "MESONH") THEN
DO JSV=NSV_DSTBEG,NSV_DSTEND
ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) = XRSVS(:,:,:,JSV) * XTSTEP / XRHODJ(:,:,:)
ENDDO
ELSE
DO JSV=NSV_DSTBEG,NSV_DSTEND
ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) = XSVT(:,:,:,JSV)
ENDDO
ENDIF
CALL PPP2DUST(ZSVDST(IIB:IIE,IJB:IJE,IKB:IKE,:), XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),&
PSIG3D=ZSIGDST(IIB:IIE,IJB:IJE,IKB:IKE,:), PRG3D=ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:), &
PN3D=ZNDST(IIB:IIE,IJB:IJE,IKB:IKE,:))
END IF
!
IF ((LSALT)) THEN ! sea salt convective balance
ALLOCATE(ZSIGSLT(IIU,IJU,IKU,NMODE_SLT))
ALLOCATE(ZRGSLT(IIU,IJU,IKU,NMODE_SLT))
ALLOCATE(ZNSLT(IIU,IJU,IKU,NMODE_SLT))
ALLOCATE(ZSVSLT(IIU,IJU,IKU,NSV_SLT))
!
DO JSV=1,NMODE_SLT
IMODEIDX = JPSALTORDER(JSV)
IF (CRGUNITS=="MASS") THEN
ZINIRADIUS_SLT(JSV) = XINIRADIUS_SLT(IMODEIDX) * &
EXP(-3.*(LOG(XINISIG_SLT(IMODEIDX)))**2)
ELSE
ZINIRADIUS_SLT(JSV) = XINIRADIUS_SLT(IMODEIDX)
END IF
ZSIGSLT(:,:,:,JSV) = XINISIG_SLT(IMODEIDX)
ZRGSLT(:,:,:,JSV) = ZINIRADIUS_SLT(JSV)
ZNSLT(:,:,:,JSV) = XN0MIN_SLT(IMODEIDX)
ENDDO
!
IF (CPROGRAM == "MESONH") THEN
DO JSV=NSV_SLTBEG,NSV_SLTEND
ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) = XRSVS(:,:,:,JSV) * XTSTEP / XRHODJ(:,:,:)
ENDDO
ELSE
DO JSV=NSV_SLTBEG,NSV_SLTEND
ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) = XSVT(:,:,:,JSV)
ENDDO
END IF
CALL PPP2SALT(ZSVSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),&
PSIG3D=ZSIGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), PRG3D=ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), &
PN3D=ZNSLT(IIB:IIE,IJB:IJE,IKB:IKE,:))
END IF
!
!
! Compute convective tendency for all tracers
!
IF (LCHTRANS) THEN
DO JSV = 1, SIZE(XRSVS,4)
XRSVS(:,:,:,JSV) = XRSVS(:,:,:,JSV) + XRHODJ(:,:,:) * XDSVCONV(:,:,:,JSV)
END DO
IF (LORILAM) THEN
DO JSV = NSV_AERBEG,NSV_AEREND
PWETDEPAER(:,:,:,JSV-NSV_AERBEG+1) = XDSVCONV(:,:,:,JSV) * XRHODJ(:,:,:)
XRSVS(:,:,:,JSV) = ZRSVS(:,:,:,JSV)
END DO
END IF
END IF
!
IF ((LDUST).AND.(LCHTRANS)) THEN ! dust convective balance
IF (CPROGRAM == "MESONH") THEN
DO JSV=NSV_DSTBEG,NSV_DSTEND
ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) = XRSVS(:,:,:,JSV) * XTSTEP / XRHODJ(:,:,:)
ENDDO
ELSE
DO JSV=NSV_DSTBEG,NSV_DSTEND
ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) = XSVT(:,:,:,JSV)
ENDDO
ENDIF
CALL DUST2PPP(ZSVDST(IIB:IIE,IJB:IJE,IKB:IKE,:), &
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), ZSIGDST(IIB:IIE,IJB:IJE,IKB:IKE,:),&
ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:))
DO JSV=NSV_DSTBEG,NSV_DSTEND
XRSVS(:,:,:,JSV) = ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) * XRHODJ(:,:,:) / XTSTEP
ENDDO
!
DEALLOCATE(ZSVDST)
DEALLOCATE(ZNDST)
DEALLOCATE(ZRGDST)
DEALLOCATE(ZSIGDST)
END IF
!
IF ((LSALT).AND.(LCHTRANS)) THEN ! sea salt convective balance
IF (CPROGRAM == "MESONH") THEN
DO JSV=NSV_SLTBEG,NSV_SLTEND
ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) = XRSVS(:,:,:,JSV) * XTSTEP / XRHODJ(:,:,:)
ENDDO
ELSE
DO JSV=NSV_SLTBEG,NSV_SLTEND
ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) = XSVT(:,:,:,JSV)
ENDDO
END IF
CALL SALT2PPP(ZSVSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), &
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), ZSIGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:),&
ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:))
DO JSV=NSV_SLTBEG,NSV_SLTEND
XRSVS(:,:,:,JSV) = ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) * XRHODJ(:,:,:) / XTSTEP
ENDDO
!
DEALLOCATE(ZSVSLT)
DEALLOCATE(ZNSLT)
DEALLOCATE(ZRGSLT)
DEALLOCATE(ZSIGSLT)
END IF
!
END IF
!
IF( LUSERC .AND. LUSERI ) THEN
XRRS(:,:,:,2) = XRRS(:,:,:,2) + XRHODJ(:,:,:) * XDRCCONV(:,:,:)
XRRS(:,:,:,4) = XRRS(:,:,:,4) + XRHODJ(:,:,:) * XDRICONV(:,:,:)
!
ELSE IF ( LUSERC .AND. (.NOT. LUSERI) ) THEN
!
! If only cloud water but no cloud ice is used, the convective tendency
! for cloud ice is added to the tendency for cloud water
!
XRRS(:,:,:,2) = XRRS(:,:,:,2) + XRHODJ(:,:,:) * (XDRCCONV(:,:,:) + &
XDRICONV(:,:,:) )
! and cloud ice is melted
!
XRTHS(:,:,:) = XRTHS(:,:,:) - XRHODJ(:,:,:) * &
( XP00/XPABST(:,:,:) )**(XRD/XCPD) * CST%XLMTT / XCPD * XDRICONV(:,:,:)
!
ELSE IF ( (.NOT. LUSERC) .AND. (.NOT. LUSERI) ) THEN
!
! If no cloud water and no cloud ice are used the convective tendencies for these
! variables are added to the water vapor tendency
!
XRRS(:,:,:,1) = XRRS(:,:,:,1) + XRHODJ(:,:,:) * (XDRCCONV(:,:,:) + &
XDRICONV(:,:,:) )
! and all cloud condensate is evaporated
!
XRTHS(:,:,:) = XRTHS(:,:,:) - XRHODJ(:,:,:) / XCPD * ( &
CST%XLVTT * XDRCCONV(:,:,:) + CST%XLSTT * XDRICONV(:,:,:) ) *&
( XP00 / XPABST(:,:,:) ) ** ( XRD / XCPD )
END IF
if ( TBUCONF%LBUDGET_th ) call Budget_store_end( TBUDGETS(NBUDGET_TH), 'DCONV', xrths(:, :, :) )
if ( TBUCONF%LBUDGET_rv ) call Budget_store_end( TBUDGETS(NBUDGET_RV), 'DCONV', xrrs (:, :, :, 1) )
if ( TBUCONF%LBUDGET_rc ) call Budget_store_end( TBUDGETS(NBUDGET_RC), 'DCONV', xrrs (:, :, :, 2) )
if ( TBUCONF%LBUDGET_ri ) call Budget_store_end( TBUDGETS(NBUDGET_RI), 'DCONV', xrrs (:, :, :, 4) )
if ( TBUCONF%LBUDGET_sv .and. lchtrans ) then
do jsv = 1, size( xrsvs, 4 )
call Budget_store_end( TBUDGETS(NBUDGET_SV1 - 1 + jsv), 'DCONV', xrsvs (:, :, :, jsv) )
end do
end if
END IF
!
CALL SECOND_MNH2(ZTIME2)
!
PKAFR = PKAFR + ZTIME2 - ZTIME1 &
- XTIME_LES_BU_PROCESS - XTIME_BU_PROCESS
!
PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS
!
!-----------------------------------------------------------------------------
!
!* 3. TURBULENT SURFACE FLUXES
! ------------------------
!
ZTIME1 = ZTIME2
!
IF (CSURF=='EXTE') THEN
CALL GOTO_SURFEX(IMI)
!
IF( LTRANS ) THEN
XUT(:,:,1+JPVEXT) = XUT(:,:,1+JPVEXT) + XUTRANS
XVT(:,:,1+JPVEXT) = XVT(:,:,1+JPVEXT) + XVTRANS
END IF
!
ALLOCATE(ZDIR_ALB(IIU,IJU,NSWB_MNH))
ALLOCATE(ZSCA_ALB(IIU,IJU,NSWB_MNH))
ALLOCATE(ZEMIS (IIU,IJU,NLWB_MNH))
ALLOCATE(ZTSRAD (IIU,IJU))
!
IKIDM=0
DO JKID = IMI+1,NMODEL ! min value of the possible kids
IF (IMI == NDAD(JKID) .AND. XWAY(JKID) == 2. .AND. &
CPROGRAM=='MESONH' .AND. &
(CCONF == 'RESTA' .OR. (CCONF == 'START' .AND. KTCOUNT /= 1))) THEN
! where kids exist, use the two-way output fields (i.e. OMASKkids true)
! rather than the farther calculations in radiation and convection schemes
! BUG if number of the son does not follow the number of the dad
! IKIDM = JKID-IMI
IKIDM = IKIDM + 1
IF (LUSERC .AND. ( &
(LSEDIC .AND. CCLOUD(1:3) == 'ICE') .OR. &
(LSEDC .AND. (CCLOUD == 'C2R2' .OR. CCLOUD == 'KHKO')) .OR. &
(MSEDC .AND. CCLOUD=='LIMA') &
)) THEN
WHERE (OMASKkids(:,:) )
XINPRC(:,:) = ZSAVE_INPRC(:,:,IKIDM)
ENDWHERE
END IF
IF (LUSERR) THEN
WHERE (OMASKkids(:,:) )
XINPRR(:,:) = ZSAVE_INPRR(:,:,IKIDM)
ENDWHERE
END IF
IF (LUSERS) THEN
WHERE (OMASKkids(:,:) )
XINPRS(:,:) = ZSAVE_INPRS(:,:,IKIDM)
ENDWHERE
END IF
IF (LUSERG) THEN
WHERE (OMASKkids(:,:) )
XINPRG(:,:) = ZSAVE_INPRG(:,:,IKIDM)
ENDWHERE
END IF
IF (LUSERH) THEN
WHERE (OMASKkids(:,:) )
XINPRH(:,:) = ZSAVE_INPRH(:,:,IKIDM)
ENDWHERE
END IF
IF (CDCONV /= 'NONE') THEN
WHERE (OMASKkids(:,:) )
XPRCONV(:,:) = ZSAVE_PRCONV(:,:,IKIDM)
XPRSCONV(:,:) = ZSAVE_PRSCONV(:,:,IKIDM)
ENDWHERE
END IF
IF (CRAD /= 'NONE') THEN
DO JSWB=1,NSWB_MNH
WHERE (OMASKkids(:,:) )
XDIRFLASWD(:,:,JSWB) = ZSAVE_DIRFLASWD(:,:,JSWB,IKIDM)
XSCAFLASWD(:,:,JSWB) = ZSAVE_SCAFLASWD(:,:,JSWB,IKIDM)
XDIRSRFSWD(:,:,JSWB) = ZSAVE_DIRSRFSWD(:,:,JSWB,IKIDM)
ENDWHERE
ENDDO
END IF
ENDIF
END DO
!
IF (IMODSON /= 0 ) THEN
DEALLOCATE( ZSAVE_INPRR,ZSAVE_INPRS,ZSAVE_INPRG,ZSAVE_INPRH)
DEALLOCATE( ZSAVE_INPRC,ZSAVE_PRCONV,ZSAVE_PRSCONV)
DEALLOCATE( ZSAVE_DIRFLASWD,ZSAVE_SCAFLASWD,ZSAVE_DIRSRFSWD)
END IF
CALL GROUND_PARAM_n(YLDIMPHYEX,ZSFTH, ZSFRV, ZSFSV, ZSFCO2, ZSFU, ZSFV, &
ZDIR_ALB, ZSCA_ALB, ZEMIS, ZTSRAD, KTCOUNT, TPFILE )
!
IF (LIBM) THEN
WHERE(XIBM_LS(:,:,IKB,1).GT.-XIBM_EPSI)
ZSFTH(:,:)=0.
ZSFRV(:,:)=0.
ZSFU (:,:)=0.
ZSFV (:,:)=0.
ENDWHERE
IF (NSV>0) THEN
DO JSV = 1 , NSV
WHERE(XIBM_LS(:,:,IKB,1).GT.-XIBM_EPSI) ZSFSV(:,:,JSV)=0.
ENDDO
ENDIF
ENDIF
!
IF (SIZE(XEMIS)>0) THEN
XDIR_ALB = ZDIR_ALB
XSCA_ALB = ZSCA_ALB
XEMIS = ZEMIS
XTSRAD = ZTSRAD
END IF
!
DEALLOCATE(ZDIR_ALB)
DEALLOCATE(ZSCA_ALB)
DEALLOCATE(ZEMIS )
DEALLOCATE(ZTSRAD )
!
!
IF( LTRANS ) THEN
XUT(:,:,1+JPVEXT) = XUT(:,:,1+JPVEXT) - XUTRANS
XVT(:,:,1+JPVEXT) = XVT(:,:,1+JPVEXT) - XVTRANS
END IF
!
ELSE ! case no SURFEX (CSURF logical)
ZSFSV = 0.
ZSFCO2 = 0.
IF (.NOT.LOCEAN) THEN
ZSFTH = 0.
ZSFRV = 0.
ZSFSV = 0.
ZSFCO2 = 0.
ZSFU = 0.
ZSFV = 0.
END IF
END IF !CSURF
!
CALL SECOND_MNH2(ZTIME2)
!
PGROUND = PGROUND + ZTIME2 - ZTIME1
!
!-----------------------------------------------------------------------------
!
!* 3.1 EDDY FLUXES PARAMETRIZATION
! ------------------
!
IF (IMI==1) THEN ! On calcule les flus turb. comme preconise par PP
! Heat eddy fluxes
IF ( LTH_FLX ) CALL EDDY_FLUX_n(IMI,KTCOUNT,XVT,XTHT,XRHODJ,XRTHS,XVTH_FLUX_M,XWTH_FLUX_M)
!
! Momentum eddy fluxes
IF ( LUV_FLX ) CALL EDDYUV_FLUX_n(IMI,KTCOUNT,XVT,XTHT,XRHODJ,XRHODREF,XPABSM,XRVS,XVU_FLUX_M)
ELSE
! TEST pour maille infèrieure à 20km ?
! car pb d'instabilités ?
! Pour le modèle fils, on spawne les flux du modèle père
! Heat eddy fluxes
IF ( LTH_FLX ) CALL EDDY_FLUX_ONE_WAY_n (IMI,KTCOUNT,NDXRATIO_ALL(IMI),NDYRATIO_ALL(IMI),CLBCX,CLBCY)
!
! Momentum eddy fluxes
IF ( LUV_FLX ) CALL EDDYUV_FLUX_ONE_WAY_n (IMI,KTCOUNT,NDXRATIO_ALL(IMI),NDYRATIO_ALL(IMI),CLBCX,CLBCY)
!
END IF
!-----------------------------------------------------------------------------
!
!* 4. PASSIVE POLLUTANTS
! ------------------
!
ZTIME1 = ZTIME2
!
IF (LPASPOL) CALL PASPOL(XTSTEP, ZSFSV, ILUOUT, NVERB, TPFILE)
!
!
!* 4b. PASSIVE POLLUTANTS FOR MASS-FLUX SCHEME DIAGNOSTICS
! ---------------------------------------------------
!
IF (LCONDSAMP) CALL CONDSAMP(XTSTEP, ZSFSV, ILUOUT, NVERB)
!
CALL SECOND_MNH2(ZTIME2)
!
PTRACER = PTRACER + ZTIME2 - ZTIME1
!-----------------------------------------------------------------------------
!
!* 5a. Drag force
! ----------
!
ZTIME1 = ZTIME2
XTIME_BU_PROCESS = 0.
XTIME_LES_BU_PROCESS = 0.
!
IF (LDRAGTREE) CALL DRAG_VEG( XTSTEP, XUT, XVT, XTKET, LDEPOTREE, XVDEPOTREE, &
CCLOUD, XPABST, XTHT, XRT, XSVT, XRHODJ, XZZ, &
XRUS, XRVS, XRTKES, XRRS, XRSVS )
!
IF (LDRAGBLDG) CALL DRAG_BLD( XTSTEP, XUT, XVT, XTKET, XRHODJ, XZZ, XRUS, XRVS, XRTKES )
!
CALL SECOND_MNH2(ZTIME2)
!
PDRAG = PDRAG + ZTIME2 - ZTIME1 &
- XTIME_LES_BU_PROCESS - XTIME_BU_PROCESS
!
PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS
!
!* 5b. Drag force from wind turbines
! -----------------------
!
ZTIME1 = ZTIME2
XTIME_BU_PROCESS = 0.
XTIME_LES_BU_PROCESS = 0.
!
IF (LMAIN_EOL .AND. IMI == NMODEL_EOL) THEN
CALL EOL_MAIN(KTCOUNT,XTSTEP, &
XDXX,XDYY,XDZZ, &
XRHODJ, &
XUT,XVT,XWT, &
XRUS, XRVS, XRWS )
END IF
!
CALL SECOND_MNH2(ZTIME2)
!
PEOL = PEOL + ZTIME2 - ZTIME1 &
- XTIME_LES_BU_PROCESS - XTIME_BU_PROCESS
!
PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS
!
!*
!-----------------------------------------------------------------------------
!
!* 6. TURBULENCE SCHEME
! -----------------
!
ZTIME1 = ZTIME2
XTIME_BU_PROCESS = 0.
XTIME_LES_BU_PROCESS = 0.
!
ZSFTH(:,:) = ZSFTH(:,:) * XDIRCOSZW(:,:)
ZSFRV(:,:) = ZSFRV(:,:) * XDIRCOSZW(:,:)
DO JSV=1,NSV
ZSFSV(:,:,JSV) = ZSFSV(:,:,JSV) * XDIRCOSZW(:,:)
END DO
!
IF (LLES_CALL) CALL SWITCH_SBG_LES_n
!
!
IF ( CTURB == 'TKEL' ) THEN
!
!* 6.1 complete surface flux fields on the border
!
!!$ IF(NHALO == 1) THEN
CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFTH, 'PHYS_PARAM_n::ZSFTH' )
CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFRV, 'PHYS_PARAM_n::ZSFRV' )
CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFU, 'PHYS_PARAM_n::ZSFU' )
CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFV, 'PHYS_PARAM_n::ZSFV' )
IF(NSV >0)THEN
DO JSV=1,NSV
write ( ynum, '( I6 ) ' ) jsv
CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFSV(:,:,JSV), 'PHYS_PARAM_n::ZSFSV:'//trim( adjustl( ynum ) ) )
END DO
END IF
CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFCO2, 'PHYS_PARAM_n::ZSFCO2' )
CALL UPDATE_HALO_ll(TZFIELDS_ll,IINFO_ll)
CALL CLEANLIST_ll(TZFIELDS_ll)
!!$ END IF
!
CALL MPPDB_CHECK2D(ZSFU,"phys_param::ZSFU",PRECISION)
!
IF ( CLBCX(1) /= "CYCL" .AND. LWEST_ll()) THEN
ZSFTH(IIB-1,:)=ZSFTH(IIB,:)
ZSFRV(IIB-1,:)=ZSFRV(IIB,:)
ZSFU(IIB-1,:)=ZSFU(IIB,:)
ZSFV(IIB-1,:)=ZSFV(IIB,:)
IF (NSV>0) THEN
ZSFSV(IIB-1,:,:)=ZSFSV(IIB,:,:)
WHERE ((ZSFSV(IIB-1,:,:).LT.0.).AND.(XSVT(IIB-1,:,IKB,:).EQ.0.))
ZSFSV(IIB-1,:,:) = 0.
END WHERE
ENDIF
ZSFCO2(IIB-1,:)=ZSFCO2(IIB,:)
END IF
!
IF ( CLBCX(2) /= "CYCL" .AND. LEAST_ll()) THEN
ZSFTH(IIE+1,:)=ZSFTH(IIE,:)
ZSFRV(IIE+1,:)=ZSFRV(IIE,:)
ZSFU(IIE+1,:)=ZSFU(IIE,:)
ZSFV(IIE+1,:)=ZSFV(IIE,:)
IF (NSV>0) THEN
ZSFSV(IIE+1,:,:)=ZSFSV(IIE,:,:)
WHERE ((ZSFSV(IIE+1,:,:).LT.0.).AND.(XSVT(IIE+1,:,IKB,:).EQ.0.))
ZSFSV(IIE+1,:,:) = 0.
END WHERE
ENDIF
ZSFCO2(IIE+1,:)=ZSFCO2(IIE,:)
END IF
!
IF ( CLBCY(1) /= "CYCL" .AND. LSOUTH_ll()) THEN
ZSFTH(:,IJB-1)=ZSFTH(:,IJB)
ZSFRV(:,IJB-1)=ZSFRV(:,IJB)
ZSFU(:,IJB-1)=ZSFU(:,IJB)
ZSFV(:,IJB-1)=ZSFV(:,IJB)
IF (NSV>0) THEN
ZSFSV(:,IJB-1,:)=ZSFSV(:,IJB,:)
WHERE ((ZSFSV(:,IJB-1,:).LT.0.).AND.(XSVT(:,IJB-1,IKB,:).EQ.0.))
ZSFSV(:,IJB-1,:) = 0.
END WHERE
ENDIF
ZSFCO2(:,IJB-1)=ZSFCO2(:,IJB)
END IF
!
IF ( CLBCY(2) /= "CYCL" .AND. LNORTH_ll()) THEN
ZSFTH(:,IJE+1)=ZSFTH(:,IJE)
ZSFRV(:,IJE+1)=ZSFRV(:,IJE)
ZSFU(:,IJE+1)=ZSFU(:,IJE)
ZSFV(:,IJE+1)=ZSFV(:,IJE)
IF (NSV>0) THEN
ZSFSV(:,IJE+1,:)=ZSFSV(:,IJE,:)
WHERE ((ZSFSV(:,IJE+1,:).LT.0.).AND.(XSVT(:,IJE+1,IKB,:).EQ.0.))
ZSFSV(:,IJE+1,:) = 0.
END WHERE
ENDIF
ZSFCO2(:,IJE+1)=ZSFCO2(:,IJE)
END IF
!
IF( LTRANS ) THEN
XUT(:,:,:) = XUT(:,:,:) + XUTRANS
XVT(:,:,:) = XVT(:,:,:) + XVTRANS
END IF
!
!
IF ( ALLOCATED( XTHW_FLUX ) ) DEALLOCATE( XTHW_FLUX )
IF ( LFLYER ) THEN
ALLOCATE( XTHW_FLUX(SIZE( XTHT, 1 ), SIZE( XTHT, 2 ), SIZE( XTHT, 3 )) )
ELSE
ALLOCATE( XTHW_FLUX(0, 0, 0) )
END IF
IF ( ALLOCATED( XRCW_FLUX ) ) DEALLOCATE( XRCW_FLUX )
IF ( LFLYER ) THEN
ALLOCATE( XRCW_FLUX(SIZE( XTHT, 1 ), SIZE( XTHT, 2 ), SIZE( XTHT, 3 )) )
ELSE
ALLOCATE( XRCW_FLUX(0, 0, 0) )
END IF
IF ( ALLOCATED( XSVW_FLUX ) ) DEALLOCATE( XSVW_FLUX )
IF ( LFLYER ) THEN
ALLOCATE( XSVW_FLUX(SIZE( XSVT, 1 ), SIZE( XSVT, 2 ), SIZE( XSVT, 3 ), SIZE( XSVT, 4 )) )
ELSE
ALLOCATE( XSVW_FLUX(0, 0, 0, 0) )
END IF
!
GCOMPUTE_SRC=SIZE(XSIGS, 3)/=0
!
ALLOCATE(ZTDIFF(IIU,IJU,IKU))
ALLOCATE(ZTDISS(IIU,IJU,IKU))
!
!! Compute Shape of sfc flux for Oceanic Deep Conv Case
!
IF (LOCEAN .AND. LDEEPOC) THEN
ALLOCATE(ZDIST(IIU,IJU))
!* COMPUTES THE PHYSICAL SUBDOMAIN BOUNDS
ALLOCATE(ZXHAT_ll(NIMAX_ll+2*JPHEXT),ZYHAT_ll(NJMAX_ll+2*JPHEXT))
!compute ZXHAT_ll = position in the (0:Lx) domain 1 (Lx=Size of domain1 )
!compute XXHAT_ll = position in the (L0_subproc,Lx_subproc) domain for the current subproc
! L0_subproc as referenced in the full domain 1
CALL GATHERALL_FIELD_ll('XX',XXHAT,ZXHAT_ll,IRESP)
CALL GATHERALL_FIELD_ll('YY',XYHAT,ZYHAT_ll,IRESP)
CALL GET_DIM_EXT_ll('B',IIU,IJU)
DO JJ = IJB,IJE
DO JI = IIB,IIE
ZDIST(JI,JJ) = SQRT( &
(( (XXHAT(JI)+XXHAT(JI+1))*0.5 - XCENTX_OC ) / XRADX_OC)**2 + &
(( (XYHAT(JJ)+XYHAT(JJ+1))*0.5 - XCENTY_OC ) / XRADY_OC)**2 &
)
END DO
END DO
DO JJ=IJB,IJE
DO JI=IIB,IIE
IF ( ZDIST(JI,JJ) > 1.) ZSFTH(JI,JJ)=0.
END DO
END DO
END IF !END DEEP OCEAN CONV CASE
!
LSTATNW = .FALSE.
LHARAT = .FALSE.
!
IF(LLEONARD) THEN
IGRADIENTS=6
ALLOCATE(ZHGRAD(IIU,IJU,IKU,IGRADIENTS))
ZHGRAD(:,:,:,1) = GX_W_UW(XWT(:,:,:), XDXX,XDZZ,XDZX,1,IKU,1)
ZHGRAD(:,:,:,2) = GY_W_VW(XWT(:,:,:), XDXX,XDZZ,XDZX,1,IKU,1)
ZHGRAD(:,:,:,3) = GX_M_M(XTHT(:,:,:), XDXX,XDZZ,XDZX,1,IKU,1)
ZHGRAD(:,:,:,4) = GY_M_M(XTHT(:,:,:), XDXX,XDZZ,XDZX,1,IKU,1)
ZHGRAD(:,:,:,5) = GX_M_M(XRT(:,:,:,1), XDXX,XDZZ,XDZX,1,IKU,1)
ZHGRAD(:,:,:,6) = GY_M_M(XRT(:,:,:,1), XDXX,XDZZ,XDZX,1,IKU,1)
END IF
CALL TURB( CST,CSTURB, TBUCONF, TURBN,YLDIMPHYEX,TLES, &
IMI, NRR, NRRL, NRRI, CLBCX, CLBCY, IGRADIENTS, NHALO, &
1, NMODEL_CLOUD, &
NSV, NSV_LGBEG, NSV_LGEND,CPROGRAM, &
NSV_LIMA_NR, NSV_LIMA_NS, NSV_LIMA_NG, NSV_LIMA_NH, &
L2D, LNOMIXLG,LFLAT, &
LCOUPLES, LBLOWSNOW, LIBM,LFLYER, &
GCOMPUTE_SRC, XRSNOW, &
LOCEAN, LDEEPOC, LDIAG_IN_RUN, &
CTURBLEN_CLOUD, CCLOUD, &
XTSTEP, TPFILE, &
XDXX, XDYY, XDZZ, XDZX, XDZY, XZZ, &
XDIRCOSXW, XDIRCOSYW, XDIRCOSZW, XCOSSLOPE, XSINSLOPE, &
XRHODJ, XTHVREF, ZHGRAD, XZS, &
ZSFTH, ZSFRV, ZSFSV, ZSFU, ZSFV, &
XPABST, XUT, XVT, XWT, XTKET, XSVT, XSRCT, &
ZLENGTHM, ZLENGTHH, ZMFMOIST, &
XBL_DEPTH, XSBL_DEPTH, &
XCEI, XCEI_MIN, XCEI_MAX, XCOEF_AMPL_SAT, &
XTHT, XRT, &
XRUS, XRVS, XRWS, XRTHS, XRRS, XRSVS, XRTKES, XSIGS, XWTHVMF, &
XTHW_FLUX, XRCW_FLUX, XSVW_FLUX,XDYP, XTHP, ZTDIFF, ZTDISS, &
TBUDGETS, KBUDGETS=SIZE(TBUDGETS),PLEM=XLEM,PRTKEMS=XRTKEMS, &
PTR=XTR, PDISS=XDISS, PCURRENT_TKE_DISS=XCURRENT_TKE_DISS, &
PIBM_LS=XIBM_LS(:,:,:,1), PIBM_XMUT=XIBM_XMUT, &
PSSTFL=XSSTFL, PSSTFL_C=XSSTFL_C, PSSRFL_C=XSSRFL_C, &
PSSUFL_C=XSSUFL_C, PSSVFL_C=XSSVFL_C, PSSUFL=XSSUFL, PSSVFL=XSSVFL )
!
DEALLOCATE(ZTDIFF)
DEALLOCATE(ZTDISS)
IF(LLEONARD) DEALLOCATE(ZHGRAD)
!
IF (LRMC01) THEN
CALL ADD2DFIELD_ll( TZFIELDS_ll, XSBL_DEPTH, 'PHYS_PARAM_n::XSBL_DEPTH' )
CALL UPDATE_HALO_ll(TZFIELDS_ll,IINFO_ll)
CALL CLEANLIST_ll(TZFIELDS_ll)
IF ( CLBCX(1) /= "CYCL" .AND. LWEST_ll()) THEN
XSBL_DEPTH(IIB-1,:)=XSBL_DEPTH(IIB,:)
END IF
IF ( CLBCX(2) /= "CYCL" .AND. LEAST_ll()) THEN
XSBL_DEPTH(IIE+1,:)=XSBL_DEPTH(IIE,:)
END IF
IF ( CLBCY(1) /= "CYCL" .AND. LSOUTH_ll()) THEN
XSBL_DEPTH(:,IJB-1)=XSBL_DEPTH(:,IJB)
END IF
IF ( CLBCY(2) /= "CYCL" .AND. LNORTH_ll()) THEN
XSBL_DEPTH(:,IJE+1)=XSBL_DEPTH(:,IJE)
END IF
END IF
!
CALL SECOND_MNH2(ZTIME3)
!
!-----------------------------------------------------------------------------
!
!* 7. EDMF SCHEME
! -----------
!
IF (CSCONV == 'EDKF') THEN
ALLOCATE(ZEXN (IIU,IJU,IKU))
ALLOCATE(ZSIGMF (IIU,IJU,IKU))
ZSIGMF(:,:,:)=0.
ZEXN(:,:,:)=(XPABST(:,:,:)/XP00)**(XRD/XCPD)
!$20131113 check3d on ZEXN
CALL MPPDB_CHECK3D(ZEXN,"physparan.7::ZEXN",PRECISION)
CALL ADD3DFIELD_ll( TZFIELDS_ll, ZEXN, 'PHYS_PARAM_n::ZEXN' )
!$20131113 add update_halo_ll
CALL UPDATE_HALO_ll(TZFIELDS_ll,IINFO_ll)
CALL CLEANLIST_ll(TZFIELDS_ll)
CALL MPPDB_CHECK3D(ZEXN,"physparam.7::ZEXN",PRECISION)
!
CALL SHALLOW_MF_PACK(NRR,NRRL,NRRI, &
LMF_FLX,TPFILE,ZTIME_LES_MF, &
XIMPL_MF, XTSTEP, &
XDZZ, XZZ,XDXHAT(1),XDYHAT(1), &
XRHODJ, XRHODREF, XPABST, ZEXN, ZSFTH, ZSFRV, &
XTHT,XRT,XUT,XVT,XTKET,XSVT, &
XRTHS,XRRS,XRUS,XRVS,XRSVS, &
ZSIGMF,XRC_MF, XRI_MF, XCF_MF, XWTHVMF)
!
ELSE
XWTHVMF(:,:,:)=0.
XRC_MF(:,:,:)=0.
XRI_MF(:,:,:)=0.
XCF_MF(:,:,:)=0.
ENDIF
!
CALL SECOND_MNH2(ZTIME4)
IF( LTRANS ) THEN
XUT(:,:,:) = XUT(:,:,:) - XUTRANS
XVT(:,:,:) = XVT(:,:,:) - XVTRANS
END IF
IF (CMF_CLOUD == 'STAT') THEN
XSIGS =SQRT( XSIGS**2 + ZSIGMF**2 )
ENDIF
IF (CSCONV == 'EDKF') THEN
DEALLOCATE(ZSIGMF)
DEALLOCATE(ZEXN)
ENDIF
END IF
!
IF (LLES_CALL) CALL SWITCH_SBG_LES_n
!
CALL SECOND_MNH2(ZTIME2)
!
PTURB = PTURB + ZTIME2 - ZTIME1 - (XTIME_LES-ZTIME_LES_MF) - XTIME_LES_BU_PROCESS &
- XTIME_BU_PROCESS - (ZTIME4 - ZTIME3)
!
PMAFL = PMAFL + ZTIME4 - ZTIME3 - ZTIME_LES_MF
!
PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS
!
!
!-------------------------------------------------------------------------------
!
!* deallocation of variables used in more than one parameterization
!
DEALLOCATE(ZSFU ) ! surface schemes + turbulence
DEALLOCATE(ZSFV )
DEALLOCATE(ZSFTH )
DEALLOCATE(ZSFRV )
DEALLOCATE(ZSFSV )
DEALLOCATE(ZSFCO2)
!
!-------------------------------------------------------------------------------
!
END SUBROUTINE PHYS_PARAM_n