Forked from
Méso-NH / Méso-NH code
3210 commits behind the upstream repository.
-
WAUTELET Philippe authoredWAUTELET Philippe authored
bl89.f90 13.61 KiB
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
!--------------- special set of characters for RCS information
!-----------------------------------------------------------------
! $Source: /home/cvsroot/MNH-VX-Y-Z/src/MNH/bl89.f90,v $ $Revision: 1.1.8.1.2.2.16.1.2.1 $ $Date: 2014/01/09 13:25:02 $
!-----------------------------------------------------------------
! ################
MODULE MODI_BL89
! ################
INTERFACE
SUBROUTINE BL89(KKA,KKU,KKL,PZZ,PDZZ,PTHVREF,PTHLM,KRR,PRM,PTKEM,PSHEAR,PLM)
!
INTEGER, INTENT(IN) :: KKA
INTEGER, INTENT(IN) :: KKU
INTEGER, INTENT(IN) :: KKL
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDZZ
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHVREF
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHLM
INTEGER, INTENT(IN) :: KRR
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PRM
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTKEM
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSHEAR
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLM
END SUBROUTINE BL89
END INTERFACE
END MODULE MODI_BL89
!
! #########################################################
SUBROUTINE BL89(KKA,KKU,KKL,PZZ,PDZZ,PTHVREF,PTHLM,KRR,PRM,PTKEM,PSHEAR,PLM)
! #########################################################
!
!!**** *BL89* -
!!
!! PURPOSE
!! -------
!! This routine computes the mixing length from Bougeault-Lacarrere 89
!! formula.
!!
!!** METHOD
!! ------
!!
!! EXTERNAL
!! --------
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
!!
!! REFERENCE
!! ---------
!!
!! Book 2
!!
!! AUTHOR
!! ------
!!
!! J. Cuxart INM and Meteo-France
!!
!! MODIFICATIONS
!! -------------
!! Original 27/04/97 (V. Masson) separation from turb.f90
!! and optimization
!! 06/01/98 (V. Masson and P. Jabouille) optimization
!! 15/03/99 (V. Masson) new lup ldown averaging
!! 21/02/01 (P. Jabouille) improve vectorization
!! 2012-02 (Y. Seity) add possibility to run with
!! reversed vertical levels
!! Philippe 13/02/2018: use ifdef MNH_REAL to prevent problems with intrinsics on Blue Gene/Q
!! 01/2019 (Q. Rodier) support for RM17 mixing length
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CONF, ONLY: CPROGRAM
USE MODD_CST
USE MODD_CTURB
USE MODD_PARAMETERS
use modd_precision, only: MNHREAL
!
!
IMPLICIT NONE
!
!* 0.1 Declaration of arguments
! ------------------------
!
INTEGER, INTENT(IN) :: KKA !near ground array index
INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDZZ
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHVREF
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHLM ! conservative pot. temp.
INTEGER, INTENT(IN) :: KRR
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PRM ! water var.
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTKEM ! TKE
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSHEAR
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLM ! Mixing length
! thermodynamical variables PTHLM=Theta at the begining
!
!* 0.2 Declaration of local variables
! ------------------------------
!
INTEGER :: IKB,IKE
INTEGER :: IKT ! array size in k direction
INTEGER :: IKTB,IKTE ! start, end of k loops in physical domain
REAL, DIMENSION(SIZE(PTKEM,1)*SIZE(PTKEM,2),SIZE(PTKEM,3)) :: ZVPT ! Virtual Potential Temp at half levels
REAL, DIMENSION(SIZE(PTKEM,1)*SIZE(PTKEM,2),SIZE(PTKEM,3)) :: ZDELTVPT
! Increment of Virtual Potential Temp between two following levels
REAL, DIMENSION(SIZE(PTKEM,1)*SIZE(PTKEM,2),SIZE(PTKEM,3)) :: ZHLVPT
! Virtual Potential Temp at half levels
REAL, DIMENSION(SIZE(PTKEM,1)*SIZE(PTKEM,2)) :: ZLWORK,ZINTE
! ! downwards then upwards vertical displacement,
! ! residual internal energy,
! ! residual potential energy
REAL, DIMENSION(SIZE(PTKEM,1)*SIZE(PTKEM,2),SIZE(PTKEM,3)) :: ZZZ,ZDZZ, &
ZG_O_THVREF, &
ZTHM,ZTKEM,ZLM, &
ZLMDN,ZSHEAR, &
ZSQRT_TKE
! ! input and output arrays packed according one horizontal coord.
REAL, DIMENSION(SIZE(PRM,1)*SIZE(PRM,2),SIZE(PRM,3),SIZE(PRM,4)) :: ZRM
! ! input array packed according one horizontal coord.
REAL, DIMENSION(SIZE(PRM,1)*SIZE(PRM,2),SIZE(PRM,3)) :: ZSUM ! to replace SUM function
!
INTEGER :: IIU,IJU
INTEGER :: J1D ! horizontal loop counter
INTEGER :: JK,JKK,J3RD ! loop counters
INTEGER :: JRR ! moist loop counter
REAL :: ZRVORD ! Rv/Rd
REAL :: ZPOTE,ZLWORK1,ZLWORK2
REAL :: ZTEST,ZTEST0,ZTESTM ! test for vectorization
REAL :: Z2SQRT2
!-------------------------------------------------------------------------------
!
Z2SQRT2=2.*SQRT(2.)
IIU=SIZE(PTKEM,1)
IJU=SIZE(PTKEM,2)
!
IKB=KKA+JPVEXT_TURB*KKL
IKE=KKU-JPVEXT_TURB*KKL
IKTB = JPVEXT_TURB + 1
IKT = SIZE(PTKEM,3)
IKTE = IKT-JPVEXT_TURB
ZRVORD = XRV / XRD
!
!-------------------------------------------------------------------------------
!
!* 1. pack the horizontal dimensions into one
! ---------------------------------------
!
IF (CPROGRAM=='AROME ') THEN
DO JK=1,IKT
ZZZ (:,JK) = PZZ (:,1,JK)
ZDZZ (:,JK) = PDZZ (:,1,JK)
ZTHM (:,JK) = PTHLM (:,1,JK)
ZTKEM (:,JK) = PTKEM (:,1,JK)
ZG_O_THVREF(:,JK) = XG/PTHVREF(:,1,JK)
END DO
DO JK=1,IKT
DO JRR=1,KRR
ZRM (:,JK,JRR) = PRM (:,1,JK,JRR)
END DO
END DO
ELSE
DO JK=1,IKT
ZZZ (:,JK) = RESHAPE(PZZ (:,:,JK),(/ IIU*IJU /) )
ZDZZ (:,JK) = RESHAPE(PDZZ (:,:,JK),(/ IIU*IJU /) )
ZTHM (:,JK) = RESHAPE(PTHLM (:,:,JK),(/ IIU*IJU /) )
ZSHEAR (:,JK) = RESHAPE(PSHEAR (:,:,JK),(/ IIU*IJU /) )
ZTKEM (:,JK) = RESHAPE(PTKEM (:,:,JK),(/ IIU*IJU /) )
ZG_O_THVREF(:,JK) = RESHAPE(XG/PTHVREF(:,:,JK),(/ IIU*IJU /) )
DO JRR=1,KRR
ZRM (:,JK,JRR) = RESHAPE(PRM (:,:,JK,JRR),(/ IIU*IJU /) )
END DO
END DO
END IF
!
ZSQRT_TKE = SQRT(ZTKEM)
!-------------------------------------------------------------------------------
!
!* 2. Virtual potential temperature on the model grid
! -----------------------------------------------
!
IF(KRR /= 0) THEN
ZSUM(:,:) = 0.
DO JRR=1,KRR
ZSUM(:,:) = ZSUM(:,:)+ZRM(:,:,JRR)
ENDDO
ZVPT(:,1:)=ZTHM(:,:) * ( 1. + ZRVORD*ZRM(:,:,1) ) &
/ ( 1. + ZSUM(:,:) )
ELSE
ZVPT(:,1:)=ZTHM(:,:)
END IF
!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!! WARNING !!
!!!!!!!!!!!!
!!!!!!!!!!!!
!Any modification done to the following lines and to the sections 4 and
!6 must be copied in compute_bl89_ml routine.
!We do not call directly this routine for numerical performance reasons
!but algorithm must remain the same.
!!!!!!!!!!!!
ZDELTVPT(:,IKTB:IKTE)=ZVPT(:,IKTB:IKTE)-ZVPT(:,IKTB-KKL:IKTE-KKL)
ZDELTVPT(:,KKU)=ZVPT(:,KKU)-ZVPT(:,KKU-KKL)
ZDELTVPT(:,KKA)=0.
WHERE (ABS(ZDELTVPT(:,:))<XLINF)
ZDELTVPT(:,:)=XLINF
END WHERE
!
ZHLVPT(:,IKTB:IKTE)= 0.5 * ( ZVPT(:,IKTB:IKTE)+ZVPT(:,IKTB-KKL:IKTE-KKL) )
ZHLVPT(:,KKU)= 0.5 * ( ZVPT(:,KKU)+ZVPT(:,KKU-KKL) )
ZHLVPT(:,KKA) = ZVPT(:,KKA)
!-------------------------------------------------------------------------------
!
!* 3. loop on model levels
! --------------------
DO JK=IKTB,IKTE
!
!-------------------------------------------------------------------------------
!
!
!* 4. mixing length for a downwards displacement
! ------------------------------------------
ZINTE(:)=ZTKEM(:,JK)
ZLWORK=0.
ZTESTM=1.
DO JKK=JK,IKB,-KKL
IF(ZTESTM > 0.) THEN
ZTESTM=0.
DO J1D=1,IIU*IJU
ZTEST0=0.5+SIGN(0.5,ZINTE(J1D))
!--------- SHEAR + STABILITY -----------
ZPOTE = ZTEST0* &
(-ZG_O_THVREF(J1D,JK)*(ZHLVPT(J1D,JKK)-ZVPT(J1D,JK)) &
+ XRM17*ZSHEAR(J1D,JKK)*ZSQRT_TKE(J1D,JK) &
)*ZDZZ(J1D,JKK)
ZTEST =0.5+SIGN(0.5,ZINTE(J1D)-ZPOTE)
ZTESTM=ZTESTM+ZTEST0
ZLWORK1=ZDZZ(J1D,JKK)
!-------- ORIGINAL -------------
! ZLWORK2= ( + ZG_O_THVREF(J1D,JK) * &
! ( ZVPT(J1D,JKK) - ZVPT(J1D,JK) ) &
! + SQRT (ABS( &
! ( ZG_O_THVREF(J1D,JK) * (ZVPT(J1D,JKK) - ZVPT(J1D,JK)) )**2 &
! + 2. * ZINTE(J1D) * ZG_O_THVREF(J1D,JK) &
! * ZDELTVPT(J1D,JKK) / ZDZZ(J1D,JKK) ))) / &
! ( ZG_O_THVREF(J1D,JK) * ZDELTVPT(J1D,JKK) / ZDZZ(J1D,JKK))
!--------- SHEAR + STABILITY -----------
ZLWORK2 = (ZG_O_THVREF(J1D,JK) *(ZVPT(J1D,JKK) - ZVPT(J1D,JK)) &
-XRM17*ZSHEAR(J1D,JKK)*ZSQRT_TKE(J1D,JK) &
+ sqrt(abs( (XRM17*ZSHEAR(J1D,JKK)*ZSQRT_TKE(J1D,JK) &
+ ( -ZG_O_THVREF(J1D,JK) * (ZVPT(J1D,JKK) - ZVPT(J1D,JK)) ))**2.0 + &
2. * ZINTE(J1D) * &
(ZG_O_THVREF(J1D,JK) * ZDELTVPT(J1D,JKK)/ ZDZZ(J1D,JKK))))) / &
(ZG_O_THVREF(J1D,JK) * ZDELTVPT(J1D,JKK) / ZDZZ(J1D,JKK))
ZLWORK(J1D)=ZLWORK(J1D)+ZTEST0*(ZTEST*ZLWORK1+(1-ZTEST)*ZLWORK2)
ZINTE(J1D) = ZINTE(J1D) - ZPOTE
END DO
ENDIF
END DO
!-------------------------------------------------------------------------------
!
!* 5. intermediate storage of the final mixing length
! -----------------------------------------------
!
ZLMDN(:,JK)=MIN(ZLWORK(:),0.5*(ZZZ(:,JK)+ZZZ(:,JK+KKL))-ZZZ(:,IKB))
!
!-------------------------------------------------------------------------------
!
!* 6. mixing length for an upwards displacement
! -----------------------------------------
!
ZINTE(:)=ZTKEM(:,JK)
ZLWORK=0.
ZTESTM=1.
!
DO JKK=JK+KKL,IKE,KKL
IF(ZTESTM > 0.) THEN
ZTESTM=0.
DO J1D=1,IIU*IJU
ZTEST0=0.5+SIGN(0.5,ZINTE(J1D))
!-------- ORIGINAL -------------
!ZPOTE = ZTEST0*ZG_O_THVREF(J1D,JK) * &
! (ZHLVPT(J1D,JKK) - ZVPT(J1D,JK) ) *ZDZZ(J1D,JKK)
!--------- SHEAR + STABILITY -----------
ZPOTE = ZTEST0* &
(ZG_O_THVREF(J1D,JK)*(ZHLVPT(J1D,JKK)-ZVPT(J1D,JK)) &
+XRM17*ZSHEAR(J1D,JKK)*ZSQRT_TKE(J1D,JK) &
)*ZDZZ(J1D,JKK)
ZTEST =0.5+SIGN(0.5,ZINTE(J1D)-ZPOTE)
ZTESTM=ZTESTM+ZTEST0
ZLWORK1=ZDZZ(J1D,JKK)
!-------- ORIGINAL -------------
! ZLWORK2= ( - ZG_O_THVREF(J1D,JK) * &
! ( ZVPT(J1D,JKK-KKL) - ZVPT(J1D,JK) ) &
! + SQRT (ABS( &
! ( ZG_O_THVREF(J1D,JK) * (ZVPT(J1D,JKK-KKL) - ZVPT(J1D,JK)) )**2 &
! + 2. * ZINTE(J1D) * ZG_O_THVREF(J1D,JK) &
! * ZDELTVPT(J1D,JKK) / ZDZZ(J1D,JKK) )) ) / &
! ( ZG_O_THVREF(J1D,JK) * ZDELTVPT(J1D,JKK) / ZDZZ(J1D,JKK) )
!--------- SHEAR + STABILITY -----------
ZLWORK2= ( - ZG_O_THVREF(J1D,JK) *(ZVPT(J1D,JKK-KKL) - ZVPT(J1D,JK) ) &
- XRM17*ZSHEAR(J1D,JKK)*ZSQRT_TKE(J1D,JK) &
+ SQRT (ABS( &
(XRM17*ZSHEAR(J1D,JKK)*ZSQRT_TKE(J1D,JK) &
+ ( ZG_O_THVREF(J1D,JK) * (ZVPT(J1D,JKK-KKL) - ZVPT(J1D,JK))) )**2 &
+ 2. * ZINTE(J1D) * &
( ZG_O_THVREF(J1D,JK)* ZDELTVPT(J1D,JKK)/ZDZZ(J1D,JKK))))) / &
(ZG_O_THVREF(J1D,JK) * ZDELTVPT(J1D,JKK) / ZDZZ(J1D,JKK))
ZLWORK(J1D)=ZLWORK(J1D)+ZTEST0*(ZTEST*ZLWORK1+(1-ZTEST)*ZLWORK2)
ZINTE(J1D) = ZINTE(J1D) - ZPOTE
END DO
ENDIF
END DO
!
!-------------------------------------------------------------------------------
!
!* 7. final mixing length
!
DO J1D=1,IIU*IJU
ZLWORK1=MAX(ZLMDN(J1D,JK),1.E-10_MNHREAL)
ZLWORK2=MAX(ZLWORK(J1D),1.E-10_MNHREAL)
ZPOTE = ZLWORK1 / ZLWORK2
ZLWORK2=1.d0 + ZPOTE**(2./3.)
ZLM(J1D,JK) = Z2SQRT2*ZLWORK1/(ZLWORK2*SQRT(ZLWORK2))
END DO
ZLM(:,JK)=MAX(ZLM(:,JK),XLINI)
!
!
!* 8. end of the loop on the vertical levels
! --------------------------------------
!
END DO
!
!-------------------------------------------------------------------------------
!
!* 9. boundaries
! ----------
!
ZLM(:,KKA)=ZLM(:,IKB)
ZLM(:,IKE)=ZLM(:,IKE-KKL)
ZLM(:,KKU)=ZLM(:,IKE-KKL)
!
!-------------------------------------------------------------------------------
!
!* 10. retrieve output array in model coordinates
! ------------------------------------------
!
IF (CPROGRAM=='AROME ') THEN
DO JK=1,IKT
PLM (:,1,JK) = ZLM (:,JK)
END DO
ELSE
DO JK=1,IKT
PLM (:,:,JK) = RESHAPE(ZLM (:,JK), (/ IIU,IJU /) )
END DO
END IF
!
END SUBROUTINE BL89