Forked from
Méso-NH / Méso-NH code
4300 commits behind the upstream repository.
ch_aqueous_tmicice.f90 58.69 KiB
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
! ####################################
MODULE MODI_CH_AQUEOUS_TMICICE
! ####################################
!
INTERFACE
SUBROUTINE CH_AQUEOUS_TMICICE( PTSTEP, PRHODREF, PRHODJ, PTHT, PPABST, &
PRTMIN_AQ, OUSECHIC, OCH_RET_ICE, HNAMES, &
HICNAMES, KEQ, KEQAQ, PRVT, PRCT, PRRT, PRIT,&
PRST, PRGT, PCIT, PRCS, PRRS, PRIS, PRSS, &
PRGS, PGSVT, PGRSVS, PCSVT, PCRSVS, PRSVT, &
PRRSVS, PSGSVT, PSGRSVS )
!
REAL, INTENT(IN) :: PTSTEP ! Time step
REAL, INTENT(IN) :: PRTMIN_AQ ! LWC threshold liq. chem.
INTEGER, INTENT(IN) :: KEQ ! Number of chem. spec.
INTEGER, INTENT(IN) :: KEQAQ ! Number of liq. chem. spec.
LOGICAL, INTENT(IN) :: OUSECHIC ! flag for ice chem.
LOGICAL, INTENT(IN) :: OCH_RET_ICE ! flag for retention in ice
!
CHARACTER(LEN=32), DIMENSION(:), INTENT(IN) :: HNAMES ! name of chem. species
CHARACTER(LEN=32), DIMENSION(:), INTENT(IN) :: HICNAMES ! name of ice chem. species
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! absolute pressure at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT ! Theta at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRVT ! Vapor m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rainwater m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIT ! Pristine m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRST ! Snow m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGT ! Graupel m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCIT ! Pristine conc. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCS ! cloud water m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRS ! Rainwater m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIS ! Pristine m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRSS ! Snow m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGS ! graupel m.r. source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PGSVT ! gas species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PGRSVS ! gas species source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PCSVT ! cloud water aq. species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PCRSVS ! cloud water aq. species source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PRSVT ! Rainwater aq. species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRRSVS ! Rainwater aq. species source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PSGSVT ! ice species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PSGRSVS ! ice species source
!
END SUBROUTINE CH_AQUEOUS_TMICICE
END INTERFACE
END MODULE MODI_CH_AQUEOUS_TMICICE
!
! ################################################################################
SUBROUTINE CH_AQUEOUS_TMICICE( PTSTEP, PRHODREF, PRHODJ, PTHT, PPABST, &
PRTMIN_AQ, OUSECHIC, OCH_RET_ICE, HNAMES, &
HICNAMES, KEQ, KEQAQ, PRVT, PRCT, PRRT, PRIT,&
PRST, PRGT, PCIT, PRCS, PRRS, PRIS, PRSS, &
PRGS, PGSVT, PGRSVS, PCSVT, PCRSVS, PRSVT, &
PRRSVS, PSGSVT, PSGRSVS )
! ################################################################################
!
!!**** * - compute the explicit microphysical sources
!!
!! PURPOSE
!! -------
!! The purpose of this routine is to compute the microphysical sources
!! corresponding to collision/coalescence processes (autoconversion + accretion)
!! and to the freezing, rimin and melting processes for snow and graupel
!! for the ICE3(4) cloud microphysics parameterization (see rain_ice)
!!
!!
!!** METHOD
!! ------
!!
!! EXTERNAL
!! --------
!! None
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAMETERS
!! JPHEXT : Horizontal external points number
!! JPVEXT : Vertical external points number
!!
!! REFERENCE
!! ---------
!! Book1 of the documentation ( routine CH_AQUEOUS_TMICICE )
!!
!! AUTHOR
!! ------
!! C. Mari J.P. Pinty M. Leriche * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original 26/03/08
!! M. Leriche 19/07/2010 add riming, freezing and melting for ice phase(ICE3)
!! M. Leriche 17/09/2010 add OUSECHIC flag
!! Juan 24/09/2012: for BUG Pgi rewrite PACK function on mode_pack_pgi
!! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
!! M.Leriche 2015 correction bug
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_PARAMETERS, ONLY : JPHEXT, &! number of horizontal External points
JPVEXT ! number of vertical External points
USE MODD_CST, ONLY : XP00, XRD, XRV, XCPD, XTT, XLMTT, XLVTT, XCPV, &
XCL, XCI, XESTT, XMV, XMD
USE MODD_RAIN_ICE_DESCR, ONLY : XLBR, XLBEXR, XCEXVT, XLBDAS_MAX, XLBS, XLBEXS, &
XLBG, XLBEXG, XCXS, XCXG, XDG, XBS
USE MODD_RAIN_ICE_PARAM, ONLY : XTIMAUTC, XCRIAUTC, XFCACCR, XEXCACCR, &
XRIMINTP1, XRIMINTP2, XCRIMSS, XCRIMSG,&
XEXCRIMSS, XEXCRIMSG, NGAMINC, XGAMINC_RIM1, &
XFRACCSS, XLBRACCS1, XLBRACCS2, XLBRACCS3, &
XACCINTP1S, XACCINTP2S, XACCINTP1R, XACCINTP2R, &
NACCLBDAS, NACCLBDAR, XKER_RACCSS, XKER_RACCS, &
XEXRCFRI, XRCFRI, X0DEPG, XEX0DEPG, X1DEPG, &
XEX1DEPG, XSCFAC, XFCDRYG, XFIDRYG, XCOLEXIG, &
XCOLEXSG, XFSDRYG, NDRYLBDAG, XDRYINTP1G, &
XDRYINTP2G, NDRYLBDAS, XDRYINTP1S, XDRYINTP2S, &
XKER_SDRYG, XLBSDRYG1, XLBSDRYG2, XLBSDRYG3, &
XFRDRYG, NDRYLBDAR, XDRYINTP1R, XDRYINTP2R, &
XKER_RDRYG, XLBRDRYG1, XLBRDRYG2, XLBRDRYG3, &
XCOLIG, XCOLEXIG, XCOLSG, XCOLEXSG
USE MODD_CH_ICE ! value of retention coefficient
!
#ifdef MNH_PGI
USE MODE_PACK_PGI
#endif
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
REAL, INTENT(IN) :: PTSTEP ! Time step
REAL, INTENT(IN) :: PRTMIN_AQ ! LWC threshold liq. chem.
INTEGER, INTENT(IN) :: KEQ ! Number of chem. spec.
INTEGER, INTENT(IN) :: KEQAQ ! Number of liq. chem. spec.
LOGICAL, INTENT(IN) :: OUSECHIC ! flag for ice chem.
LOGICAL, INTENT(IN) :: OCH_RET_ICE ! flag for retention in ice
!
CHARACTER(LEN=32), DIMENSION(:), INTENT(IN) :: HNAMES ! name of chem. species
CHARACTER(LEN=32), DIMENSION(:), INTENT(IN) :: HICNAMES ! name of ice chem. species
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! absolute pressure at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT ! Theta at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRVT ! Vapor m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rainwater m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIT ! Pristine m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRST ! Snow m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGT ! Graupel m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCIT ! Pristine conc. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCS ! cloud water m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRS ! Rainwater m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIS ! Pristine m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRSS ! Snow m.r. source
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGS ! graupel m.r. source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PGSVT ! gas species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PGRSVS ! gas species source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PCSVT ! cloud water aq. species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PCRSVS ! cloud water aq. species source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PRSVT ! Rainwater aq. species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRRSVS ! Rainwater aq. species source
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PSGSVT ! ice species at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PSGRSVS ! ice species source
!
!* 0.2 Declarations of local variables :
!
INTEGER :: JLC, JLR, JLI, JLG, JLW ! Loop index for cloud water, rainwater and ice species
INTEGER :: JJ ! Loop index
INTEGER :: IIB ! Define the domain where is
INTEGER :: IIE ! the microphysical sources have to be computed
INTEGER :: IJB
INTEGER :: IJE
INTEGER :: IKB
INTEGER :: IKE
!
INTEGER :: IMICRO ! case number of r_x>0 locations
INTEGER, DIMENSION(SIZE(PSGRSVS,4)) :: INDEXGI ! index array for ice phase chemistry
INTEGER, DIMENSION(SIZE(PSGRSVS,4)) :: INDEXWI ! index array for ice phase chemistry
INTEGER, DIMENSION(SIZE(PRRSVS,4)) :: INDEXWG ! index array for degassing when freezing
LOGICAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: GMICRO ! where to compute mic. processes
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZT ! Temperature
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZRCS ! Cloud water m.r. source phys.tendency
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZRRS ! Rain water m.r. source phys. tendency
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZRIS ! Pristine m.r. source phys. tendency
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZRSS ! Snow m.r. source phys. tendency
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZRGS ! Graupel m.r. source phys. tendency
REAL, DIMENSION(SIZE(PGRSVS,1),SIZE(PGRSVS,2),SIZE(PGRSVS,3),SIZE(PGRSVS,4)) &
:: ZZGRSVS ! Gas species source
REAL, DIMENSION(SIZE(PCRSVS,1),SIZE(PCRSVS,2),SIZE(PCRSVS,3),SIZE(PCRSVS,4)) &
:: ZZCRSVS ! Cloud water aq. species source
REAL, DIMENSION(SIZE(PRRSVS,1),SIZE(PRRSVS,2),SIZE(PRRSVS,3),SIZE(PRRSVS,4)) &
:: ZZRRSVS ! Rain water aq. species source
REAL, DIMENSION(SIZE(PSGRSVS,1),SIZE(PSGRSVS,2),SIZE(PSGRSVS,3),SIZE(PSGRSVS,4)) &
:: ZZSGRSVS ! Ice (snow+graupel) species source
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZCW ! work array
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZRW ! work array
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZSGW ! work array
REAL, DIMENSION(SIZE(PRCT,1),SIZE(PRCT,2),SIZE(PRCT,3)) &
:: ZGW ! work array
REAL, DIMENSION(:), ALLOCATABLE :: ZZT ! Temperature
REAL, DIMENSION(:), ALLOCATABLE :: ZPRES ! Pressure
REAL, DIMENSION(:), ALLOCATABLE :: ZRVT ! Vapor m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRCT ! Cloud water m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRRT ! Rain water m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRIT ! Pristine m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRST ! Snow m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRGT ! Graupel m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZCIT ! Pristine conc. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZZRCS ! Cloud water m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZZRRS ! Rain water m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZZRIS ! Pristine m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZZRSS ! snow m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZZRGS ! graupel m.r. source
REAL, DIMENSION(:,:), ALLOCATABLE :: ZCSVT ! Cloud water aq. species at t
REAL, DIMENSION(:,:), ALLOCATABLE :: ZRSVT ! Rain water aq. species at t
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSGSVT ! Ice (snow + graupel) species at t
REAL, DIMENSION(:,:), ALLOCATABLE :: ZGRSVS ! Gas species source
REAL, DIMENSION(:,:), ALLOCATABLE :: ZCRSVS ! Cloud water aq. species source
REAL, DIMENSION(:,:), ALLOCATABLE :: ZRRSVS ! Rain water aq. species source
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSGRSVS! Ice (snow+graupel) species source
REAL, DIMENSION(:), ALLOCATABLE :: ZCJ ! Function to compute the ventilation coefficient
REAL, DIMENSION(:), ALLOCATABLE :: ZKA ! Thermal conductivity of the air
REAL, DIMENSION(:), ALLOCATABLE :: ZDV ! Diffusivity of water vapor in the air
!
REAL, DIMENSION(:), ALLOCATABLE :: ZRHODREF, & ! RHO Dry REFerence
ZZW, & ! Work array
ZLBDAR, & ! Slope parameter of the raindrop distribution
ZLBDAS, & ! Slope parameter of the snow distribution
ZLBDAG, & ! Slope parameter of the graupel distribution
ZRDRYG, & ! Dry growth rate of the graupel
ZRWETG ! Wet growth rate of the graupel
!
INTEGER :: IGRIM, IGACC ! Case number of riming, accretion
INTEGER :: IGDRY
!, IGWET ! dry growth and wet growth locations for graupels
LOGICAL, DIMENSION(:), ALLOCATABLE :: GRIM ! Test where to compute riming
LOGICAL, DIMENSION(:), ALLOCATABLE :: GACC ! Test where to compute accretion
LOGICAL, DIMENSION(:), ALLOCATABLE :: GDRY ! Test where to compute dry growth
!LOGICAL, DIMENSION(:), ALLOCATABLE :: GWET ! Test where to compute wet growt
INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC1,IVEC2 ! Vectors of indices for
! interpolations
REAL, DIMENSION(:), ALLOCATABLE :: ZVEC1,ZVEC2,ZVEC3 ! Work vectors for
! interpolations
REAL, DIMENSION(:,:), ALLOCATABLE :: ZZW1, ZZW2, ZZW3, ZZW4 ! Work arrays
!
INTEGER , DIMENSION(SIZE(GMICRO)) :: I1,I2,I3 ! Used to replace the COUNT
INTEGER :: JL ! and PACK intrinsics
!
!
! compute the temperature
!
ZT(:,:,:) = PTHT(:,:,:) * ( PPABST(:,:,:) / XP00 ) ** (XRD/XCPD)
!
!-------------------------------------------------------------------------------
!
!* 1. COMPUTE THE LOOP BOUNDS
! -----------------------
!
CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
IKB=1+JPVEXT
IKE=SIZE(PRCT,3) - JPVEXT
!
!-------------------------------------------------------------------------------
!
!!* 2. TRANSFORMATION INTO PHYSICAL TENDENCIES
! ---------------------------------------
!
ZRCS(:,:,:) = PRCS(:,:,:) / PRHODJ(:,:,:)
ZRRS(:,:,:) = PRRS(:,:,:) / PRHODJ(:,:,:)
ZRSS(:,:,:) = PRSS(:,:,:) / PRHODJ(:,:,:)
ZRIS(:,:,:) = PRIS(:,:,:) / PRHODJ(:,:,:)
ZRGS(:,:,:) = PRGS(:,:,:) / PRHODJ(:,:,:)
!
DO JLC= 1, SIZE(PCRSVS,4)
ZZCRSVS(:,:,:,JLC) = PCRSVS(:,:,:,JLC) / PRHODJ(:,:,:)
ENDDO
DO JLR= 1, SIZE(PRRSVS,4)
ZZRRSVS(:,:,:,JLR) = PRRSVS(:,:,:,JLR) / PRHODJ(:,:,:)
ENDDO
IF (OUSECHIC) THEN
DO JLG= 1, SIZE(PGRSVS,4)
ZZGRSVS(:,:,:,JLG) = PGRSVS(:,:,:,JLG) / PRHODJ(:,:,:)
ENDDO
DO JLI= 1, SIZE(PSGRSVS,4)
ZZSGRSVS(:,:,:,JLI) = PSGRSVS(:,:,:,JLI) / PRHODJ(:,:,:)
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLG= 1, SIZE(PGRSVS,4)
ZZGRSVS(:,:,:,JLG) = PGRSVS(:,:,:,JLG) / PRHODJ(:,:,:)
ENDDO
ENDIF
ENDIF
!
!-------------------------------------------------------------------------------
!
!* 3. OPTIMIZATION: looking for locations where m.r. hydro. > min value
! -----------------------------------------------------------------
!
GMICRO(:,:,:) = .FALSE.
GMICRO(IIB:IIE,IJB:IJE,IKB:IKE) = &
(PRCT(IIB:IIE,IJB:IJE,IKB:IKE)>PRTMIN_AQ*1.e3/PRHODREF(IIB:IIE,IJB:IJE,IKB:IKE)) .OR. &
(PRRT(IIB:IIE,IJB:IJE,IKB:IKE)>PRTMIN_AQ*1.e3/PRHODREF(IIB:IIE,IJB:IJE,IKB:IKE)) .OR. &
(PRST(IIB:IIE,IJB:IJE,IKB:IKE)>PRTMIN_AQ*1.e3/PRHODREF(IIB:IIE,IJB:IJE,IKB:IKE)) .OR. &
(PRGT(IIB:IIE,IJB:IJE,IKB:IKE)>PRTMIN_AQ*1.e3/PRHODREF(IIB:IIE,IJB:IJE,IKB:IKE))
!
IMICRO = COUNTJV( GMICRO(:,:,:),I1(:),I2(:),I3(:))
IF( IMICRO >= 1 ) THEN
ALLOCATE(ZZT(IMICRO))
ALLOCATE(ZPRES(IMICRO))
ALLOCATE(ZRVT(IMICRO))
ALLOCATE(ZRCT(IMICRO))
ALLOCATE(ZRRT(IMICRO))
ALLOCATE(ZRIT(IMICRO))
ALLOCATE(ZRST(IMICRO))
ALLOCATE(ZRGT(IMICRO))
ALLOCATE(ZCIT(IMICRO))
ALLOCATE(ZCSVT(IMICRO,SIZE(PCSVT,4)))
ALLOCATE(ZRSVT(IMICRO,SIZE(PRSVT,4)))
ALLOCATE(ZZRCS(IMICRO))
ALLOCATE(ZZRRS(IMICRO))
ALLOCATE(ZZRIS(IMICRO))
ALLOCATE(ZZRSS(IMICRO))
ALLOCATE(ZZRGS(IMICRO))
ALLOCATE(ZCRSVS(IMICRO,SIZE(PCRSVS,4)))
ALLOCATE(ZRRSVS(IMICRO,SIZE(PRRSVS,4)))
ALLOCATE(ZRHODREF(IMICRO))
ALLOCATE(ZZW(IMICRO))
ALLOCATE(ZZW2(IMICRO,SIZE(PCSVT,4)))
ALLOCATE(ZZW4(IMICRO,SIZE(PCSVT,4)))
ALLOCATE(ZZW1(IMICRO,6))
ALLOCATE(ZLBDAR(IMICRO))
ALLOCATE(ZLBDAS(IMICRO))
ALLOCATE(ZLBDAG(IMICRO))
ALLOCATE(ZRDRYG(IMICRO))
ALLOCATE(ZRWETG(IMICRO))
ALLOCATE(ZKA(IMICRO))
ALLOCATE(ZDV(IMICRO))
ALLOCATE(ZCJ(IMICRO))
DO JL=1,IMICRO
ZCSVT(JL,:) = PCSVT(I1(JL),I2(JL),I3(JL),:)
ZCRSVS(JL,:) = ZZCRSVS(I1(JL),I2(JL),I3(JL),:)
ZRSVT(JL,:) = PRSVT(I1(JL),I2(JL),I3(JL),:)
ZRRSVS(JL,:) = ZZRRSVS(I1(JL),I2(JL),I3(JL),:)
!
ZRVT(JL) = PRVT(I1(JL),I2(JL),I3(JL))
ZRCT(JL) = PRCT(I1(JL),I2(JL),I3(JL))
ZRRT(JL) = PRRT(I1(JL),I2(JL),I3(JL))
ZRIT(JL) = PRIT(I1(JL),I2(JL),I3(JL))
ZRST(JL) = PRST(I1(JL),I2(JL),I3(JL))
ZRGT(JL) = PRGT(I1(JL),I2(JL),I3(JL))
ZCIT(JL) = PCIT(I1(JL),I2(JL),I3(JL))
!
ZZRCS(JL) = ZRCS(I1(JL),I2(JL),I3(JL))
ZZRRS(JL) = ZRRS(I1(JL),I2(JL),I3(JL))
ZZRIS(JL) = ZRIS(I1(JL),I2(JL),I3(JL))
ZZRSS(JL) = ZRSS(I1(JL),I2(JL),I3(JL))
ZZRGS(JL) = ZRGS(I1(JL),I2(JL),I3(JL))
!
ZZT(JL) = ZT(I1(JL),I2(JL),I3(JL))
ZRHODREF(JL) = PRHODREF(I1(JL),I2(JL),I3(JL))
ZPRES(JL) = PPABST(I1(JL),I2(JL),I3(JL))
ENDDO
IF (OUSECHIC) THEN
ALLOCATE(ZSGSVT(IMICRO,SIZE(PSGSVT,4)))
ALLOCATE(ZGRSVS(IMICRO,SIZE(PGRSVS,4)))
ALLOCATE(ZSGRSVS(IMICRO,SIZE(PSGRSVS,4)))
ALLOCATE(ZZW3(IMICRO,SIZE(PSGSVT,4)))
DO JL=1,IMICRO
ZGRSVS(JL,:) = ZZGRSVS(I1(JL),I2(JL),I3(JL),:)
ZSGSVT(JL,:) = PSGSVT(I1(JL),I2(JL),I3(JL),:)
ZSGRSVS(JL,:) = ZZSGRSVS(I1(JL),I2(JL),I3(JL),:)
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
ALLOCATE(ZGRSVS(IMICRO,SIZE(PGRSVS,4)))
DO JL=1,IMICRO
ZGRSVS(JL,:) = ZZGRSVS(I1(JL),I2(JL),I3(JL),:)
ENDDO
ENDIF
ENDIF
!
!
!-------------------------------------------------------------------------------
!
!* 4. COMPUTES THE SLOW WARM PROCESS SOURCES
! --------------------------------------
!
!* 4.1 compute the slope parameter Lbda_r
!
WHERE( ZRRT(:)>0.0 )
ZLBDAR(:) = XLBR*( ZRHODREF(:)*MAX( ZRRT(:),PRTMIN_AQ*1.e3/ZRHODREF(:)) )**XLBEXR
END WHERE
!
!* 4.2 compute the autoconversion of r_c for r_r production: RCAUTR
!
ZZW(:) = 0.0
ZZW2(:,:) = 0.0
!
DO JL=1,IMICRO
IF ( (ZRCT(JL)>0.0) .AND. (ZZRCS(JL)>0.0) ) THEN
ZZW(JL) = MIN( ZZRCS(JL),XTIMAUTC*MAX( ZRCT(JL)-XCRIAUTC/ZRHODREF(JL),0.0))
!
ZZW2(JL,:) = ZZW(JL) * ZCSVT(JL,:)/ZRCT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZCSVT(JL,:)/PTSTEP)),0.0)
ZCRSVS(JL,:) = ZCRSVS(JL,:) - ZZW2(JL,:)
ZRRSVS(JL,:) = ZRRSVS(JL,:) + ZZW2(JL,:)
END IF
END DO
!
!* 4.3 compute the accretion of r_c for r_r production: RCACCR
!
ZZW(:) = 0.0
ZZW2(:,:) = 0.0
!
DO JL = 1,IMICRO
IF( (ZRCT(JL)>0.0) .AND. (ZRRT(JL)>0.0) .AND. (ZZRCS(JL)>0.0) ) THEN
ZZW(JL) = MIN( ZZRCS(JL),XFCACCR * ZRCT(JL) &
* ZLBDAR(JL)**XEXCACCR &
* ZRHODREF(JL)**(-XCEXVT) )
!
ZZW2(JL,:) = ZZW(JL) * ZCSVT(JL,:)/ZRCT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZCSVT(JL,:)/PTSTEP)),0.0)
ZCRSVS(JL,:) = ZCRSVS(JL,:) - ZZW2(JL,:)
ZRRSVS(JL,:) = ZRRSVS(JL,:) + ZZW2(JL,:)
END IF
END DO
!
!
!* 4.4 compute the evaporation of r_r: RREVAV
!
! calculated by the kinetic mass transfer equation (BASIC.f90)
!
!
!-------------------------------------------------------------------------------
!
!* 5. PREPARE INDEX ARRAY FOR ICE PHASE CHEMISTRY
! -------------------------------------------
!
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
DO JLG = 1, SIZE(PGRSVS,4)
IF ( TRIM(HICNAMES(JLI)(4:32)) == TRIM(HNAMES(JLG)) ) THEN
INDEXGI(JLI) = JLG
EXIT
ELSE
INDEXGI(JLI) = 0
ENDIF
ENDDO
DO JLW = KEQ-KEQAQ+1, KEQ-KEQAQ/2 ! loop over cloud chem. species
IF ( TRIM(HICNAMES(JLI)(4:32)) == TRIM(HNAMES(JLW)(4:32))) THEN
INDEXWI(JLI) = JLW - (KEQ-KEQAQ)
EXIT
ELSE
INDEXWI(JLI) = 0
ENDIF
ENDDO
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = KEQ-KEQAQ+1, KEQ-KEQAQ/2 ! loop over cloud chem. species
DO JLG = 1, SIZE(PGRSVS,4)
IF ( TRIM(HNAMES(JLW)(4:32)) == TRIM(HNAMES(JLG)) ) THEN
INDEXWG(JLW-(KEQ-KEQAQ)) = JLG
EXIT
ELSE
INDEXWG(JLW-(KEQ-KEQAQ)) = 0
ENDIF
ENDDO
ENDDO
ENDIF
ENDIF
!
!
!-------------------------------------------------------------------------------
!
!* 6. COMPUTES THE SLOW COLD PROCESS SOURCES
! --------------------------------------
!
!* 6.1 compute the spontaneous freezing source: RRHONG
!
ZZW(:) = 0.0
ZZW2(:,:) = 0.0
!
DO JL = 1,IMICRO
IF( (ZZT(JL)<XTT-35.0) .AND. (ZRRT(JL)>0.) .AND. (ZZRRS(JL)>0.) ) THEN
ZZW(JL) = MIN( ZZRRS(JL),ZRRT(JL)/PTSTEP )
ZZW2(JL,:) = ZZW(JL) * ZRSVT(JL,:)/ZRRT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZRSVT(JL,:)/PTSTEP)),0.0)
ZRRSVS(JL,:) = ZRRSVS(JL,:) - ZZW2(JL,:)
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. HICNAMES(JLI)(1:4) == 'IC_A' &
.OR. HICNAMES(JLI)(1:4) == 'IC_B' ) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETHP) * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETSU) * ZZW2(JL,INDEXWI(JLI))
ELSE
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETDF) * ZZW2(JL,INDEXWI(JLI))
ENDIF
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PRRSVS,4)
IF (.NOT.(INDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,INDEXWG(JLW)) = ZGRSVS(JL,INDEXWG(JLW)) + ZZW2(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ENDIF
ENDDO
!
!
!-------------------------------------------------------------------------------
!
!* 7. COMPUTES THE FAST COLD PROCESS SOURCES
! --------------------------------------
!
!* 7.1 compute the slope parameter Lbda_s and Lbda_g
!
WHERE ( ZRST(:)>0.0 )
ZLBDAS(:) = MIN( XLBDAS_MAX, &
XLBS*( ZRHODREF(:)*MAX( ZRST(:),PRTMIN_AQ*1.e3/ZRHODREF(:)) )**XLBEXS )
END WHERE
!
WHERE ( ZRGT(:)>0.0 )
ZLBDAG(:) = XLBG*( ZRHODREF(:)*MAX( ZRGT(:),PRTMIN_AQ*1.e3/ZRHODREF(:)))**XLBEXG
END WHERE
!
!* 7.2 cloud droplet riming of the aggregates
!
ZZW1(:,:) = 0.0
ZZW(:) = 0.0
ALLOCATE(GRIM(IMICRO))
GRIM(:) = (ZRCT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
(ZRST(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
(ZZRCS(:)>0.0) .AND. (ZZT(:)<XTT)
IGRIM = COUNT( GRIM(:) )
!
IF( IGRIM>0 ) THEN
!
! 7.2.0 allocations
!
ALLOCATE(ZVEC1(IGRIM))
ALLOCATE(ZVEC2(IGRIM))
ALLOCATE(IVEC1(IGRIM))
ALLOCATE(IVEC2(IGRIM))
!
! 7.2.1 select the ZLBDAS
!
ZVEC1(:) = PACK( ZLBDAS(:),MASK=GRIM(:) )
!
! 7.2.2 find the next lower indice for the ZLBDAS in the geometrical
! set of Lbda_s used to tabulate some moments of the incomplete
! gamma function
!
ZVEC2(1:IGRIM) = MAX( 1.00001, MIN( FLOAT(NGAMINC)-0.00001, &
XRIMINTP1 * LOG( ZVEC1(1:IGRIM) ) + XRIMINTP2 ) )
IVEC2(1:IGRIM) = INT( ZVEC2(1:IGRIM) )
ZVEC2(1:IGRIM) = ZVEC2(1:IGRIM) - FLOAT( IVEC2(1:IGRIM) )
!
! 7.2.3 perform the linear interpolation of the normalized
! "2+XDS"-moment of the incomplete gamma function
!
ZVEC1(1:IGRIM) = XGAMINC_RIM1( IVEC2(1:IGRIM)+1 )* ZVEC2(1:IGRIM) &
- XGAMINC_RIM1( IVEC2(1:IGRIM) )*(ZVEC2(1:IGRIM) - 1.0)
ZZW(:) = UNPACK( VECTOR=ZVEC1(:),MASK=GRIM,FIELD=0.0 )
!
! 7.2.4 riming of the small sized aggregates
!
ZZW2(:,:) = 0.0
DO JL = 1,IMICRO
IF ( GRIM(JL) ) THEN
ZZW1(JL,1) = MIN( ZZRCS(JL), XCRIMSS * ZZW(JL) * ZRCT(JL) & ! RCRIMSS
* ZLBDAS(JL)**XEXCRIMSS * ZRHODREF(JL)**(-XCEXVT) )
ZZW2(JL,:) = ZZW1(JL,1) * ZCSVT(JL,:)/ZRCT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZCSVT(JL,:)/PTSTEP)),0.0)
ZCRSVS(JL,:) = ZCRSVS(JL,:) - ZZW2(JL,:)
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. HICNAMES(JLI)(1:4) == 'IC_A' &
.OR. HICNAMES(JLI)(1:4) == 'IC_B' ) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETHP) * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETSU) * ZZW2(JL,INDEXWI(JLI))
ELSE
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETDF) * ZZW2(JL,INDEXWI(JLI))
ENDIF
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PCRSVS,4)
IF (.NOT.(INDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,INDEXWG(JLW)) = ZGRSVS(JL,INDEXWG(JLW)) + ZZW2(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ENDIF
ENDDO
!
! 7.2.5 riming-conversion of the large sized aggregates into graupel
!
ZZW2(:,:) = 0.0
DO JL = 1,IMICRO
IF ( GRIM(JL) .AND. (ZZRSS(JL)>0.0) ) THEN
ZZW1(JL,2) = MIN( ZZRCS(JL), XCRIMSG * ZRCT(JL) * ZLBDAS(JL)**XEXCRIMSG & ! RCRIMSG
* ZRHODREF(JL)**(-XCEXVT) - ZZW1(JL,1) )
ZZW2(JL,:) = ZZW1(JL,2) * ZCSVT(JL,:)/ZRCT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZCSVT(JL,:)/PTSTEP)),0.0)
ZCRSVS(JL,:) = ZCRSVS(JL,:) - ZZW2(JL,:)
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. HICNAMES(JLI)(1:4) == 'IC_A' &
.OR. HICNAMES(JLI)(1:4) == 'IC_B' ) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETHP) * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETSU) * ZZW2(JL,INDEXWI(JLI))
ELSE
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETDF) * ZZW2(JL,INDEXWI(JLI))
ENDIF
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PCRSVS,4)
IF (.NOT.(INDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,INDEXWG(JLW)) = ZGRSVS(JL,INDEXWG(JLW)) + ZZW2(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ENDIF
ENDDO
DEALLOCATE(IVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
END IF
DEALLOCATE(GRIM)
!
!* 7.3 rain accretion onto the aggregates
!
ZZW(:) = 0.0
ZZW1(:,2:3) = 0.0
ALLOCATE(GACC(IMICRO))
GACC(:) = (ZRRT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
(ZRST(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
(ZZRRS(:)>0.0) .AND. (ZZT(:)<XTT)
IGACC = COUNT( GACC(:) )
!
IF( IGACC>0 ) THEN
!
! 7.3.0 allocations
!
ALLOCATE(ZVEC1(IGACC))
ALLOCATE(ZVEC2(IGACC))
ALLOCATE(ZVEC3(IGACC))
ALLOCATE(IVEC1(IGACC))
ALLOCATE(IVEC2(IGACC))
!
! 7.3.1 select the (ZLBDAS,ZLBDAR) couplet
!
ZVEC1(:) = PACK( ZLBDAS(:),MASK=GACC(:) )
ZVEC2(:) = PACK( ZLBDAR(:),MASK=GACC(:) )
!
! 7.3.2 find the next lower indice for the ZLBDAS and for the ZLBDAR
! in the geometrical set of (Lbda_s,Lbda_r) couplet use to
! tabulate the RACCSS-kernel
!
ZVEC1(1:IGACC) = MAX( 1.00001, MIN( FLOAT(NACCLBDAS)-0.00001, &
XACCINTP1S * LOG( ZVEC1(1:IGACC) ) + XACCINTP2S ) )
IVEC1(1:IGACC) = INT( ZVEC1(1:IGACC) )
ZVEC1(1:IGACC) = ZVEC1(1:IGACC) - FLOAT( IVEC1(1:IGACC) )
!
ZVEC2(1:IGACC) = MAX( 1.00001, MIN( FLOAT(NACCLBDAR)-0.00001, &
XACCINTP1R * LOG( ZVEC2(1:IGACC) ) + XACCINTP2R ) )
IVEC2(1:IGACC) = INT( ZVEC2(1:IGACC) )
ZVEC2(1:IGACC) = ZVEC2(1:IGACC) - FLOAT( IVEC2(1:IGACC) )
!
! 7.3.3 perform the bilinear interpolation of the normalized
! RACCSS-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_RACCSS(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RACCSS(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_RACCSS(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RACCSS(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = UNPACK( VECTOR=ZVEC3(:),MASK=GACC,FIELD=0.0 )
!
! 7.3.4 raindrop accretion on the small sized aggregates
!
ZZW2(:,:) = 0.0
DO JL = 1,IMICRO
IF ( GACC(JL) ) THEN
ZZW1(JL,2) = & !! coef of RRACCS
XFRACCSS*( ZLBDAS(JL)**XCXS )*( ZRHODREF(JL)**(-XCEXVT-1.) ) &
*( XLBRACCS1/((ZLBDAS(JL)**2) ) + &
XLBRACCS2/( ZLBDAS(JL) * ZLBDAR(JL) ) + &
XLBRACCS3/( (ZLBDAR(JL)**2)) )/ZLBDAR(JL)**4
ZZW1(JL,4) = MIN( ZZRRS(JL),ZZW1(JL,2)*ZZW(JL) ) ! RRACCSS
ZZW2(JL,:) = ZZW1(JL,4) * ZRSVT(JL,:)/ZRRT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZRSVT(JL,:)/PTSTEP)),0.0)
ZRRSVS(JL,:) = ZRRSVS(JL,:) - ZZW2(JL,:)
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. HICNAMES(JLI)(1:4) == 'IC_A' &
.OR. HICNAMES(JLI)(1:4) == 'IC_B' ) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETHP) * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETSU) * ZZW2(JL,INDEXWI(JLI))
ELSE
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETDF) * ZZW2(JL,INDEXWI(JLI))
ENDIF
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PRRSVS,4)
IF (.NOT.(INDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,INDEXWG(JLW)) = ZGRSVS(JL,INDEXWG(JLW)) + ZZW2(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ENDIF
ENDDO
!
! 7.3.4b perform the bilinear interpolation of the normalized
! RACCS-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_RACCS(IVEC2(JJ)+1,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_RACCS(IVEC2(JJ)+1,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* ZVEC2(JJ) &
- ( XKER_RACCS(IVEC2(JJ) ,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_RACCS(IVEC2(JJ) ,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* (ZVEC2(JJ) - 1.0)
END DO
ZZW1(:,2) = ZZW1(:,2)*UNPACK( VECTOR=ZVEC3(:),MASK=GACC(:),FIELD=0.0 )
!
! 7.3.5 raindrop accretion-conversion of the large sized aggregates
! into graupeln
!
ZZW2(:,:) = 0.0
WHERE ( GACC(:) .AND. (ZZRSS(:)>0.0) )
ZZW1(:,2) = MAX( MIN( ZZRRS(:),ZZW1(:,2)-ZZW1(:,4) ),0.0 ) ! RRACCSG
END WHERE
DO JL = 1,IMICRO
IF ( GACC(JL) .AND. (ZZRSS(JL)>0.0) .AND. ZZW1(JL,2)>0.0 ) THEN
ZZW2(JL,:) = ZZW1(JL,2) * ZRSVT(JL,:)/ZRRT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZRSVT(JL,:)/PTSTEP)),0.0)
ZRRSVS(JL,:) = ZRRSVS(JL,:) - ZZW2(JL,:)
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. HICNAMES(JLI)(1:4) == 'IC_A' &
.OR. HICNAMES(JLI)(1:4) == 'IC_B' ) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETHP) * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETSU) * ZZW2(JL,INDEXWI(JLI))
ELSE
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETDF) * ZZW2(JL,INDEXWI(JLI))
ENDIF
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PRRSVS,4)
IF (.NOT.(INDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,INDEXWG(JLW)) = ZGRSVS(JL,INDEXWG(JLW)) + ZZW2(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ENDIF
ENDDO
!
DEALLOCATE(IVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC3)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
END IF
DEALLOCATE(GACC)
!
!* 7.4 rain contact freezing
!
ZZW1(:,4) = 0.0
ZZW2(:,:) = 0.0
DO JL = 1,IMICRO
IF ( (ZRIT(JL)>PRTMIN_AQ*1.e3/ZRHODREF(JL)) .AND. &
(ZRRT(JL)>PRTMIN_AQ*1.e3/ZRHODREF(JL)) .AND. &
(ZZRIS(JL)>0.0) .AND. (ZZRRS(JL)>0.0) ) THEN
ZZW1(JL,4) = MIN( ZZRRS(JL), XRCFRI * ZCIT(JL) & ! RRCFRIG
* ZLBDAR(JL)**XEXRCFRI &
* ZRHODREF(JL)**(-XCEXVT-1.) )
ZZW2(JL,:) = ZZW1(JL,4) * ZRSVT(JL,:)/ZRRT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZRSVT(JL,:)/PTSTEP)),0.0)
ZRRSVS(JL,:) = ZRRSVS(JL,:) - ZZW2(JL,:)
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. HICNAMES(JLI)(1:4) == 'IC_A' &
.OR. HICNAMES(JLI)(1:4) == 'IC_B' ) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETHP) * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETSU) * ZZW2(JL,INDEXWI(JLI))
ELSE
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETDF) * ZZW2(JL,INDEXWI(JLI))
ENDIF
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PRRSVS,4)
IF (.NOT.(INDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,INDEXWG(JLW)) = ZGRSVS(JL,INDEXWG(JLW)) + ZZW2(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ENDIF
ENDDO
!
!* 7.5 compute the Dry growth case of graupel
!
ZZW(:) = 0.0
ZZW1(:,:) = 0.0
WHERE( (ZRGT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
((ZRCT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:) .AND. ZZRCS(:)>0.0)) )
ZZW(:) = ZLBDAG(:)**(XCXG-XDG-2.0) * ZRHODREF(:)**(-XCEXVT)
ZZW1(:,1) = MIN( ZZRCS(:),XFCDRYG * ZRCT(:) * ZZW(:) ) ! RCDRYG
END WHERE
WHERE( (ZRGT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
((ZRIT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:) .AND. ZZRIS(:)>0.0)) )
ZZW(:) = ZLBDAG(:)**(XCXG-XDG-2.0) * ZRHODREF(:)**(-XCEXVT)
ZZW1(:,2) = MIN( ZZRIS(:),XFIDRYG * EXP( XCOLEXIG*(ZZT(:)-XTT) ) &
* ZRIT(:) * ZZW(:) ) ! RIDRYG
END WHERE
!
! 7.5.1 accretion of aggregates on the graupeln
!
ALLOCATE(GDRY(IMICRO))
GDRY(:) = (ZRST(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
(ZRGT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. (ZZRSS(:)>0.0)
IGDRY = COUNT( GDRY(:) )
!
IF( IGDRY>0 ) THEN
!
! 7.5.2 allocations
!
ALLOCATE(ZVEC1(IGDRY))
ALLOCATE(ZVEC2(IGDRY))
ALLOCATE(ZVEC3(IGDRY))
ALLOCATE(IVEC1(IGDRY))
ALLOCATE(IVEC2(IGDRY))
!
! 7.5.3 select the (ZLBDAG,ZLBDAS) couplet
!
ZVEC1(:) = PACK( ZLBDAG(:),MASK=GDRY(:) )
ZVEC2(:) = PACK( ZLBDAS(:),MASK=GDRY(:) )
!
! 7.5.4 find the next lower indice for the ZLBDAG and for the ZLBDAS
! in the geometrical set of (Lbda_g,Lbda_s) couplet use to
! tabulate the SDRYG-kernel
!
ZVEC1(1:IGDRY) = MAX( 1.00001, MIN( FLOAT(NDRYLBDAG)-0.00001, &
XDRYINTP1G * LOG( ZVEC1(1:IGDRY) ) + XDRYINTP2G ) )
IVEC1(1:IGDRY) = INT( ZVEC1(1:IGDRY) )
ZVEC1(1:IGDRY) = ZVEC1(1:IGDRY) - FLOAT( IVEC1(1:IGDRY) )
!
ZVEC2(1:IGDRY) = MAX( 1.00001, MIN( FLOAT(NDRYLBDAS)-0.00001, &
XDRYINTP1S * LOG( ZVEC2(1:IGDRY) ) + XDRYINTP2S ) )
IVEC2(1:IGDRY) = INT( ZVEC2(1:IGDRY) )
ZVEC2(1:IGDRY) = ZVEC2(1:IGDRY) - FLOAT( IVEC2(1:IGDRY) )
!
! 7.5.5 perform the bilinear interpolation of the normalized
! SDRYG-kernel
!
DO JJ = 1,IGDRY
ZVEC3(JJ) = ( XKER_SDRYG(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_SDRYG(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_SDRYG(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_SDRYG(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = UNPACK( VECTOR=ZVEC3(:),MASK=GDRY,FIELD=0.0 )
!
WHERE( GDRY(:) )
ZZW1(:,3) = MIN( ZZRSS(:),XFSDRYG*ZZW(:) & ! RSDRYG
* EXP( XCOLEXSG*(ZZT(:)-XTT) ) &
*( ZLBDAS(:)**(XCXS-XBS) )*( ZLBDAG(:)**XCXG ) &
*( ZRHODREF(:)**(-XCEXVT-1.) ) &
*( XLBSDRYG1/( ZLBDAG(:)**2 ) + &
XLBSDRYG2/( ZLBDAG(:) * ZLBDAS(:) ) + &
XLBSDRYG3/( ZLBDAS(:)**2) ) )
END WHERE
DEALLOCATE(IVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC3)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
END IF
!
! 7.5.6 accretion of raindrops on the graupeln
!
GDRY(:) = (ZRRT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. &
(ZRGT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:)) .AND. (ZZRRS(:)>0.0)
IGDRY = COUNT( GDRY(:) )
!
IF( IGDRY>0 ) THEN
!
! 7.5.7 allocations
!
ALLOCATE(ZVEC1(IGDRY))
ALLOCATE(ZVEC2(IGDRY))
ALLOCATE(ZVEC3(IGDRY))
ALLOCATE(IVEC1(IGDRY))
ALLOCATE(IVEC2(IGDRY))
!
! 7.5.8 select the (ZLBDAG,ZLBDAR) couplet
!
ZVEC1(:) = PACK( ZLBDAG(:),MASK=GDRY(:) )
ZVEC2(:) = PACK( ZLBDAR(:),MASK=GDRY(:) )
!
! 7.5.9 find the next lower indice for the ZLBDAG and for the ZLBDAR
! in the geometrical set of (Lbda_g,Lbda_r) couplet use to
! tabulate the RDRYG-kernel
!
ZVEC1(1:IGDRY) = MAX( 1.00001, MIN( FLOAT(NDRYLBDAG)-0.00001, &
XDRYINTP1G * LOG( ZVEC1(1:IGDRY) ) + XDRYINTP2G ) )
IVEC1(1:IGDRY) = INT( ZVEC1(1:IGDRY) )
ZVEC1(1:IGDRY) = ZVEC1(1:IGDRY) - FLOAT( IVEC1(1:IGDRY) )
!
ZVEC2(1:IGDRY) = MAX( 1.00001, MIN( FLOAT(NDRYLBDAR)-0.00001, &
XDRYINTP1R * LOG( ZVEC2(1:IGDRY) ) + XDRYINTP2R ) )
IVEC2(1:IGDRY) = INT( ZVEC2(1:IGDRY) )
ZVEC2(1:IGDRY) = ZVEC2(1:IGDRY) - FLOAT( IVEC2(1:IGDRY) )
!
! 7.5.10 perform the bilinear interpolation of the normalized
! RDRYG-kernel
!
DO JJ = 1,IGDRY
ZVEC3(JJ) = ( XKER_RDRYG(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RDRYG(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_RDRYG(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RDRYG(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = UNPACK( VECTOR=ZVEC3(:),MASK=GDRY,FIELD=0.0 )
!
WHERE( GDRY(:) )
ZZW1(:,4) = MIN( ZZRRS(:), XFRDRYG*ZZW(:) & ! RRDRYG
*( ZLBDAR(:)**(-4) )*( ZLBDAG(:)**XCXG ) &
*( ZRHODREF(:)**(-XCEXVT-1.) ) &
*( XLBRDRYG1/( ZLBDAG(:)**2 ) + &
XLBRDRYG2/( ZLBDAG(:) * ZLBDAR(:) ) + &
XLBRDRYG3/( ZLBDAR(:)**2) ) )
END WHERE
DEALLOCATE(IVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC3)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
END IF
!
ZRDRYG(:) = ZZW1(:,1) + ZZW1(:,2) + ZZW1(:,3) + ZZW1(:,4)
DEALLOCATE(GDRY)
!
!* 7.6 compute the Wet growth case of the graupel
!
ZZW(:) = 0.0
ZRWETG(:) = 0.0
!
ZKA(:) = 2.38E-2 + 0.0071E-2 * ( ZZT(:) - XTT ) ! k_a
ZDV(:) = 0.211E-4 * (ZZT(:)/XTT)**1.94 * (XP00/ZPRES(:)) ! D_v
ZCJ(:) = XSCFAC * ZRHODREF(:)**0.3 / SQRT( 1.718E-5+0.0049E-5*(ZZT(:)-XTT) )
!c^prime_j (in the ventilation factor)
WHERE( ZRGT(:)>PRTMIN_AQ*1.e3/ZRHODREF(:) )
ZZW1(:,5) = MIN( ZZRIS(:), &
ZZW1(:,2) / (XCOLIG*EXP(XCOLEXIG*(ZZT(:)-XTT)) ) ) ! RIWETG
ZZW1(:,6) = MIN( ZZRSS(:), &
ZZW1(:,3) / (XCOLSG*EXP(XCOLEXSG*(ZZT(:)-XTT)) ) ) ! RSWETG
!
ZZW(:) = ZRVT(:)*ZPRES(:)/((XMV/XMD)+ZRVT(:)) ! Vapor pressure
ZZW(:) = ZKA(:)*(XTT-ZZT(:)) + &
( ZDV(:)*(XLVTT + ( XCPV - XCL ) * ( ZZT(:) - XTT )) &
*(XESTT-ZZW(:))/(XRV*ZZT(:)) )
! compute RWETG
!
ZRWETG(:)=MAX( 0.0, &
( ZZW(:) * ( X0DEPG* ZLBDAG(:)**XEX0DEPG + &
X1DEPG*ZCJ(:)*ZLBDAG(:)**XEX1DEPG ) + &
( ZZW1(:,5)+ZZW1(:,6) ) * &
( ZRHODREF(:)*(XLMTT+(XCI-XCL)*(XTT-ZZT(:))) ) ) / &
( ZRHODREF(:)*(XLMTT-XCL*(XTT-ZZT(:))) ) )
END WHERE
!
!* 7.7 Select Wet or Dry case for the growth of the graupel
!
ZZW(:) = 0.0
ZZW2(:,:) = 0.0
ZZW4(:,:) = 0.0
DO JL = 1,IMICRO
IF ( (ZRGT(JL)>PRTMIN_AQ*1.e3/ZRHODREF(JL)) .AND. & ! wet case
ZZT(JL)<XTT .AND. ZRDRYG(JL)>=ZRWETG(JL) .AND. &
ZRWETG(JL)>0.0 .AND. ZRCT(JL)>0.0 .AND. ZRRT(JL)>0.0) THEN
ZZW(JL) = ZRWETG(JL)
ZZW2(JL,:) = ZZW(JL) * ZRSVT(JL,:)/ZRRT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZRSVT(JL,:)/PTSTEP)),0.0)
ZRRSVS(JL,:) = ZRRSVS(JL,:) - ZZW2(JL,:) ! rain -> graupel
IF (OUSECHIC) THEN
ZZW3(:,:) = 0.0
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. HICNAMES(JLI)(1:4) == 'IC_A' &
.OR. HICNAMES(JLI)(1:4) == 'IC_B' ) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETHP) * ZZW2(JL,INDEXWI(JLI))
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETSU) * ZZW2(JL,INDEXWI(JLI))
ELSE
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ZZW2(JL,INDEXWI(JLI))
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + &
(1. - XRETDF) * ZZW2(JL,INDEXWI(JLI))
ENDIF
ENDDO
IF (ZRST(JL)>0.0) THEN
ZZW3(JL,:) = ZZW1(JL,6) * ZSGSVT(JL,:)/ZRST(JL)
ZZW3(JL,:) = MAX(MIN(ZZW3(JL,:),(ZSGSVT(JL,:)/PTSTEP)),0.0)
ZSGRSVS(JL,:) = ZSGRSVS(JL,:) - ZZW3(JL,:) !snow->rain
DO JLI = 1, SIZE(PSGRSVS,4)
ZRRSVS(JL,INDEXWI(JLI)) = ZRRSVS(JL,INDEXWI(JLI)) + ZZW3(JL,JLI)
ENDDO
ENDIF
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PRRSVS,4)
IF (.NOT.(INDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,INDEXWG(JLW)) = ZGRSVS(JL,INDEXWG(JLW)) + ZZW2(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ZZW4(JL,:) = ZZW1(JL,1) * ZCSVT(JL,:)/ZRCT(JL)
ZZW4(JL,:) = MAX(MIN(ZZW4(JL,:),(ZCSVT(JL,:)/PTSTEP)),0.0)
ZCRSVS(JL,:) = ZCRSVS(JL,:) - ZZW4(JL,:) !cloud->rain
ZRRSVS(JL,:) = ZRRSVS(JL,:) + ZZW4(JL,:)
ELSE IF ( (ZRGT(JL)>PRTMIN_AQ*1.e3/ZRHODREF(JL)) .AND. & ! dry case
ZZT(JL)<XTT .AND. ZRDRYG(JL)<ZRWETG(JL) .AND. &
ZRDRYG(JL)>0.0 .AND. ZRCT(JL)>0.0 .AND. ZRRT(JL)>0.0) THEN
ZZW2(JL,:) = ZZW1(JL,1) * ZCSVT(JL,:)/ZRCT(JL)
ZZW2(JL,:) = MAX(MIN(ZZW2(JL,:),(ZCSVT(JL,:)/PTSTEP)),0.0)
ZZW4(JL,:) = ZZW1(JL,4) * ZRSVT(JL,:)/ZRRT(JL)
ZZW4(JL,:) = MAX(MIN(ZZW4(JL,:),(ZRSVT(JL,:)/PTSTEP)),0.0)
ZCRSVS(JL,:) = ZCRSVS(JL,:) - ZZW2(JL,:)
ZRRSVS(JL,:) = ZRRSVS(JL,:) - ZZW4(JL,:)
IF (OUSECHIC) THEN
DO JLI = 1, SIZE(PSGRSVS,4)
IF (TRIM(HICNAMES(JLI)) == 'IC_HNO3' .OR. TRIM(HICNAMES(JLI)) == 'IC_SULF' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_NH3' .OR. HICNAMES(JLI)(1:4) == 'IC_A' &
.OR. HICNAMES(JLI)(1:4) == 'IC_B' ) THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETNA * ( &
ZZW2(JL,INDEXWI(JLI)) + ZZW4(JL,INDEXWI(JLI)) )
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_H2O2' .OR. TRIM(HICNAMES(JLI)) == 'IC_HO2' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_HONO' .OR. TRIM(HICNAMES(JLI)) == 'IC_HNO4'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_HCHO' .OR. TRIM(HICNAMES(JLI)) == 'IC_ORA1'&
.OR. TRIM(HICNAMES(JLI)) == 'IC_ORA2') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETHP * ( &
ZZW2(JL,INDEXWI(JLI)) + ZZW4(JL,INDEXWI(JLI)) )
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + (1. - XRETHP) * ( &
ZZW2(JL,INDEXWI(JLI)) + ZZW4(JL,INDEXWI(JLI)) )
ELSE IF (TRIM(HICNAMES(JLI)) == 'IC_SO2' .OR. TRIM(HICNAMES(JLI)) == 'IC_OH' &
.OR. TRIM(HICNAMES(JLI)) == 'IC_MO2' .OR. &
TRIM(HICNAMES(JLI)) == 'IC_OP1') THEN
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETSU * ( &
ZZW2(JL,INDEXWI(JLI)) + ZZW4(JL,INDEXWI(JLI)) )
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + (1. - XRETSU) * ( &
ZZW2(JL,INDEXWI(JLI)) + ZZW4(JL,INDEXWI(JLI)) )
ELSE
ZSGRSVS(JL,JLI) = ZSGRSVS(JL,JLI) + XRETDF * ( &
ZZW2(JL,INDEXWI(JLI)) + ZZW4(JL,INDEXWI(JLI)) )
ZGRSVS(JL,INDEXGI(JLI)) = ZGRSVS(JL,INDEXGI(JLI)) + (1. - XRETDF) * ( &
ZZW2(JL,INDEXWI(JLI)) + ZZW4(JL,INDEXWI(JLI)) )
ENDIF
ENDDO
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLW = 1, SIZE(PRRSVS,4)
IF (.NOT.(INDEXWG(JLW).EQ.0)) THEN
ZGRSVS(JL,INDEXWG(JLW)) = ZGRSVS(JL,INDEXWG(JLW)) + ZZW2(JL,JLW) &
+ ZZW4(JL,JLW)
ENDIF
ENDDO
ENDIF
ENDIF
ENDIF
ENDDO
!
!* 7.8 Melting of the graupel
!
IF (OUSECHIC) THEN
ZZW(:) = 0.0
ZZW3(:,:) = 0.0
DO JL = 1,IMICRO
IF ( (ZRGT(JL)>PRTMIN_AQ*1.e3/ZRHODREF(JL)) .AND. &
(ZZRGS(JL)>0.0) .AND. (ZZT(JL)>XTT) ) THEN
ZZW(JL) = ZRVT(JL)*ZPRES(JL)/((XMV/XMD)+ZRVT(JL)) ! Vapor pressure
ZZW(JL) = ZKA(JL)*(XTT-ZZT(JL)) + &
( ZDV(JL)*(XLVTT + ( XCPV - XCL ) * ( ZZT(JL) - XTT )) &
*(XESTT-ZZW(JL))/(XRV*ZZT(JL)) )
! compute RGMLTR
ZZW(JL) = MIN( ZZRGS(JL), MAX( 0.0,( -ZZW(JL) * &
( X0DEPG* ZLBDAG(JL)**XEX0DEPG + &
X1DEPG*ZCJ(JL)*ZLBDAG(JL)**XEX1DEPG ) - &
( ZZW1(JL,1)+ZZW1(JL,4) ) * &
( ZRHODREF(JL)*XCL*(XTT-ZZT(JL))) ) / &
( ZRHODREF(JL)*XLMTT ) ) )
ZZW3(JL,:) = ZZW(JL) * ZSGSVT(JL,:)/ZRGT(JL)
ZZW3(JL,:) = MAX(MIN(ZZW3(JL,:),(ZSGSVT(JL,:)/PTSTEP)),0.0)
ZSGRSVS(JL,:) = ZSGRSVS(JL,:) - ZZW3(JL,:) !graupel->rain
DO JLI = 1, SIZE(PSGRSVS,4)
ZRRSVS(JL,INDEXWI(JLI)) = ZRRSVS(JL,INDEXWI(JLI)) + ZZW3(JL,JLI)
ENDDO
ENDIF
ENDDO
ENDIF
!
!
!-------------------------------------------------------------------------------
!
!* 8. UNPACK RESULTS AND DEALLOCATE ARRAYS
! ------------------------------------
DO JLC= 1, SIZE(PCRSVS,4)
ZCW(:,:,:) = ZZCRSVS(:,:,:,JLC)
ZZCRSVS(:,:,:,JLC) = UNPACK(ZCRSVS(:,JLC), MASK=GMICRO(:,:,:), FIELD=ZCW(:,:,:))
PCRSVS(:,:,:,JLC) = ZZCRSVS(:,:,:,JLC) * PRHODJ(:,:,:)
END DO
DO JLR= 1, SIZE(PRRSVS,4)
ZRW(:,:,:) = ZZRRSVS(:,:,:,JLR)
ZZRRSVS(:,:,:,JLR) = UNPACK(ZRRSVS(:,JLR), MASK=GMICRO(:,:,:), FIELD=ZRW(:,:,:))
PRRSVS(:,:,:,JLR) = ZZRRSVS(:,:,:,JLR) * PRHODJ(:,:,:)
END DO
IF (OUSECHIC) THEN
DO JLI= 1, SIZE(PSGRSVS,4)
ZSGW(:,:,:) = ZZSGRSVS(:,:,:,JLI)
ZZSGRSVS(:,:,:,JLI) = UNPACK(ZSGRSVS(:,JLI), MASK=GMICRO(:,:,:), FIELD=ZSGW(:,:,:))
PSGRSVS(:,:,:,JLI) = ZZSGRSVS(:,:,:,JLI) * PRHODJ(:,:,:)
END DO
DO JLG= 1, SIZE(PGRSVS,4)
ZGW(:,:,:) = ZZGRSVS(:,:,:,JLG)
ZZGRSVS(:,:,:,JLG) = UNPACK(ZGRSVS(:,JLG), MASK=GMICRO(:,:,:), FIELD=ZGW(:,:,:))
PGRSVS(:,:,:,JLG) = ZZGRSVS(:,:,:,JLG) * PRHODJ(:,:,:)
END DO
DEALLOCATE(ZGRSVS)
DEALLOCATE(ZSGRSVS)
DEALLOCATE(ZSGSVT)
DEALLOCATE(ZZW3)
ELSE
IF (.NOT.(OCH_RET_ICE)) THEN
DO JLG= 1, SIZE(PGRSVS,4)
ZGW(:,:,:) = ZZGRSVS(:,:,:,JLG)
ZZGRSVS(:,:,:,JLG) = UNPACK(ZGRSVS(:,JLG), MASK=GMICRO(:,:,:), FIELD=ZGW(:,:,:))
PGRSVS(:,:,:,JLG) = ZZGRSVS(:,:,:,JLG) * PRHODJ(:,:,:)
END DO
DEALLOCATE(ZGRSVS)
ENDIF
ENDIF
DEALLOCATE(ZRHODREF)
DEALLOCATE(ZZT)
DEALLOCATE(ZPRES)
DEALLOCATE(ZKA)
DEALLOCATE(ZDV)
DEALLOCATE(ZCJ)
DEALLOCATE(ZZW)
DEALLOCATE(ZZW1)
DEALLOCATE(ZZW2)
DEALLOCATE(ZZW4)
DEALLOCATE(ZZRCS)
DEALLOCATE(ZZRRS)
DEALLOCATE(ZZRIS)
DEALLOCATE(ZZRSS)
DEALLOCATE(ZZRGS)
DEALLOCATE(ZCRSVS)
DEALLOCATE(ZRRSVS)
DEALLOCATE(ZRVT)
DEALLOCATE(ZRCT)
DEALLOCATE(ZRRT)
DEALLOCATE(ZRIT)
DEALLOCATE(ZRST)
DEALLOCATE(ZRGT)
DEALLOCATE(ZCIT)
DEALLOCATE(ZCSVT)
DEALLOCATE(ZRSVT)
DEALLOCATE(ZLBDAR)
DEALLOCATE(ZLBDAS)
DEALLOCATE(ZLBDAG)
DEALLOCATE(ZRDRYG)
!
END IF
!
!
!-------------------------------------------------------------------------------
!
!
CONTAINS
!
!
FUNCTION COUNTJV(LTAB,I1,I2,I3) RESULT(IC)
!
!* 0. DECLARATIONS
! ------------
!
IMPLICIT NONE
!
!* 0.2 declaration of local variables
!
!
LOGICAL, DIMENSION(:,:,:) :: LTAB ! Mask
INTEGER, DIMENSION(:) :: I1,I2,I3 ! Used to replace the COUNT and PACK
INTEGER :: JI,JJ,JK,IC
!
!-------------------------------------------------------------------------------
!
IC = 0
DO JK = 1,SIZE(LTAB,3)
DO JJ = 1,SIZE(LTAB,2)
DO JI = 1,SIZE(LTAB,1)
IF( LTAB(JI,JJ,JK) ) THEN
IC = IC +1
I1(IC) = JI
I2(IC) = JJ
I3(IC) = JK
END IF
END DO
END DO
END DO
!
END FUNCTION COUNTJV
!
END SUBROUTINE CH_AQUEOUS_TMICICE