Forked from
Méso-NH / Méso-NH code
2331 commits behind, 946 commits ahead of the upstream repository.
-
WAUTELET Philippe authoredWAUTELET Philippe authored
rain_ice_red.f90 140.20 KiB
!MNH_LIC Copyright 1995-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! ######spl
MODULE MODI_RAIN_ICE_RED
! ########################
!
INTERFACE
SUBROUTINE RAIN_ICE_RED ( KIT, KJT, KKT, KSIZE, &
OSEDIC, HSEDIM, HSUBG_AUCV_RC, HSUBG_AUCV_RI, &
OWARM, KKA, KKU, KKL, &
PTSTEP, KRR, ODMICRO, PEXN, &
PDZZ, PRHODJ, PRHODREF, PEXNREF, PPABST, PCIT, PCLDFR,&
PHLC_HRC, PHLC_HCF, PHLI_HRI, PHLI_HCF,&
PTHT, PRVT, PRCT, PRRT, PRIT, PRST, &
PRGT, PTHS, PRVS, PRCS, PRRS, PRIS, PRSS, PRGS, &
PINPRC,PINPRR, PEVAP3D, &
PINPRS, PINPRG, PINDEP, PRAINFR, PSIGS, PSEA, PTOWN, &
PRHT, PRHS, PINPRH, PFPR )
!
!
INTEGER, INTENT(IN) :: KIT, KJT, KKT ! arrays size
INTEGER, INTENT(IN) :: KSIZE
LOGICAL, INTENT(IN) :: OSEDIC ! Switch for droplet sedim.
CHARACTER(LEN=4), INTENT(IN) :: HSEDIM ! Sedimentation scheme
CHARACTER(LEN=4), INTENT(IN) :: HSUBG_AUCV_RC ! Switch for rc->rr Subgrid autoconversion
! Kind of Subgrid autoconversion method
CHARACTER(LEN=80), INTENT(IN) :: HSUBG_AUCV_RI ! Switch for ri->rs Subgrid autoconversion
! Kind of Subgrid autoconversion method
LOGICAL, INTENT(IN) :: OWARM ! .TRUE. allows raindrops to
! form by warm processes
! (Kessler scheme)
!
INTEGER, INTENT(IN) :: KKA !near ground array index
INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO
REAL, INTENT(IN) :: PTSTEP ! Double Time step
! (single if cold start)
INTEGER, INTENT(IN) :: KRR ! Number of moist variable
LOGICAL, DIMENSION(:,:,:), INTENT(IN) :: ODMICRO ! mask to limit computation
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PEXN ! Exner function
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDZZ ! Layer thikness (m)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PEXNREF ! Reference Exner function
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! absolute pressure at t
!
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PCIT ! Pristine ice n.c. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCLDFR ! Cloud fraction
REAL, DIMENSION(:,:,:), INTENT(IN) :: PHLC_HRC
REAL, DIMENSION(:,:,:), INTENT(IN) :: PHLC_HCF
REAL, DIMENSION(:,:,:), INTENT(IN) :: PHLI_HRI
REAL, DIMENSION(:,:,:), INTENT(IN) :: PHLI_HCF
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT ! Theta at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIT ! Pristine ice m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGT ! Graupel/hail m.r. at t
!
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTHS ! Theta source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRVS ! Water vapor m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRCS ! Cloud water m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRRS ! Rain water m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRIS ! Pristine ice m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRSS ! Snow/aggregate m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRGS ! Graupel m.r. source
!
REAL, DIMENSION(:,:), INTENT(OUT) :: PINPRC! Cloud instant precip
REAL, DIMENSION(:,:), INTENT(INOUT) :: PINDEP ! Cloud instant deposition
REAL, DIMENSION(:,:), INTENT(OUT) :: PINPRR! Rain instant precip
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PEVAP3D! Rain evap profile
REAL, DIMENSION(:,:), INTENT(OUT) :: PINPRS! Snow instant precip
REAL, DIMENSION(:,:), INTENT(OUT) :: PINPRG! Graupel instant precip
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PRAINFR! Rain fraction
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSIGS ! Sigma_s at t
REAL, DIMENSION(:,:), OPTIONAL, INTENT(IN) :: PSEA ! Sea Mask
REAL, DIMENSION(:,:), OPTIONAL, INTENT(IN) :: PTOWN! Fraction that is town
REAL, DIMENSION(:,:,:), OPTIONAL, INTENT(IN) :: PRHT ! Hail m.r. at t
REAL, DIMENSION(:,:,:), OPTIONAL, INTENT(INOUT) :: PRHS ! Hail m.r. source
REAL, DIMENSION(:,:), OPTIONAL, INTENT(OUT) :: PINPRH! Hail instant precip
REAL, DIMENSION(:,:,:,:), OPTIONAL, INTENT(OUT) :: PFPR ! upper-air precipitation fluxes
!
END SUBROUTINE RAIN_ICE_RED
END INTERFACE
END MODULE MODI_RAIN_ICE_RED
! ######spl
SUBROUTINE RAIN_ICE_RED ( KIT, KJT, KKT, KSIZE, &
OSEDIC, HSEDIM, HSUBG_AUCV_RC, HSUBG_AUCV_RI, &
OWARM,KKA,KKU,KKL,&
PTSTEP, KRR, ODMICRO, PEXN, &
PDZZ, PRHODJ, PRHODREF, PEXNREF, PPABST, PCIT, PCLDFR,&
PHLC_HRC, PHLC_HCF, PHLI_HRI, PHLI_HCF, &
PTHT, PRVT, PRCT, PRRT, PRIT, PRST, &
PRGT, PTHS, PRVS, PRCS, PRRS, PRIS, PRSS, PRGS, &
PINPRC,PINPRR, PEVAP3D, &
PINPRS, PINPRG, PINDEP, PRAINFR, PSIGS, PSEA, PTOWN, &
PRHT, PRHS, PINPRH, PFPR )
! ######################################################################
!
!!**** * - compute the explicit microphysical sources
!!
!! PURPOSE
!! -------
!! The purpose of this routine is to compute the slow microphysical sources
!! which can be computed explicitly
!!
!!
!!** METHOD
!! ------
!! The autoconversion computation follows Kessler (1969).
!! The sedimentation rate is computed with a time spliting technique and
!! an upstream scheme, written as a difference of non-advective fluxes. This
!! source term is added to the future instant ( split-implicit process ).
!! The others microphysical processes are evaluated at the central instant
!! (split-explicit process ): autoconversion, accretion and rain evaporation.
!! These last 3 terms are bounded in order not to create negative values
!! for the water species at the future instant.
!!
!! EXTERNAL
!! --------
!! None
!!
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAMETERS
!! JPHEXT : Horizontal external points number
!! JPVEXT : Vertical external points number
!! Module MODD_CONF :
!! CCONF configuration of the model for the first time step
!! Module MODD_CST
!! XP00 ! Reference pressure
!! XRD,XRV ! Gaz constant for dry air, vapor
!! XMD,XMV ! Molecular weight for dry air, vapor
!! XCPD ! Cpd (dry air)
!! XCL ! Cl (liquid)
!! XCI ! Ci (solid)
!! XTT ! Triple point temperature
!! XLVTT ! Vaporization heat constant
!! XALPW,XBETAW,XGAMW ! Constants for saturation vapor pressure
!! function over liquid water
!! XALPI,XBETAI,XGAMI ! Constants for saturation vapor pressure
!! function over solid ice
!! Module MODD_BUDGET:
!! NBUMOD : model in which budget is calculated
!! CBUTYPE : type of desired budget
!! 'CART' for cartesian box configuration
!! 'MASK' for budget zone defined by a mask
!! 'NONE' ' for no budget
!! LBU_RTH : logical for budget of RTH (potential temperature)
!! .TRUE. = budget of RTH
!! .FALSE. = no budget of RTH
!! LBU_RRV : logical for budget of RRV (water vapor)
!! .TRUE. = budget of RRV
!! .FALSE. = no budget of RRV
!! LBU_RRC : logical for budget of RRC (cloud water)
!! .TRUE. = budget of RRC
!! .FALSE. = no budget of RRC
!! LBU_RRI : logical for budget of RRI (cloud ice)
!! .TRUE. = budget of RRI
!! .FALSE. = no budget of RRI
!! LBU_RRR : logical for budget of RRR (rain water)
!! .TRUE. = budget of RRR
!! .FALSE. = no budget of RRR
!! LBU_RRS : logical for budget of RRS (aggregates)
!! .TRUE. = budget of RRS
!! .FALSE. = no budget of RRS
!! LBU_RRG : logical for budget of RRG (graupeln)
!! .TRUE. = budget of RRG
!! .FALSE. = no budget of RRG
!!
!! REFERENCE
!! ---------
!!
!! Book1 and Book2 of documentation ( routine RAIN_ICE )
!!
!! AUTHOR
!! ------
!! J.-P. Pinty * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original 02/11/95
!! (J.Viviand) 04/02/97 debug accumulated prcipitation & convert
!! precipitation rate in m/s
!! (J.-P. Pinty) 17/02/97 add budget calls
!! (J.-P. Pinty) 17/11/97 set ice sedim. for cirrus ice, reset RCHONI
!! and RRHONG, reverse order for DEALLOCATE
!! (J.-P. Pinty) 11/02/98 correction of the air dynamical viscosity and
!! add advance of the budget calls
!! (J.-P. Pinty) 18/05/98 correction of the air density in the RIAUTS
!! process
!! (J.-P. Pinty) 18/11/98 split the main routine
!! (V. Masson) 18/11/98 bug in IVEC1 and IVEC2 upper limits
!! (J. Escobar & J.-P. Pinty)
!! 11/12/98 contains and rewrite count+pack
!! (J. Stein & J.-P. Pinty)
!! 14/10/99 correction for very small RIT
!! (J. Escobar & J.-P. Pinty)
!! 24/07/00 correction for very samll m.r. in
!! the sedimentation subroutine
!! (M. Tomasini) 11/05/01 Autoconversion of rc into rr modification to take
!! into account the subgrid variance
!! (cf Redelsperger & Sommeria JAS 86)
!! (G. Molinie) 21/05/99 bug in RRCFRIG process, RHODREF**(-1) missing
!! in RSRIMCG
!! (G. Molinie & J.-P. Pinty)
!! 21/06/99 bug in RACCS process
!! (P. Jabouille) 27/05/04 safety test for case where esw/i(T)> pabs (~Z>40km)
!! (J-.P. Chaboureau) 12/02/05 temperature depending ice-to-snow autocon-
! version threshold (Chaboureau and Pinty GRL 2006)
!! (J.-P. Pinty) 01/01/O1 add the hail category and correction of the
!! wet growth rate of the graupeln
!! (S.Remy & C.Lac) 06/06 Add the cloud sedimentation
!! (S.Remy & C.Lac) 06/06 Sedimentation becoming the last process
!! to settle the precipitating species created during the current time step
!! (S.Remy & C.Lac) 06/06 Modification of the algorithm of sedimentation
!! to settle n times the precipitating species created during Dt/n instead
!! of Dt
!! (C.Lac) 11/06 Optimization of the sedimentation loop for NEC
!! (J.Escobar) 18/01/2008 Parallel Bug in Budget when IMICRO >= 1
!! --> Path inhibit this test by IMICRO >= 0 allway true
!! (Y.Seity) 03/2008 Add Statistic sedimentation
!! (Y.Seity) 10/2009 Added condition for the raindrop accretion of the aggregates
!! into graupeln process (5.2.6) to avoid negative graupel mixing ratio
!! (V.Masson, C.Lac) 09/2010 Correction in split sedimentation for
!! reproducibility
!! (S. Riette) Oct 2010 Better vectorisation of RAIN_ICE_SEDIMENTATION_STAT
!! (Y. Seity), 02-2012 add possibility to run with reversed vertical levels
!! (L. Bengtsson), 02-2013 Passing in land/sea mask and town fraction in
!! order to use different cloud droplet number conc. over
!! land, sea and urban areas in the cloud sedimentation.
!! (D. Degrauwe), 2013-11: Export upper-air precipitation fluxes PFPR.
!! (S. Riette) Nov 2013 Protection against null sigma
!! (C. Lac) FIT temporal scheme : instant M removed
!! (JP Pinty), 01-2014 : ICE4 : partial reconversion of hail to graupel
!! July, 2015 (O.Nuissier/F.Duffourg) Add microphysics diagnostic for
!! aircraft, ballon and profiler
!! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
!! C.Lac : 10/2016 : add droplet deposition
!! C.Lac : 01/2017 : correction on droplet deposition
!! J.Escobar : 10/2017 : for real*4 , limit exp() in RAIN_ICE_SLOW with XMNH_HUGE_12_LOG
!! (C. Abiven, Y. Léauté, V. Seigner, S. Riette) Phasing of Turner rain subgrid param
!! (S. Riette) Source code split into several files
!! 02/2019 C.Lac add rain fraction as an output field
! P. Wautelet 10/04/2019: replace ABORT and STOP calls by Print_msg
! P. Wautelet 28/05/2019: move COUNTJV function to tools.f90
! P. Wautelet 29/05/2019: remove PACK/UNPACK intrinsics (to get more performance and better OpenACC support)
! P. Wautelet 17/01/2020: move Quicksort to tools.f90
! P. Wautelet 02/2020: use the new data structures and subroutines for budgets
! P. Wautelet 25/02/2020: bugfix: add missing budget: WETH_BU_RRG
!-----------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
use modd_budget, only: lbu_enable, &
lbudget_th, lbudget_rv, lbudget_rc, lbudget_rr, lbudget_ri, lbudget_rs, lbudget_rg, lbudget_rh, &
NBUDGET_TH, NBUDGET_RV, NBUDGET_RC, NBUDGET_RR, NBUDGET_RI, NBUDGET_RS, NBUDGET_RG, NBUDGET_RH, &
tbudgets
USE MODD_CST, ONLY: XCI,XCL,XCPD,XCPV,XLSTT,XLVTT,XTT
USE MODD_PARAMETERS, ONLY: JPVEXT,XUNDEF
USE MODD_PARAM_ICE, ONLY: CSUBG_PR_PDF,CSUBG_RC_RR_ACCR,CSUBG_RR_EVAP,LDEPOSC,LFEEDBACKT,LSEDIM_AFTER, &
NMAXITER,XMRSTEP,XTSTEP_TS,XVDEPOSC
USE MODD_RAIN_ICE_DESCR, ONLY: XRTMIN
USE MODD_VAR_ll, ONLY: IP
use mode_budget, only: Budget_store_add, Budget_store_init, Budget_store_end
USE MODE_ll
#ifdef MNH_OPENACC
USE MODE_MNH_ZWORK, ONLY: MNH_MEM_GET, MNH_MEM_POSITION_PIN, MNH_MEM_RELEASE
#endif
USE MODE_MPPDB
USE MODE_MSG
use mode_tools, only: Countjv
#ifdef MNH_OPENACC
use mode_tools, only: Countjv_device
#endif
USE MODI_ICE4_NUCLEATION_WRAPPER
USE MODI_ICE4_RAINFR_VERT
USE MODI_ICE4_SEDIMENTATION_SPLIT
USE MODI_ICE4_SEDIMENTATION_STAT
USE MODI_ICE4_TENDENCIES
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
!
INTEGER, INTENT(IN) :: KIT, KJT, KKT ! arrays size
INTEGER, INTENT(IN) :: KSIZE
LOGICAL, INTENT(IN) :: OSEDIC ! Switch for droplet sedim.
CHARACTER(LEN=4), INTENT(IN) :: HSEDIM ! Sedimentation scheme
CHARACTER(LEN=4), INTENT(IN) :: HSUBG_AUCV_RC ! Kind of Subgrid autoconversion method
CHARACTER(LEN=80), INTENT(IN) :: HSUBG_AUCV_RI ! Kind of Subgrid autoconversion method
LOGICAL, INTENT(IN) :: OWARM ! .TRUE. allows raindrops to
! form by warm processes
! (Kessler scheme)
INTEGER, INTENT(IN) :: KKA !near ground array index
INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO
REAL, INTENT(IN) :: PTSTEP ! Double Time step (single if cold start)
INTEGER, INTENT(IN) :: KRR ! Number of moist variable
LOGICAL, DIMENSION(:,:,:), INTENT(IN) :: ODMICRO ! mask to limit computation
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PEXN ! Exner function
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDZZ ! Layer thikness (m)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PEXNREF ! Reference Exner function
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! absolute pressure at t
!
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PCIT ! Pristine ice n.c. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCLDFR ! Convective Mass Flux Cloud fraction
REAL, DIMENSION(:,:,:), INTENT(IN) :: PHLC_HRC
REAL, DIMENSION(:,:,:), INTENT(IN) :: PHLC_HCF
REAL, DIMENSION(:,:,:), INTENT(IN) :: PHLI_HRI
REAL, DIMENSION(:,:,:), INTENT(IN) :: PHLI_HCF
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT ! Theta at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIT ! Pristine ice m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGT ! Graupel/hail m.r. at t
!
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTHS ! Theta source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRVS ! Water vapor m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRCS ! Cloud water m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRRS ! Rain water m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRIS ! Pristine ice m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRSS ! Snow/aggregate m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRGS ! Graupel m.r. source
!
REAL, DIMENSION(:,:), INTENT(OUT) :: PINPRC! Cloud instant precip
REAL, DIMENSION(:,:), INTENT(INOUT) :: PINDEP ! Cloud instant deposition
REAL, DIMENSION(:,:), INTENT(OUT) :: PINPRR! Rain instant precip
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PEVAP3D! Rain evap profile
REAL, DIMENSION(:,:), INTENT(OUT) :: PINPRS! Snow instant precip
REAL, DIMENSION(:,:), INTENT(OUT) :: PINPRG! Graupel instant precip
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PRAINFR! Rain fraction
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSIGS ! Sigma_s at t
REAL, DIMENSION(:,:), OPTIONAL, INTENT(IN) :: PSEA ! Sea Mask
REAL, DIMENSION(:,:), OPTIONAL, INTENT(IN) :: PTOWN! Fraction that is town
REAL, DIMENSION(:,:,:), OPTIONAL, INTENT(IN) :: PRHT ! Hail m.r. at t
REAL, DIMENSION(:,:,:), OPTIONAL, INTENT(INOUT) :: PRHS ! Hail m.r. source
REAL, DIMENSION(:,:), OPTIONAL, INTENT(OUT) :: PINPRH! Hail instant precip
REAL, DIMENSION(:,:,:,:), OPTIONAL, INTENT(OUT) :: PFPR ! upper-air precipitation fluxes
!
!* 0.2 Declarations of local variables :
!
INTEGER :: IIB ! Define the domain where is
INTEGER :: IIE ! the microphysical sources have to be computed
INTEGER :: IJB !
INTEGER :: IJE !
INTEGER :: IKB, IKTB !
INTEGER :: IKE, IKTE !
!
INTEGER :: IDX, JI, JJ, JK
INTEGER :: IMICRO ! Case r_x>0 locations
INTEGER :: JIU,JJU,JKU
#ifndef MNH_OPENACC
INTEGER, DIMENSION(:), allocatable :: I1,I2,I3 ! Used to replace the COUNT
INTEGER :: JL ! and PACK intrinsics
!
!Arrays for nucleation call outisde of ODMICRO points
REAL, DIMENSION(:,:,:), allocatable :: ZW ! work array
REAL, DIMENSION(:,:,:), allocatable :: ZT ! Temperature
REAL, DIMENSION(:,:,:), allocatable :: &
& ZZ_RVHENI_MR, & ! heterogeneous nucleation mixing ratio change
& ZZ_RVHENI ! heterogeneous nucleation
real, dimension(:,:,:), allocatable :: zw1, zw2, zw3, zw4, zw5, zw6 !Work arrays
real, dimension(:,:,:), allocatable :: zz_diff
REAL, DIMENSION(:,:,:), allocatable :: ZZ_LVFACT, ZZ_LSFACT, ZLSFACT3D
!
!Diagnostics
REAL, DIMENSION(:,:,:), allocatable :: &
& ZHLC_HCF3D,& ! HLCLOUDS cloud fraction in high water content part
& ZHLC_LCF3D,& ! HLCLOUDS cloud fraction in low water content part
& ZHLC_HRC3D,& ! HLCLOUDS cloud water content in high water content
& ZHLC_LRC3D,& ! HLCLOUDS cloud water content in low water content
& ZHLI_HCF3D,& ! HLCLOUDS cloud fraction in high ice content part
& ZHLI_LCF3D,& ! HLCLOUDS cloud fraction in low ice content part
& ZHLI_HRI3D,& ! HLCLOUDS cloud water content in high ice content
& ZHLI_LRI3D ! HLCLOUDS cloud water content in high ice content
REAL, DIMENSION(:,:), allocatable :: ZINPRI ! Pristine ice instant precip
!
!Packed variables
REAL, DIMENSION(:), allocatable :: ZRVT, & ! Water vapor m.r. at t
& ZRCT, & ! Cloud water m.r. at t
& ZRRT, & ! Rain water m.r. at t
& ZRIT, & ! Pristine ice m.r. at t
& ZRST, & ! Snow/aggregate m.r. at t
& ZRGT, & ! Graupel m.r. at t
& ZRHT, & ! Hail m.r. at t
& ZCIT, & ! Pristine ice conc. at t
& ZTHT, & ! Potential temperature
& ZRHODREF, & ! RHO Dry REFerence
& ZZT, & ! Temperature
& ZPRES, & ! Pressure
& ZEXN, & ! EXNer Pressure
& ZLSFACT, & ! L_s/(Pi*C_ph)
& ZLVFACT, & ! L_v/(Pi*C_ph)
& ZSIGMA_RC,& ! Standard deviation of rc at time t
& ZCF, & ! Cloud fraction
& ZHLC_HCF, & ! HLCLOUDS : fraction of High Cloud Fraction in grid
& ZHLC_LCF, & ! HLCLOUDS : fraction of Low Cloud Fraction in grid
! note that ZCF = ZHLC_HCF + ZHLC_LCF
& ZHLC_HRC, & ! HLCLOUDS : LWC that is High LWC in grid
& ZHLC_LRC, & ! HLCLOUDS : LWC that is Low LWC in grid
! note that ZRC = ZHLC_HRC + ZHLC_LRC
& ZHLI_HCF, &
& ZHLI_LCF, &
& ZHLI_HRI, &
& ZHLI_LRI
!
!Output packed tendencies (for budgets only)
REAL, DIMENSION(:), allocatable :: ZRVHENI_MR, & ! heterogeneous nucleation mixing ratio change
& ZRCHONI, & ! Homogeneous nucleation
& ZRRHONG_MR, & ! Spontaneous freezing mixing ratio change
& ZRVDEPS, & ! Deposition on r_s,
& ZRIAGGS, & ! Aggregation on r_s
& ZRIAUTS, & ! Autoconversion of r_i for r_s production
& ZRVDEPG, & ! Deposition on r_g
& ZRCAUTR, & ! Autoconversion of r_c for r_r production
& ZRCACCR, & ! Accretion of r_c for r_r production
& ZRREVAV, & ! Evaporation of r_r
& ZRIMLTC_MR, & ! Cloud ice melting mixing ratio change
& ZRCBERI, & ! Bergeron-Findeisen effect
& ZRHMLTR, & ! Melting of the hailstones
& ZRSMLTG, & ! Conversion-Melting of the aggregates
& ZRCMLTSR, & ! Cloud droplet collection onto aggregates by positive temperature
& ZRRACCSS, ZRRACCSG, ZRSACCRG, & ! Rain accretion onto the aggregates
& ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRSRIMCG_MR, & ! Cloud droplet riming of the aggregates
& ZRICFRRG, ZRRCFRIG, ZRICFRR, & ! Rain contact freezing
& ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG, & ! Graupel wet growth
& ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, & ! Graupel dry growth
& ZRWETGH, & ! Conversion of graupel into hail
& ZRWETGH_MR, & ! Conversion of graupel into hail, mr change
& ZRGMLTR, & ! Melting of the graupel
& ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH, ZRRWETH, & ! Dry growth of hailstone
& ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH, ZRGDRYH, & ! Wet growth of hailstone
& ZRDRYHG ! Conversion of hailstone into graupel
!
!Output packed total mixing ratio change (for budgets only)
REAL, DIMENSION(:), allocatable :: ZTOT_RVHENI, & ! heterogeneous nucleation mixing ratio change
& ZTOT_RCHONI, & ! Homogeneous nucleation
& ZTOT_RRHONG, & ! Spontaneous freezing mixing ratio change
& ZTOT_RVDEPS, & ! Deposition on r_s,
& ZTOT_RIAGGS, & ! Aggregation on r_s
& ZTOT_RIAUTS, & ! Autoconversion of r_i for r_s production
& ZTOT_RVDEPG, & ! Deposition on r_g
& ZTOT_RCAUTR, & ! Autoconversion of r_c for r_r production
& ZTOT_RCACCR, & ! Accretion of r_c for r_r production
& ZTOT_RREVAV, & ! Evaporation of r_r
& ZTOT_RCRIMSS, ZTOT_RCRIMSG, ZTOT_RSRIMCG, & ! Cloud droplet riming of the aggregates
& ZTOT_RIMLTC, & ! Cloud ice melting mixing ratio change
& ZTOT_RCBERI, & ! Bergeron-Findeisen effect
& ZTOT_RHMLTR, & ! Melting of the hailstones
& ZTOT_RSMLTG, & ! Conversion-Melting of the aggregates
& ZTOT_RCMLTSR, & ! Cloud droplet collection onto aggregates by positive temperature
& ZTOT_RRACCSS, ZTOT_RRACCSG, ZTOT_RSACCRG, & ! Rain accretion onto the aggregates
& ZTOT_RICFRRG, ZTOT_RRCFRIG, ZTOT_RICFRR, & ! Rain contact freezing
& ZTOT_RCWETG, ZTOT_RIWETG, ZTOT_RRWETG, ZTOT_RSWETG, & ! Graupel wet growth
& ZTOT_RCDRYG, ZTOT_RIDRYG, ZTOT_RRDRYG, ZTOT_RSDRYG, & ! Graupel dry growth
& ZTOT_RWETGH, & ! Conversion of graupel into hail
& ZTOT_RGMLTR, & ! Melting of the graupel
& ZTOT_RCWETH, ZTOT_RIWETH, ZTOT_RSWETH, ZTOT_RGWETH, ZTOT_RRWETH, & ! Dry growth of hailstone
& ZTOT_RCDRYH, ZTOT_RIDRYH, ZTOT_RSDRYH, ZTOT_RRDRYH, ZTOT_RGDRYH, & ! Wet growth of hailstone
& ZTOT_RDRYHG ! Conversion of hailstone into graupel
!
!For time- or mixing-ratio- splitting
REAL, DIMENSION(:), allocatable :: Z0RVT, & ! Water vapor m.r. at the beginig of the current loop
& Z0RCT, & ! Cloud water m.r. at the beginig of the current loop
& Z0RRT, & ! Rain water m.r. at the beginig of the current loop
& Z0RIT, & ! Pristine ice m.r. at the beginig of the current loop
& Z0RST, & ! Snow/aggregate m.r. at the beginig of the current loop
& Z0RGT, & ! Graupel m.r. at the beginig of the current loop
& Z0RHT, & ! Hail m.r. at the beginig of the current loop
& ZA_TH, ZA_RV, ZA_RC, ZA_RR, ZA_RI, ZA_RS, ZA_RG, ZA_RH, &
& ZB_TH, ZB_RV, ZB_RC, ZB_RR, ZB_RI, ZB_RS, ZB_RG, ZB_RH
!
!To take into acount external tendencies inside the splitting
REAL, DIMENSION(:), allocatable :: ZEXT_RV, & ! External tendencie for rv
ZEXT_RC, & ! External tendencie for rc
ZEXT_RR, & ! External tendencie for rr
ZEXT_RI, & ! External tendencie for ri
ZEXT_RS, & ! External tendencie for rs
ZEXT_RG, & ! External tendencie for rg
ZEXT_RH, & ! External tendencie for rh
ZEXT_TH ! External tendencie for th
LOGICAL :: GEXT_TEND
!
INTEGER, DIMENSION(:), allocatable :: IITER ! Number of iterations done (with real tendencies computation)
INTEGER :: INB_ITER_MAX ! Maximum number of iterations (with real tendencies computation)
REAL, DIMENSION(:), allocatable :: ZTIME, & ! Current integration time (starts with 0 and ends with PTSTEP)
& ZMAXTIME, & ! Time on which we can apply the current tendencies
& ZTIME_THRESHOLD, & ! Time to reach threshold
& ZTIME_LASTCALL ! Integration time when last tendecies call has been done
REAL, DIMENSION(:), allocatable :: ZW1D
REAL, DIMENSION(:), allocatable :: ZCOMPUTE ! Points where we must compute tendenceis
LOGICAL :: GSOFT ! Must we really compute tendencies or only adjust them to new T variables
LOGICAL, DIMENSION(:,:,:), allocatable :: GDNOTMICRO ! = .NOT.ODMICRO
REAL :: ZTSTEP ! length of sub-timestep in case of time splitting
REAL :: ZINV_TSTEP ! Inverse ov PTSTEP
REAL, DIMENSION(:,:), allocatable :: ZRS_TEND
REAL, DIMENSION(:,:), allocatable :: ZRG_TEND
REAL, DIMENSION(:,:), allocatable :: ZRH_TEND
REAL, DIMENSION(:), allocatable :: ZSSI
!
!For total tendencies computation
REAL, DIMENSION(:,:,:), allocatable :: &
&ZW_RVS, ZW_RCS, ZW_RRS, ZW_RIS, ZW_RSS, ZW_RGS, ZW_RHS, ZW_THS
#else
INTEGER, DIMENSION(:), POINTER, CONTIGUOUS :: I1,I2,I3 ! Used to replace the COUNT
INTEGER :: JL ! and PACK intrinsics
!
!Arrays for nucleation call outisde of ODMICRO points
REAL, DIMENSION(:,:,:), POINTER, CONTIGUOUS :: ZW ! work array
REAL, DIMENSION(:,:,:), POINTER, CONTIGUOUS :: ZT ! Temperature
REAL, DIMENSION(:,:,:), POINTER, CONTIGUOUS :: &
& ZZ_RVHENI_MR, & ! heterogeneous nucleation mixing ratio change
& ZZ_RVHENI ! heterogeneous nucleation
real, dimension(:,:,:), POINTER, CONTIGUOUS :: zw1, zw2, zw3, zw4, zw5, zw6 !Work arrays
real, dimension(:,:,:), POINTER, CONTIGUOUS :: zz_diff
REAL, DIMENSION(:,:,:), POINTER, CONTIGUOUS :: ZZ_LVFACT, ZZ_LSFACT, ZLSFACT3D
!
!Diagnostics
REAL, DIMENSION(:,:,:), POINTER, CONTIGUOUS :: &
& ZHLC_HCF3D,& ! HLCLOUDS cloud fraction in high water content part
& ZHLC_LCF3D,& ! HLCLOUDS cloud fraction in low water content part
& ZHLC_HRC3D,& ! HLCLOUDS cloud water content in high water content
& ZHLC_LRC3D,& ! HLCLOUDS cloud water content in low water content
& ZHLI_HCF3D,& ! HLCLOUDS cloud fraction in high ice content part
& ZHLI_LCF3D,& ! HLCLOUDS cloud fraction in low ice content part
& ZHLI_HRI3D,& ! HLCLOUDS cloud water content in high ice content
& ZHLI_LRI3D ! HLCLOUDS cloud water content in high ice content
REAL, DIMENSION(:,:), POINTER, CONTIGUOUS :: ZINPRI ! Pristine ice instant precip
!
!Packed variables
REAL, DIMENSION(:), POINTER, CONTIGUOUS :: ZRVT, & ! Water vapor m.r. at t
ZRCT, & ! Cloud water m.r. at t
ZRRT, & ! Rain water m.r. at t
ZRIT, & ! Pristine ice m.r. at t
ZRST, & ! Snow/aggregate m.r. at t
ZRGT, & ! Graupel m.r. at t
ZRHT, & ! Hail m.r. at t
ZCIT, & ! Pristine ice conc. at t
ZTHT, & ! Potential temperature
ZRHODREF, & ! RHO Dry REFerence
ZZT, & ! Temperature
ZPRES, & ! Pressure
ZEXN, & ! EXNer Pressure
ZLSFACT, & ! L_s/(Pi*C_ph)
ZLVFACT, & ! L_v/(Pi*C_ph)
ZSIGMA_RC,& ! Standard deviation of rc at time t
ZCF, & ! Cloud fraction
ZHLC_HCF, & ! HLCLOUDS : fraction of High Cloud Fraction in grid
ZHLC_LCF, & ! HLCLOUDS : fraction of Low Cloud Fraction in grid
! note that ZCF = ZHLC_HCF + ZHLC_LCF
ZHLC_HRC, & ! HLCLOUDS : LWC that is High LWC in grid
ZHLC_LRC, & ! HLCLOUDS : LWC that is Low LWC in grid
! note that ZRC = ZHLC_HRC + ZHLC_LRC
ZHLI_HCF, &
ZHLI_LCF, &
ZHLI_HRI, &
ZHLI_LRI
!
!Output packed tendencies (for budgets only)
REAL, DIMENSION(:), POINTER, CONTIGUOUS :: ZRVHENI_MR, & ! heterogeneous nucleation mixing ratio change
ZRCHONI, & ! Homogeneous nucleation
ZRRHONG_MR, & ! Spontaneous freezing mixing ratio change
ZRVDEPS, & ! Deposition on r_s,
ZRIAGGS, & ! Aggregation on r_s
ZRIAUTS, & ! Autoconversion of r_i for r_s production
ZRVDEPG, & ! Deposition on r_g
ZRCAUTR, & ! Autoconversion of r_c for r_r production
ZRCACCR, & ! Accretion of r_c for r_r production
ZRREVAV, & ! Evaporation of r_r
ZRIMLTC_MR, & ! Cloud ice melting mixing ratio change
ZRCBERI, & ! Bergeron-Findeisen effect
ZRHMLTR, & ! Melting of the hailstones
ZRSMLTG, & ! Conversion-Melting of the aggregates
ZRCMLTSR, & ! Cloud droplet collection onto aggregates by positive temperature
ZRRACCSS, ZRRACCSG, ZRSACCRG, & ! Rain accretion onto the aggregates
ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRSRIMCG_MR, & ! Cloud droplet riming of the aggregates
ZRICFRRG, ZRRCFRIG, ZRICFRR, & ! Rain contact freezing
ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG, & ! Graupel wet growth
ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, & ! Graupel dry growth
ZRWETGH, & ! Conversion of graupel into hail
ZRWETGH_MR, & ! Conversion of graupel into hail, mr change
ZRGMLTR, & ! Melting of the graupel
ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH, ZRRWETH, & ! Dry growth of hailstone
ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH, ZRGDRYH, & ! Wet growth of hailstone
ZRDRYHG ! Conversion of hailstone into graupel
!
!Output packed total mixing ratio change (for budgets only)
REAL, DIMENSION(:), POINTER, CONTIGUOUS :: ZTOT_RVHENI, & ! heterogeneous nucleation mixing ratio change
ZTOT_RCHONI, & ! Homogeneous nucleation
ZTOT_RRHONG, & ! Spontaneous freezing mixing ratio change
ZTOT_RVDEPS, & ! Deposition on r_s,
ZTOT_RIAGGS, & ! Aggregation on r_s
ZTOT_RIAUTS, & ! Autoconversion of r_i for r_s production
ZTOT_RVDEPG, & ! Deposition on r_g
ZTOT_RCAUTR, & ! Autoconversion of r_c for r_r production
ZTOT_RCACCR, & ! Accretion of r_c for r_r production
ZTOT_RREVAV, & ! Evaporation of r_r
ZTOT_RCRIMSS, ZTOT_RCRIMSG, ZTOT_RSRIMCG, & ! Cloud droplet riming of the aggregates
ZTOT_RIMLTC, & ! Cloud ice melting mixing ratio change
ZTOT_RCBERI, & ! Bergeron-Findeisen effect
ZTOT_RHMLTR, & ! Melting of the hailstones
ZTOT_RSMLTG, & ! Conversion-Melting of the aggregates
ZTOT_RCMLTSR, & ! Cloud droplet collection onto aggregates by positive temperature
ZTOT_RRACCSS, ZTOT_RRACCSG, ZTOT_RSACCRG, & ! Rain accretion onto the aggregates
ZTOT_RICFRRG, ZTOT_RRCFRIG, ZTOT_RICFRR, & ! Rain contact freezing
ZTOT_RCWETG, ZTOT_RIWETG, ZTOT_RRWETG, ZTOT_RSWETG, & ! Graupel wet growth
ZTOT_RCDRYG, ZTOT_RIDRYG, ZTOT_RRDRYG, ZTOT_RSDRYG, & ! Graupel dry growth
ZTOT_RWETGH, & ! Conversion of graupel into hail
ZTOT_RGMLTR, & ! Melting of the graupel
ZTOT_RCWETH, ZTOT_RIWETH, ZTOT_RSWETH, ZTOT_RGWETH, ZTOT_RRWETH, & ! Dry growth of hailstone
ZTOT_RCDRYH, ZTOT_RIDRYH, ZTOT_RSDRYH, ZTOT_RRDRYH, ZTOT_RGDRYH, & ! Wet growth of hailstone
ZTOT_RDRYHG ! Conversion of hailstone into graupel
!
!For time- or mixing-ratio- splitting
REAL, DIMENSION(:), POINTER, CONTIGUOUS :: Z0RVT, & ! Water vapor m.r. at the beginig of the current loop
Z0RCT, & ! Cloud water m.r. at the beginig of the current loop
Z0RRT, & ! Rain water m.r. at the beginig of the current loop
Z0RIT, & ! Pristine ice m.r. at the beginig of the current loop
Z0RST, & ! Snow/aggregate m.r. at the beginig of the current loop
Z0RGT, & ! Graupel m.r. at the beginig of the current loop
Z0RHT, & ! Hail m.r. at the beginig of the current loop
ZA_TH, ZA_RV, ZA_RC, ZA_RR, ZA_RI, ZA_RS, ZA_RG, ZA_RH, &
ZB_TH, ZB_RV, ZB_RC, ZB_RR, ZB_RI, ZB_RS, ZB_RG, ZB_RH
!
!To take into acount external tendencies inside the splitting
REAL, DIMENSION(:), POINTER, CONTIGUOUS :: ZEXT_RV, & ! External tendencie for rv
ZEXT_RC, & ! External tendencie for rc
ZEXT_RR, & ! External tendencie for rr
ZEXT_RI, & ! External tendencie for ri
ZEXT_RS, & ! External tendencie for rs
ZEXT_RG, & ! External tendencie for rg
ZEXT_RH, & ! External tendencie for rh
ZEXT_TH ! External tendencie for th
LOGICAL :: GEXT_TEND
!
INTEGER, DIMENSION(:), POINTER, CONTIGUOUS :: IITER ! Number of iterations done (with real tendencies computation)
INTEGER :: INB_ITER_MAX ! Maximum number of iterations (with real tendencies computation)
REAL, DIMENSION(:), POINTER, CONTIGUOUS :: ZTIME, & ! Current integration time (starts with 0 and ends with PTSTEP)
ZMAXTIME, & ! Time on which we can apply the current tendencies
ZTIME_THRESHOLD, & ! Time to reach threshold
ZTIME_LASTCALL ! Integration time when last tendecies call has been done
REAL, DIMENSION(:), POINTER, CONTIGUOUS :: ZW1D
REAL, DIMENSION(:), POINTER, CONTIGUOUS :: ZCOMPUTE ! Points where we must compute tendenceis
LOGICAL :: GSOFT ! Must we really compute tendencies or only adjust them to new T variables
LOGICAL, DIMENSION(:,:,:), POINTER, CONTIGUOUS :: GDNOTMICRO ! = .NOT.ODMICRO
REAL :: ZTSTEP ! length of sub-timestep in case of time splitting
REAL :: ZINV_TSTEP ! Inverse ov PTSTEP
REAL, DIMENSION(:,:), POINTER, CONTIGUOUS :: ZRS_TEND
REAL, DIMENSION(:,:), POINTER, CONTIGUOUS :: ZRG_TEND
REAL, DIMENSION(:,:), POINTER, CONTIGUOUS :: ZRH_TEND
REAL, DIMENSION(:), POINTER, CONTIGUOUS :: ZSSI
!
!For total tendencies computation
REAL, DIMENSION(:,:,:), POINTER, CONTIGUOUS :: &
&ZW_RVS, ZW_RCS, ZW_RRS, ZW_RIS, ZW_RSS, ZW_RGS, ZW_RHS, ZW_THS
#endif
!
LOGICAL :: GTEST ! temporary variable for OpenACC character limitation (Cray CCE)
!$acc data present( ODMICRO, PEXN, PDZZ, PRHODJ, PRHODREF, PEXNREF, PPABST, PCIT, PCLDFR, &
!$acc & PHLC_HRC, PTHT, PRVT, &
!$acc & PRCT, PHLC_HCF, PHLI_HRI, PHLI_HCF, PRRT, PRIT, PRST, PRGT, PSIGS, &
!$acc & PTHS, PRVS, PRCS, PRRS, PRIS, PRSS, PRGS, &
!$acc & PINPRC, PINDEP, PINPRR, PEVAP3D, PINPRS, PINPRG, PRAINFR, &
!$acc & PSEA, PTOWN, PRHT, PRHS, PINPRH, PFPR )
IF (MPPDB_INITIALIZED) THEN
!Check all IN arrays
CALL MPPDB_CHECK(ODMICRO,"RAIN_ICE_RED beg:ODMICRO")
CALL MPPDB_CHECK(PEXN,"RAIN_ICE_RED beg:PEXN")
CALL MPPDB_CHECK(PDZZ,"RAIN_ICE_RED beg:PDZZ")
CALL MPPDB_CHECK(PRHODJ,"RAIN_ICE_RED beg:PRHODJ")
CALL MPPDB_CHECK(PRHODREF,"RAIN_ICE_RED beg:PRHODREF")
CALL MPPDB_CHECK(PEXNREF,"RAIN_ICE_RED beg:PEXNREF")
CALL MPPDB_CHECK(PPABST,"RAIN_ICE_RED beg:PPABST")
CALL MPPDB_CHECK(PCLDFR,"RAIN_ICE_RED beg:PCLDFR")
CALL MPPDB_CHECK(PHLC_HRC,"RAIN_ICE_RED beg:PHLC_HRC")
CALL MPPDB_CHECK(PHLC_HCF,"RAIN_ICE_RED beg:PHLC_HCF")
CALL MPPDB_CHECK(PHLI_HRI,"RAIN_ICE_RED beg:PHLI_HRI")
CALL MPPDB_CHECK(PHLI_HCF,"RAIN_ICE_RED beg:PHLI_HCF")
CALL MPPDB_CHECK(PTHT,"RAIN_ICE_RED beg:PTHT")
CALL MPPDB_CHECK(PRVT,"RAIN_ICE_RED beg:PRVT")
CALL MPPDB_CHECK(PRCT,"RAIN_ICE_RED beg:PRCT")
CALL MPPDB_CHECK(PRRT,"RAIN_ICE_RED beg:PRRT")
CALL MPPDB_CHECK(PRIT,"RAIN_ICE_RED beg:PRIT")
CALL MPPDB_CHECK(PRST,"RAIN_ICE_RED beg:PRST")
CALL MPPDB_CHECK(PRGT,"RAIN_ICE_RED beg:PRGT")
CALL MPPDB_CHECK(PSIGS,"RAIN_ICE_RED beg:PSIGS")
IF (PRESENT(PSEA)) CALL MPPDB_CHECK(PSEA,"RAIN_ICE_RED beg:PSEA")
IF (PRESENT(PTOWN)) CALL MPPDB_CHECK(PTOWN,"RAIN_ICE_RED beg:PTOWN")
IF (PRESENT(PRHT)) CALL MPPDB_CHECK(PRHT,"RAIN_ICE_RED beg:PRHT")
!Check all INOUT arrays
CALL MPPDB_CHECK(PCIT,"RAIN_ICE_RED beg:PCIT")
CALL MPPDB_CHECK(PTHS,"RAIN_ICE_RED beg:PTHS")
CALL MPPDB_CHECK(PRVS,"RAIN_ICE_RED beg:PRVS")
CALL MPPDB_CHECK(PRCS,"RAIN_ICE_RED beg:PRCS")
CALL MPPDB_CHECK(PRRS,"RAIN_ICE_RED beg:PRRS")
CALL MPPDB_CHECK(PRIS,"RAIN_ICE_RED beg:PRIS")
CALL MPPDB_CHECK(PRSS,"RAIN_ICE_RED beg:PRSS")
CALL MPPDB_CHECK(PRGS,"RAIN_ICE_RED beg:PRGS")
CALL MPPDB_CHECK(PINDEP,"RAIN_ICE_RED beg:PINDEP")
IF (PRESENT(PRHS)) CALL MPPDB_CHECK(PRHS,"RAIN_ICE_RED beg:PRHS")
END IF
!$acc kernels
imicro = count(odmicro)
!$acc end kernels
JIU = SIZE( ptht, 1 )
JJU = SIZE( ptht, 2 )
JKU = SIZE( ptht, 3 )
#ifndef MNH_OPENACC
allocate( i1(imicro ) )
allocate( i2(imicro ) )
allocate( i3(imicro ) )
allocate( zw(size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) )
allocate( zt(size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) )
allocate( zz_rvheni_mr(jiu, jju, jku ) )
allocate( zz_rvheni (jiu, jju, jku ) )
allocate( zz_lvfact (jiu, jju, jku ) )
allocate( zz_lsfact (jiu, jju, jku ) )
allocate( zlsfact3d (jiu, jju, jku ) )
allocate( ZHLC_HCF3D(jiu, jju, jku ) )
allocate( ZHLC_LCF3D(jiu, jju, jku ) )
allocate( ZHLC_HRC3D(jiu, jju, jku ) )
allocate( ZHLC_LRC3D(jiu, jju, jku ) )
allocate( ZHLI_HCF3D(jiu, jju, jku ) )
allocate( ZHLI_LCF3D(jiu, jju, jku ) )
allocate( ZHLI_HRI3D(jiu, jju, jku ) )
allocate( ZHLI_LRI3D(jiu, jju, jku ) )
allocate( zinpri(jiu, jju ) )
allocate( zrvt (imicro ) )
allocate( zrct (imicro ) )
allocate( zrrt (imicro ) )
allocate( zrit (imicro ) )
allocate( zrst (imicro ) )
allocate( zrgt (imicro ) )
allocate( zrht (imicro ) )
allocate( zcit (imicro ) )
allocate( ztht (imicro ) )
allocate( zrhodref (imicro ) )
allocate( zzt (imicro ) )
allocate( zpres (imicro ) )
allocate( zexn (imicro ) )
allocate( zlsfact (imicro ) )
allocate( zlvfact (imicro ) )
allocate( zsigma_rc(imicro ) )
allocate( zcf (imicro ) )
allocate( zhlc_hcf (imicro ) )
allocate( zhlc_lcf (imicro ) )
allocate( zhlc_hrc (imicro ) )
allocate( zhlc_lrc (imicro ) )
allocate( ZHLI_HCF (imicro ) )
allocate( ZHLI_LCF (imicro ) )
allocate( ZHLI_HRI (imicro ) )
allocate( ZHLI_LRI (imicro ) )
allocate( zrvheni_mr (imicro ) )
allocate( zrchoni (imicro ) )
allocate( zrrhong_mr (imicro ) )
allocate( zrvdeps (imicro ) )
allocate( zriaggs (imicro ) )
allocate( zriauts (imicro ) )
allocate( zrvdepg (imicro ) )
allocate( zrcautr (imicro ) )
allocate( zrcaccr (imicro ) )
allocate( zrrevav (imicro ) )
allocate( zrimltc_mr (imicro ) )
allocate( zrcberi (imicro ) )
allocate( zrhmltr (imicro ) )
allocate( zrsmltg (imicro ) )
allocate( zrcmltsr (imicro ) )
allocate( zrraccss (imicro ) )
allocate( zrraccsg (imicro ) )
allocate( zrsaccrg (imicro ) )
allocate( zrcrimss (imicro ) )
allocate( zrcrimsg (imicro ) )
allocate( zrsrimcg (imicro ) )
allocate( zrsrimcg_mr(imicro ) )
allocate( zricfrrg (imicro ) )
allocate( zrrcfrig (imicro ) )
allocate( zricfrr (imicro ) )
allocate( zrcwetg (imicro ) )
allocate( zriwetg (imicro ) )
allocate( zrrwetg (imicro ) )
allocate( zrswetg (imicro ) )
allocate( zrcdryg (imicro ) )
allocate( zridryg (imicro ) )
allocate( zrrdryg (imicro ) )
allocate( zrsdryg (imicro ) )
allocate( zrwetgh (imicro ) )
allocate( zrwetgh_mr (imicro ) )
allocate( zrgmltr (imicro ) )
allocate( zrcweth (imicro ) )
allocate( zriweth (imicro ) )
allocate( zrsweth (imicro ) )
allocate( zrgweth (imicro ) )
allocate( zrrweth (imicro ) )
allocate( zrcdryh (imicro ) )
allocate( zridryh (imicro ) )
allocate( zrsdryh (imicro ) )
allocate( zrrdryh (imicro ) )
allocate( zrgdryh (imicro ) )
allocate( zrdryhg (imicro ) )
allocate( ztot_rvheni (imicro ) )
allocate( ztot_rchoni (imicro ) )
allocate( ztot_rrhong (imicro ) )
allocate( ztot_rvdeps (imicro ) )
allocate( ztot_riaggs (imicro ) )
allocate( ztot_riauts (imicro ) )
allocate( ztot_rvdepg (imicro ) )
allocate( ztot_rcautr (imicro ) )
allocate( ztot_rcaccr (imicro ) )
allocate( ztot_rrevav (imicro ) )
allocate( ztot_rcrimss(imicro ) )
allocate( ztot_rcrimsg(imicro ) )
allocate( ztot_rsrimcg(imicro ) )
allocate( ztot_rimltc (imicro ) )
allocate( ztot_rcberi (imicro ) )
allocate( ztot_rhmltr (imicro ) )
allocate( ztot_rsmltg (imicro ) )
allocate( ztot_rcmltsr(imicro ) )
allocate( ztot_rraccss(imicro ) )
allocate( ztot_rraccsg(imicro ) )
allocate( ztot_rsaccrg(imicro ) )
allocate( ztot_ricfrrg(imicro ) )
allocate( ztot_rrcfrig(imicro ) )
allocate( ztot_ricfrr (imicro ) )
allocate( ztot_rcwetg (imicro ) )
allocate( ztot_riwetg (imicro ) )
allocate( ztot_rrwetg (imicro ) )
allocate( ztot_rswetg (imicro ) )
allocate( ztot_rcdryg (imicro ) )
allocate( ztot_ridryg (imicro ) )
allocate( ztot_rrdryg (imicro ) )
allocate( ztot_rsdryg (imicro ) )
allocate( ztot_rwetgh (imicro ) )
allocate( ztot_rgmltr (imicro ) )
allocate( ztot_rcweth (imicro ) )
allocate( ztot_riweth (imicro ) )
allocate( ztot_rsweth (imicro ) )
allocate( ztot_rgweth (imicro ) )
allocate( ztot_rrweth (imicro ) )
allocate( ztot_rcdryh (imicro ) )
allocate( ztot_rdryhg (imicro ) )
allocate( ztot_ridryh (imicro ) )
allocate( ztot_rsdryh (imicro ) )
allocate( ztot_rrdryh (imicro ) )
allocate( ztot_rgdryh (imicro ) )
allocate( z0rvt(imicro ) )
allocate( z0rct(imicro ) )
allocate( z0rrt(imicro ) )
allocate( z0rit(imicro ) )
allocate( z0rst(imicro ) )
allocate( z0rgt(imicro ) )
allocate( z0rht(imicro ) )
allocate( za_th(imicro ) )
allocate( za_rv(imicro ) )
allocate( za_rc(imicro ) )
allocate( za_rr(imicro ) )
allocate( za_ri(imicro ) )
allocate( za_rs(imicro ) )
allocate( za_rg(imicro ) )
allocate( za_rh(imicro ) )
allocate( zb_th(imicro ) )
allocate( zb_rv(imicro ) )
allocate( zb_rc(imicro ) )
allocate( zb_rr(imicro ) )
allocate( zb_ri(imicro ) )
allocate( zb_rs(imicro ) )
allocate( zb_rg(imicro ) )
allocate( zb_rh(imicro ) )
allocate( zext_rv(imicro ) )
allocate( zext_rc(imicro ) )
allocate( zext_rr(imicro ) )
allocate( zext_ri(imicro ) )
allocate( zext_rs(imicro ) )
allocate( zext_rg(imicro ) )
allocate( zext_rh(imicro ) )
allocate( zext_th(imicro ) )
allocate( iiter(imicro ) )
allocate( ztime(imicro ) )
allocate( zmaxtime(imicro ) )
allocate( ztime_threshold(imicro ) )
allocate( ztime_lastcall(imicro ) )
allocate( zw1d (imicro ) )
allocate( zcompute(imicro ) )
allocate( gdnotmicro(size( odmicro, 1 ), size( odmicro, 2 ), size( odmicro, 3 ) ) )
allocate( zrs_tend(imicro, 8 ) )
allocate( zrg_tend(imicro, 8 ) )
allocate( zrh_tend(imicro, 10 ) )
allocate( zssi(imicro ) )
allocate( zw_rvs(jiu, jju, jku ) )
allocate( zw_rcs(jiu, jju, jku ) )
allocate( zw_rrs(jiu, jju, jku ) )
allocate( zw_ris(jiu, jju, jku ) )
allocate( zw_rss(jiu, jju, jku ) )
allocate( zw_rgs(jiu, jju, jku ) )
allocate( zw_rhs(jiu, jju, jku ) )
allocate( zw_ths(jiu, jju, jku ) )
#else
!Pin positions in the pools of MNH memory
CALL MNH_MEM_POSITION_PIN()
CALL MNH_MEM_GET( i1, imicro )
CALL MNH_MEM_GET( i2, imicro )
CALL MNH_MEM_GET( i3, imicro )
CALL MNH_MEM_GET( zw, size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) )
CALL MNH_MEM_GET( zt, size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) )
CALL MNH_MEM_GET( zz_rvheni_mr, jiu, jju, jku )
CALL MNH_MEM_GET( zz_rvheni, jiu, jju, jku )
CALL MNH_MEM_GET( zz_lvfact, jiu, jju, jku )
CALL MNH_MEM_GET( zz_lsfact, jiu, jju, jku )
CALL MNH_MEM_GET( zlsfact3d, jiu, jju, jku )
CALL MNH_MEM_GET( ZHLC_HCF3D, jiu, jju, jku )
CALL MNH_MEM_GET( ZHLC_LCF3D, jiu, jju, jku )
CALL MNH_MEM_GET( ZHLC_HRC3D, jiu, jju, jku )
CALL MNH_MEM_GET( ZHLC_LRC3D, jiu, jju, jku )
CALL MNH_MEM_GET( ZHLI_HCF3D, jiu, jju, jku )
CALL MNH_MEM_GET( ZHLI_LCF3D, jiu, jju, jku )
CALL MNH_MEM_GET( ZHLI_HRI3D, jiu, jju, jku )
CALL MNH_MEM_GET( ZHLI_LRI3D, jiu, jju, jku )
CALL MNH_MEM_GET( zinpri, jiu, jju )
CALL MNH_MEM_GET( zrvt , imicro )
CALL MNH_MEM_GET( zrct , imicro )
CALL MNH_MEM_GET( zrrt , imicro )
CALL MNH_MEM_GET( zrit , imicro )
CALL MNH_MEM_GET( zrst , imicro )
CALL MNH_MEM_GET( zrgt , imicro )
CALL MNH_MEM_GET( zrht , imicro )
CALL MNH_MEM_GET( zcit , imicro )
CALL MNH_MEM_GET( ztht , imicro )
CALL MNH_MEM_GET( zrhodref , imicro )
CALL MNH_MEM_GET( zzt , imicro )
CALL MNH_MEM_GET( zpres , imicro )
CALL MNH_MEM_GET( zexn , imicro )
CALL MNH_MEM_GET( zlsfact , imicro )
CALL MNH_MEM_GET( zlvfact , imicro )
CALL MNH_MEM_GET( zsigma_rc, imicro )
CALL MNH_MEM_GET( zcf , imicro )
CALL MNH_MEM_GET( zhlc_hcf , imicro )
CALL MNH_MEM_GET( zhlc_lcf , imicro )
CALL MNH_MEM_GET( zhlc_hrc , imicro )
CALL MNH_MEM_GET( zhlc_lrc , imicro )
CALL MNH_MEM_GET( ZHLI_HCF , imicro )
CALL MNH_MEM_GET( ZHLI_LCF , imicro )
CALL MNH_MEM_GET( ZHLI_HRI , imicro )
CALL MNH_MEM_GET( ZHLI_LRI , imicro )
CALL MNH_MEM_GET( zrvheni_mr , imicro )
CALL MNH_MEM_GET( zrchoni , imicro )
CALL MNH_MEM_GET( zrrhong_mr , imicro )
CALL MNH_MEM_GET( zrvdeps , imicro )
CALL MNH_MEM_GET( zriaggs , imicro )
CALL MNH_MEM_GET( zriauts , imicro )
CALL MNH_MEM_GET( zrvdepg , imicro )
CALL MNH_MEM_GET( zrcautr , imicro )
CALL MNH_MEM_GET( zrcaccr , imicro )
CALL MNH_MEM_GET( zrrevav , imicro )
CALL MNH_MEM_GET( zrimltc_mr , imicro )
CALL MNH_MEM_GET( zrcberi , imicro )
CALL MNH_MEM_GET( zrhmltr , imicro )
CALL MNH_MEM_GET( zrsmltg , imicro )
CALL MNH_MEM_GET( zrcmltsr , imicro )
CALL MNH_MEM_GET( zrraccss , imicro )
CALL MNH_MEM_GET( zrraccsg , imicro )
CALL MNH_MEM_GET( zrsaccrg , imicro )
CALL MNH_MEM_GET( zrcrimss , imicro )
CALL MNH_MEM_GET( zrcrimsg , imicro )
CALL MNH_MEM_GET( zrsrimcg , imicro )
CALL MNH_MEM_GET( zrsrimcg_mr, imicro )
CALL MNH_MEM_GET( zricfrrg , imicro )
CALL MNH_MEM_GET( zrrcfrig , imicro )
CALL MNH_MEM_GET( zricfrr , imicro )
CALL MNH_MEM_GET( zrcwetg , imicro )
CALL MNH_MEM_GET( zriwetg , imicro )
CALL MNH_MEM_GET( zrrwetg , imicro )
CALL MNH_MEM_GET( zrswetg , imicro )
CALL MNH_MEM_GET( zrcdryg , imicro )
CALL MNH_MEM_GET( zridryg , imicro )
CALL MNH_MEM_GET( zrrdryg , imicro )
CALL MNH_MEM_GET( zrsdryg , imicro )
CALL MNH_MEM_GET( zrwetgh , imicro )
CALL MNH_MEM_GET( zrwetgh_mr , imicro )
CALL MNH_MEM_GET( zrgmltr , imicro )
CALL MNH_MEM_GET( zrcweth , imicro )
CALL MNH_MEM_GET( zriweth , imicro )
CALL MNH_MEM_GET( zrsweth , imicro )
CALL MNH_MEM_GET( zrgweth , imicro )
CALL MNH_MEM_GET( zrrweth , imicro )
CALL MNH_MEM_GET( zrcdryh , imicro )
CALL MNH_MEM_GET( zridryh , imicro )
CALL MNH_MEM_GET( zrsdryh , imicro )
CALL MNH_MEM_GET( zrrdryh , imicro )
CALL MNH_MEM_GET( zrgdryh , imicro )
CALL MNH_MEM_GET( zrdryhg , imicro )
CALL MNH_MEM_GET( ztot_rvheni , imicro )
CALL MNH_MEM_GET( ztot_rchoni , imicro )
CALL MNH_MEM_GET( ztot_rrhong , imicro )
CALL MNH_MEM_GET( ztot_rvdeps , imicro )
CALL MNH_MEM_GET( ztot_riaggs , imicro )
CALL MNH_MEM_GET( ztot_riauts , imicro )
CALL MNH_MEM_GET( ztot_rvdepg , imicro )
CALL MNH_MEM_GET( ztot_rcautr , imicro )
CALL MNH_MEM_GET( ztot_rcaccr , imicro )
CALL MNH_MEM_GET( ztot_rrevav , imicro )
CALL MNH_MEM_GET( ztot_rcrimss, imicro )
CALL MNH_MEM_GET( ztot_rcrimsg, imicro )
CALL MNH_MEM_GET( ztot_rsrimcg, imicro )
CALL MNH_MEM_GET( ztot_rimltc , imicro )
CALL MNH_MEM_GET( ztot_rcberi , imicro )
CALL MNH_MEM_GET( ztot_rhmltr , imicro )
CALL MNH_MEM_GET( ztot_rsmltg , imicro )
CALL MNH_MEM_GET( ztot_rcmltsr, imicro )
CALL MNH_MEM_GET( ztot_rraccss, imicro )
CALL MNH_MEM_GET( ztot_rraccsg, imicro )
CALL MNH_MEM_GET( ztot_rsaccrg, imicro )
CALL MNH_MEM_GET( ztot_ricfrrg, imicro )
CALL MNH_MEM_GET( ztot_rrcfrig, imicro )
CALL MNH_MEM_GET( ztot_ricfrr , imicro )
CALL MNH_MEM_GET( ztot_rcwetg , imicro )
CALL MNH_MEM_GET( ztot_riwetg , imicro )
CALL MNH_MEM_GET( ztot_rrwetg , imicro )
CALL MNH_MEM_GET( ztot_rswetg , imicro )
CALL MNH_MEM_GET( ztot_rcdryg , imicro )
CALL MNH_MEM_GET( ztot_ridryg , imicro )
CALL MNH_MEM_GET( ztot_rrdryg , imicro )
CALL MNH_MEM_GET( ztot_rsdryg , imicro )
CALL MNH_MEM_GET( ztot_rwetgh , imicro )
CALL MNH_MEM_GET( ztot_rgmltr , imicro )
CALL MNH_MEM_GET( ztot_rcweth , imicro )
CALL MNH_MEM_GET( ztot_riweth , imicro )
CALL MNH_MEM_GET( ztot_rsweth , imicro )
CALL MNH_MEM_GET( ztot_rgweth , imicro )
CALL MNH_MEM_GET( ztot_rrweth , imicro )
CALL MNH_MEM_GET( ztot_rcdryh , imicro )
CALL MNH_MEM_GET( ztot_rdryhg , imicro )
CALL MNH_MEM_GET( ztot_ridryh , imicro )
CALL MNH_MEM_GET( ztot_rsdryh , imicro )
CALL MNH_MEM_GET( ztot_rrdryh , imicro )
CALL MNH_MEM_GET( ztot_rgdryh , imicro )
CALL MNH_MEM_GET( z0rvt, imicro )
CALL MNH_MEM_GET( z0rct, imicro )
CALL MNH_MEM_GET( z0rrt, imicro )
CALL MNH_MEM_GET( z0rit, imicro )
CALL MNH_MEM_GET( z0rst, imicro )
CALL MNH_MEM_GET( z0rgt, imicro )
CALL MNH_MEM_GET( z0rht, imicro )
CALL MNH_MEM_GET( za_th, imicro )
CALL MNH_MEM_GET( za_rv, imicro )
CALL MNH_MEM_GET( za_rc, imicro )
CALL MNH_MEM_GET( za_rr, imicro )
CALL MNH_MEM_GET( za_ri, imicro )
CALL MNH_MEM_GET( za_rs, imicro )
CALL MNH_MEM_GET( za_rg, imicro )
CALL MNH_MEM_GET( za_rh, imicro )
CALL MNH_MEM_GET( zb_th, imicro )
CALL MNH_MEM_GET( zb_rv, imicro )
CALL MNH_MEM_GET( zb_rc, imicro )
CALL MNH_MEM_GET( zb_rr, imicro )
CALL MNH_MEM_GET( zb_ri, imicro )
CALL MNH_MEM_GET( zb_rs, imicro )
CALL MNH_MEM_GET( zb_rg, imicro )
CALL MNH_MEM_GET( zb_rh, imicro )
CALL MNH_MEM_GET( zext_rv, imicro )
CALL MNH_MEM_GET( zext_rc, imicro )
CALL MNH_MEM_GET( zext_rr, imicro )
CALL MNH_MEM_GET( zext_ri, imicro )
CALL MNH_MEM_GET( zext_rs, imicro )
CALL MNH_MEM_GET( zext_rg, imicro )
CALL MNH_MEM_GET( zext_rh, imicro )
CALL MNH_MEM_GET( zext_th, imicro )
CALL MNH_MEM_GET( iiter, imicro )
CALL MNH_MEM_GET( ztime, imicro )
CALL MNH_MEM_GET( zmaxtime, imicro )
CALL MNH_MEM_GET( ztime_threshold, imicro )
CALL MNH_MEM_GET( ztime_lastcall, imicro )
CALL MNH_MEM_GET( zw1d, imicro )
CALL MNH_MEM_GET( zcompute, imicro )
CALL MNH_MEM_GET( gdnotmicro, size( odmicro, 1 ), size( odmicro, 2 ), size( odmicro, 3 ) )
CALL MNH_MEM_GET( zrs_tend, imicro, 8 )
CALL MNH_MEM_GET( zrg_tend, imicro, 8 )
CALL MNH_MEM_GET( zrh_tend, imicro, 10 )
CALL MNH_MEM_GET( zssi, imicro )
CALL MNH_MEM_GET( zw_rvs, jiu, jju, jku )
CALL MNH_MEM_GET( zw_rcs, jiu, jju, jku )
CALL MNH_MEM_GET( zw_rrs, jiu, jju, jku )
CALL MNH_MEM_GET( zw_ris, jiu, jju, jku )
CALL MNH_MEM_GET( zw_rss, jiu, jju, jku )
CALL MNH_MEM_GET( zw_rgs, jiu, jju, jku )
CALL MNH_MEM_GET( zw_rhs, jiu, jju, jku )
CALL MNH_MEM_GET( zw_ths, jiu, jju, jku )
!$acc data present( I1, I2, I3, &
!$acc & ZW, ZT, ZZ_RVHENI_MR, ZZ_RVHENI, ZZ_LVFACT, ZZ_LSFACT, ZLSFACT3D, ZINPRI, &
!$acc & ZRVT, ZRCT, ZRRT, ZRIT, ZRST, ZRGT, ZRHT, ZCIT, ZTHT, ZRHODREF, ZZT, ZPRES, ZEXN, &
!$acc & ZLSFACT, ZLVFACT, &
!$acc & ZHLC_HCF3D, ZHLC_LCF3D, ZHLC_HRC3D, ZHLC_LRC3D, ZHLI_HCF3D, ZHLI_LCF3D, ZHLI_HRI3D, ZHLI_LRI3D, &
!$acc & ZSIGMA_RC, ZCF, ZHLC_HCF, ZHLC_LCF, ZHLC_HRC, ZHLC_LRC, ZHLI_HCF, ZHLI_LCF, ZHLI_HRI, ZHLI_LRI, &
!$acc & ZRVHENI_MR, ZRCHONI, ZRRHONG_MR, ZRVDEPS, ZRIAGGS, ZRIAUTS, ZRVDEPG, ZRCAUTR, ZRCACCR, ZRREVAV, ZRIMLTC_MR, &
!$acc & ZRCBERI, ZRHMLTR, ZRSMLTG, ZRCMLTSR, ZRRACCSS, ZRRACCSG, ZRSACCRG, &
!$acc & ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRSRIMCG_MR, &
!$acc & ZRICFRRG, ZRRCFRIG, ZRICFRR, ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG, ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, &
!$acc & ZRWETGH, ZRWETGH_MR, ZRGMLTR, ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH, ZRRWETH, &
!$acc & ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH, ZRGDRYH, ZRDRYHG, &
!$acc & ZTOT_RVHENI, ZTOT_RCHONI, ZTOT_RRHONG, ZTOT_RVDEPS, ZTOT_RIAGGS, ZTOT_RIAUTS, ZTOT_RVDEPG, ZTOT_RCAUTR, &
!$acc & ZTOT_RCACCR, ZTOT_RREVAV, ZTOT_RCRIMSS, ZTOT_RCRIMSG, ZTOT_RSRIMCG, ZTOT_RIMLTC, ZTOT_RCBERI, ZTOT_RHMLTR, &
!$acc & ZTOT_RSMLTG, ZTOT_RCMLTSR, ZTOT_RRACCSS, ZTOT_RRACCSG, ZTOT_RSACCRG, ZTOT_RICFRRG, ZTOT_RRCFRIG, &
!$acc & ZTOT_RICFRR, ZTOT_RCWETG, ZTOT_RIWETG, ZTOT_RRWETG, ZTOT_RSWETG, ZTOT_RCDRYG, ZTOT_RIDRYG, ZTOT_RRDRYG, &
!$acc & ZTOT_RSDRYG, ZTOT_RWETGH, ZTOT_RGMLTR, ZTOT_RCWETH, ZTOT_RIWETH, ZTOT_RSWETH, ZTOT_RGWETH, ZTOT_RRWETH, &
!$acc & ZTOT_RCDRYH, ZTOT_RIDRYH, ZTOT_RSDRYH, ZTOT_RRDRYH, ZTOT_RGDRYH, ZTOT_RDRYHG, &
!$acc & Z0RVT, Z0RCT, Z0RRT, Z0RIT, Z0RST, Z0RGT, Z0RHT, &
!$acc & ZA_TH, ZA_RV, ZA_RC, ZA_RR, ZA_RI, ZA_RS, ZA_RG, ZA_RH, &
!$acc & ZB_TH, ZB_RV, ZB_RC, ZB_RR, ZB_RI, ZB_RS, ZB_RG, ZB_RH, &
!$acc & ZEXT_RV, ZEXT_RC, ZEXT_RR, ZEXT_RI, ZEXT_RS, ZEXT_RG, ZEXT_RH, ZEXT_TH, &
!$acc & IITER, ZTIME, ZMAXTIME, ZTIME_THRESHOLD, ZTIME_LASTCALL, ZW1D, ZCOMPUTE, GDNOTMICRO, &
!$acc & ZRS_TEND, ZRG_TEND, ZRH_TEND, ZSSI, ZW_RVS, ZW_RCS, ZW_RRS, ZW_RIS, ZW_RSS, ZW_RGS, ZW_RHS, ZW_THS )
#endif
!-------------------------------------------------------------------------------
if ( lbu_enable ) then
if ( lbudget_th ) call Budget_store_init( tbudgets(NBUDGET_TH), 'HENU', pths(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rv ) call Budget_store_init( tbudgets(NBUDGET_RV), 'HENU', prvs(:, :, :) * prhodj(:, :, :) )
end if
!-------------------------------------------------------------------------------
!
!* 1. COMPUTE THE LOOP BOUNDS
! -----------------------
!
CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
#ifdef MNH_COMPILER_CCE
!$acc kernels present( ZRS_TEND, ZRG_TEND, ZRH_TEND, ZRCHONI, ZRVDEPS, ZRIAGGS, ZRIAUTS, ZRVDEPG, ZRCAUTR, ZRCACCR, ZRREVAV, &
!$acc & ZRSMLTG, ZRCMLTSR, ZRICFRRG, ZRRCFRIG, ZRICFRR, ZRGMLTR, ZRHMLTR, ZRCBERI, ZT, ZZ_LSFACT, ZZ_LVFACT )
#else
!$acc kernels
#endif
IKB=KKA+JPVEXT*KKL
IKE=KKU-JPVEXT*KKL
IKTB=1+JPVEXT
IKTE=KKT-JPVEXT
!
ZINV_TSTEP=1./PTSTEP
GEXT_TEND=.TRUE.
!
!Not necessary (done in ICE4_TENDENCIES when GSOFT=.FALSE.)
!but useful for calls to MPPDB_CHECK
ZRS_TEND(:,:) = 0.
ZRG_TEND(:,:) = 0.
ZRH_TEND(:,:) = 0.
ZRCHONI(:) = 0.
ZRVDEPS(:) = 0.
ZRIAGGS(:) = 0.
ZRIAUTS(:) = 0.
ZRVDEPG(:) = 0.
ZRCAUTR(:) = 0.
ZRCACCR(:) = 0.
ZRREVAV(:) = 0.
ZRSMLTG(:) = 0.
ZRCMLTSR(:)= 0.
ZRICFRRG(:) = 0.
ZRRCFRIG(:) = 0.
ZRICFRR(:) = 0.
ZRGMLTR(:) = 0.
ZRHMLTR(:) = 0.
ZRCBERI(:) = 0.
!
! LSFACT and LVFACT without exner
IF(KRR==7) THEN
!$acc loop independent collapse(3)
DO JK = 1, KKT
DO JJ = 1, KJT
DO JI = 1, KIT
ZT(JI,JJ,JK) = PTHT(JI,JJ,JK) * PEXN(JI,JJ,JK)
ZZ_LSFACT(JI,JJ,JK)=(XLSTT+(XCPV-XCI)*(ZT(JI,JJ,JK)-XTT)) &
/( XCPD + XCPV*PRVT(JI,JJ,JK) + XCL*(PRCT(JI,JJ,JK)+PRRT(JI,JJ,JK)) &
+ XCI*(PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK)+PRHT(JI,JJ,JK)))
ZZ_LVFACT(JI,JJ,JK)=(XLVTT+(XCPV-XCL)*(ZT(JI,JJ,JK)-XTT)) &
/( XCPD + XCPV*PRVT(JI,JJ,JK) + XCL*(PRCT(JI,JJ,JK)+PRRT(JI,JJ,JK)) &
+ XCI*(PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK)+PRHT(JI,JJ,JK)))
ENDDO
ENDDO
ENDDO
ELSE
!$acc loop independent collapse(3)
DO JK = 1, KKT
DO JJ = 1, KJT
DO JI = 1, KIT
ZT(JI,JJ,JK) = PTHT(JI,JJ,JK) * PEXN(JI,JJ,JK)
ZZ_LSFACT(JI,JJ,JK)=(XLSTT+(XCPV-XCI)*(ZT(JI,JJ,JK)-XTT)) &
/( XCPD + XCPV*PRVT(JI,JJ,JK) + XCL*(PRCT(JI,JJ,JK)+PRRT(JI,JJ,JK)) &
+ XCI*(PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK)))
ZZ_LVFACT(JI,JJ,JK)=(XLVTT+(XCPV-XCL)*(ZT(JI,JJ,JK)-XTT)) &
/( XCPD + XCPV*PRVT(JI,JJ,JK) + XCL*(PRCT(JI,JJ,JK)+PRRT(JI,JJ,JK)) &
+ XCI*(PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK)))
ENDDO
ENDDO
ENDDO
ENDIF
!$acc end kernels
!
!-------------------------------------------------------------------------------
!
!* 2. COMPUTE THE SEDIMENTATION (RS) SOURCE
! -------------------------------------
!
IF(.NOT. LSEDIM_AFTER) THEN
!
!* 2.1 sedimentation
!
if ( lbudget_rc .and. osedic ) call Budget_store_init( tbudgets(NBUDGET_RC), 'SEDI', prcs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_init( tbudgets(NBUDGET_RR), 'SEDI', prrs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_init( tbudgets(NBUDGET_RI), 'SEDI', pris(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_init( tbudgets(NBUDGET_RS), 'SEDI', prss(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_init( tbudgets(NBUDGET_RG), 'SEDI', prgs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rh ) call Budget_store_init( tbudgets(NBUDGET_RH), 'SEDI', prhs(:, :, :) * prhodj(:, :, :) )
!Init only if not osedic (to prevent crash with double init)
!Remark: the 2 source terms SEDI and DEPO could be mixed and stored in the same source term (SEDI)
! if osedic=T and ldeposc=T (a warning is printed in ini_budget in that case)
if ( lbudget_rc .and. ldeposc .and. .not.osedic ) &
call Budget_store_init( tbudgets(NBUDGET_RC), 'DEPO', prcs(:, :, :) * prhodj(:, :, :) )
IF(HSEDIM=='STAT') THEN
#ifdef MNH_OPENACC
CALL PRINT_MSG(NVERB_FATAL,'GEN','RAIN_ICE_RED','OpenACC: HSEDIM=STAT not yet implemented')
#endif
!SR: It *seems* that we must have two separate calls for ifort
IF(KRR==7) THEN
CALL ICE4_SEDIMENTATION_STAT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
&PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, &
&PRHODREF, PPABST, PTHT, PRHODJ, &
&PRCS, PRCS*PTSTEP, PRRS, PRRS*PTSTEP, PRIS, PRIS*PTSTEP,&
&PRSS, PRSS*PTSTEP, PRGS, PRGS*PTSTEP,&
&PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, &
&PSEA=PSEA, PTOWN=PTOWN, &
&PINPRH=PINPRH, PRHT=PRHS*PTSTEP, PRHS=PRHS, PFPR=PFPR)
ELSE
CALL ICE4_SEDIMENTATION_STAT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
&PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, &
&PRHODREF, PPABST, PTHT, PRHODJ, &
&PRCS, PRCS*PTSTEP, PRRS, PRRS*PTSTEP, PRIS, PRIS*PTSTEP,&
&PRSS, PRSS*PTSTEP, PRGS, PRGS*PTSTEP,&
&PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, &
&PSEA=PSEA, PTOWN=PTOWN, &
&PFPR=PFPR)
ENDIF
!$acc kernels
PINPRS(:,:) = PINPRS(:,:) + ZINPRI(:,:)
!$acc end kernels
!No negativity correction here as we apply sedimentation on PR.S*PTSTEP variables
ELSEIF(HSEDIM=='SPLI') THEN
!SR: It *seems* that we must have two separate calls for ifort
IF(KRR==7) THEN
CALL ICE4_SEDIMENTATION_SPLIT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
&PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, &
&PRHODREF, PPABST, PTHT, PRHODJ, &
&PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,&
&PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, &
&PSEA=PSEA, PTOWN=PTOWN, &
&PINPRH=PINPRH, PRHT=PRHT, PRHS=PRHS, PFPR=PFPR)
ELSE
CALL ICE4_SEDIMENTATION_SPLIT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
&PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, &
&PRHODREF, PPABST, PTHT, PRHODJ, &
&PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,&
&PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, &
&PSEA=PSEA, PTOWN=PTOWN, &
&PFPR=PFPR)
ENDIF
!$acc kernels
PINPRS(:,:) = PINPRS(:,:) + ZINPRI(:,:)
!$acc end kernels
!We correct negativities with conservation
!SPLI algorith uses a time-splitting. Inside the loop a temporary m.r. is used.
! It is initialized with the m.r. at T and is modified by two tendencies:
! sedimentation tendency and an external tendency which represents all other
! processes (mainly advection and microphysical processes). If both tendencies
! are negative, sedimentation can remove a specie at a given sub-timestep. From
! this point sedimentation stops for the remaining sub-timesteps but the other tendency
! will be still active and will lead to negative values.
! We could prevent the algorithm to not consume too much a specie, instead we apply
! a correction here.
CALL CORRECT_NEGATIVITIES(KIT, KJT, KKT, KRR, PRVS, PRCS, PRRS, &
&PRIS, PRSS, PRGS, &
&PTHS, ZZ_LVFACT, ZZ_LSFACT, PRHS)
ELSEIF(HSEDIM=='NONE') THEN
ELSE
call Print_msg( NVERB_FATAL, 'GEN', 'RAIN_ICE_RED', 'no sedimentation scheme for HSEDIM='//HSEDIM )
END IF
!
!* 2.2 budget storage
!
if ( lbudget_rc .and. osedic ) call Budget_store_end( tbudgets(NBUDGET_RC), 'SEDI', prcs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_end( tbudgets(NBUDGET_RR), 'SEDI', prrs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_end( tbudgets(NBUDGET_RI), 'SEDI', pris(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_end( tbudgets(NBUDGET_RS), 'SEDI', prss(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_end( tbudgets(NBUDGET_RG), 'SEDI', prgs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rh ) call Budget_store_end( tbudgets(NBUDGET_RH), 'SEDI', prhs(:, :, :) * prhodj(:, :, :) )
!If osedic=T and ldeposc=T, DEPO is in fact mixed and stored with the SEDI source term
!(a warning is printed in ini_budget in that case)
if ( lbudget_rc .and. ldeposc .and. .not.osedic) &
call Budget_store_end( tbudgets(NBUDGET_RC), 'DEPO', prcs(:, :, :) * prhodj(:, :, :) )
ENDIF
!
!-------------------------------------------------------------------------------
!
!* 3. PACKING
! --------
! optimization by looking for locations where
! the microphysical fields are larger than a minimal value only !!!
!
#ifndef MNH_OPENACC
IMICRO=COUNTJV(ODMICRO(:,:,:), I1(:), I2(:), I3(:))
#else
CALL COUNTJV_DEVICE(ODMICRO(:,:,:),I1(:),I2(:),I3(:),IMICRO)
#endif
!Packing
GTEST=.false.
IF(HSUBG_AUCV_RC=='PDF ' .AND. CSUBG_PR_PDF=='SIGM') GTEST=.true.
#ifdef MNH_COMPILER_CCE
!$acc kernels present( ZSIGMA_RC, ZRHT, ZEXT_RH, &
!acc & ZTOT_RVHENI, ZTOT_RCHONI, ZTOT_RRHONG, ZTOT_RVDEPS, ZTOT_RIAGGS, ZTOT_RIAUTS, &
!acc & ZTOT_RVDEPG, ZTOT_RCAUTR, ZTOT_RCACCR, ZTOT_RREVAV, ZTOT_RCRIMSS, ZTOT_RCRIMSG, &
!acc & ZTOT_RSRIMCG, ZTOT_RIMLTC, ZTOT_RCBERI, ZTOT_RHMLTR, ZTOT_RSMLTG, ZTOT_RCMLTSR, &
!acc & ZTOT_RRACCSS, ZTOT_RRACCSG, ZTOT_RSACCRG, ZTOT_RICFRRG, ZTOT_RRCFRIG, &
!acc & ZTOT_RICFRR, ZTOT_RCWETG, ZTOT_RIWETG, ZTOT_RRWETG, ZTOT_RSWETG, ZTOT_RCDRYG, &
!acc & ZTOT_RIDRYG, ZTOT_RRDRYG, ZTOT_RSDRYG, ZTOT_RWETGH, ZTOT_RGMLTR, ZTOT_RCWETH, &
!acc & ZTOT_RIWETH, ZTOT_RSWETH, ZTOT_RGWETH, ZTOT_RRWETH, ZTOT_RCDRYH, ZTOT_RIDRYH, &
!acc & ZTOT_RSDRYH, ZTOT_RRDRYH, ZTOT_RGDRYH, ZTOT_RDRYHG )
#else
!$acc kernels
#endif
IF(IMICRO>0) THEN
!$acc loop independent
DO JL=1, IMICRO
ZRVT(JL) = PRVT(I1(JL),I2(JL),I3(JL))
ZRCT(JL) = PRCT(I1(JL),I2(JL),I3(JL))
ZRRT(JL) = PRRT(I1(JL),I2(JL),I3(JL))
ZRIT(JL) = PRIT(I1(JL),I2(JL),I3(JL))
ZRST(JL) = PRST(I1(JL),I2(JL),I3(JL))
ZRGT(JL) = PRGT(I1(JL),I2(JL),I3(JL))
ZCIT(JL) = PCIT(I1(JL),I2(JL),I3(JL))
ZCF(JL) = PCLDFR(I1(JL),I2(JL),I3(JL))
ZRHODREF(JL) = PRHODREF(I1(JL),I2(JL),I3(JL))
ZTHT(JL) = PTHT(I1(JL),I2(JL),I3(JL))
ZPRES(JL) = PPABST(I1(JL),I2(JL),I3(JL))
ZEXN(JL) = PEXN(I1(JL),I2(JL),I3(JL))
ZHLC_HCF(JL) = PHLC_HCF(I1(JL),I2(JL),I3(JL))
ZHLC_HRC(JL) = PHLC_HRC(I1(JL),I2(JL),I3(JL))
ZHLC_LRC(JL) = ZRCT(JL) - ZHLC_HRC(JL)
ZHLI_HCF(JL) = PHLI_HCF(I1(JL),I2(JL),I3(JL))
ZHLI_HRI(JL) = PHLI_HRI(I1(JL),I2(JL),I3(JL))
ZHLI_LRI(JL) = ZRIT(JL) - ZHLI_HRI(JL)
IF(ZRCT(JL)>0.) THEN
ZHLC_LCF(JL) = ZCF(JL)- ZHLC_HCF(JL)
ELSE
ZHLC_LCF(JL)=0.
ENDIF
IF(ZRIT(JL)>0.) THEN
ZHLI_LCF(JL) = ZCF(JL)- ZHLI_HCF(JL)
ELSE
ZHLI_LCF(JL)=0.
ENDIF
ENDDO
IF(GEXT_TEND) THEN
!$acc loop independent
DO JL=1, IMICRO
ZEXT_RV(JL) = PRVS(I1(JL),I2(JL),I3(JL)) - ZRVT(JL)*ZINV_TSTEP
ZEXT_RC(JL) = PRCS(I1(JL),I2(JL),I3(JL)) - ZRCT(JL)*ZINV_TSTEP
ZEXT_RR(JL) = PRRS(I1(JL),I2(JL),I3(JL)) - ZRRT(JL)*ZINV_TSTEP
ZEXT_RI(JL) = PRIS(I1(JL),I2(JL),I3(JL)) - ZRIT(JL)*ZINV_TSTEP
ZEXT_RS(JL) = PRSS(I1(JL),I2(JL),I3(JL)) - ZRST(JL)*ZINV_TSTEP
ZEXT_RG(JL) = PRGS(I1(JL),I2(JL),I3(JL)) - ZRGT(JL)*ZINV_TSTEP
ZEXT_TH(JL) = PTHS(I1(JL),I2(JL),I3(JL)) - ZTHT(JL)*ZINV_TSTEP
!The th tendency is not related to a mixing ratio change, there is no exn/exnref issue here
ENDDO
ENDIF
!IF(HSUBG_AUCV_RC=='PDF ' .AND. CSUBG_PR_PDF=='SIGM') THEN
IF (GTEST) THEN
!$acc loop independent
DO JL=1, IMICRO
ZSIGMA_RC(JL) = PSIGS(I1(JL),I2(JL),I3(JL))*2.
ENDDO
ELSE !useful when doing calls to MPPDB_CHECK
ZSIGMA_RC(:) = XUNDEF
ENDIF
IF(KRR==7) THEN
!$acc loop independent
DO JL=1, IMICRO
ZRHT(JL) = PRHT(I1(JL),I2(JL),I3(JL))
ENDDO
IF(GEXT_TEND) THEN
!$acc loop independent
DO JL=1, IMICRO
ZEXT_RH(JL) = PRHS(I1(JL),I2(JL),I3(JL)) - ZRHT(JL)*ZINV_TSTEP
ENDDO
ENDIF
ELSE
ZRHT(:)=0.
IF(GEXT_TEND) ZEXT_RH(:)=0.
ENDIF
IF(LBU_ENABLE) THEN
ZTOT_RVHENI(:)=0.
ZTOT_RCHONI(:)=0.
ZTOT_RRHONG(:)=0.
ZTOT_RVDEPS(:)=0.
ZTOT_RIAGGS(:)=0.
ZTOT_RIAUTS(:)=0.
ZTOT_RVDEPG(:)=0.
ZTOT_RCAUTR(:)=0.
ZTOT_RCACCR(:)=0.
ZTOT_RREVAV(:)=0.
ZTOT_RCRIMSS(:)=0.
ZTOT_RCRIMSG(:)=0.
ZTOT_RSRIMCG(:)=0.
ZTOT_RIMLTC(:)=0.
ZTOT_RCBERI(:)=0.
ZTOT_RHMLTR(:)=0.
ZTOT_RSMLTG(:)=0.
ZTOT_RCMLTSR(:)=0.
ZTOT_RRACCSS(:)=0.
ZTOT_RRACCSG(:)=0.
ZTOT_RSACCRG(:)=0.
ZTOT_RICFRRG(:)=0.
ZTOT_RRCFRIG(:)=0.
ZTOT_RICFRR(:)=0.
ZTOT_RCWETG(:)=0.
ZTOT_RIWETG(:)=0.
ZTOT_RRWETG(:)=0.
ZTOT_RSWETG(:)=0.
ZTOT_RCDRYG(:)=0.
ZTOT_RIDRYG(:)=0.
ZTOT_RRDRYG(:)=0.
ZTOT_RSDRYG(:)=0.
ZTOT_RWETGH(:)=0.
ZTOT_RGMLTR(:)=0.
ZTOT_RCWETH(:)=0.
ZTOT_RIWETH(:)=0.
ZTOT_RSWETH(:)=0.
ZTOT_RGWETH(:)=0.
ZTOT_RRWETH(:)=0.
ZTOT_RCDRYH(:)=0.
ZTOT_RIDRYH(:)=0.
ZTOT_RSDRYH(:)=0.
ZTOT_RRDRYH(:)=0.
ZTOT_RGDRYH(:)=0.
ZTOT_RDRYHG(:)=0.
ENDIF
ENDIF
!$acc end kernels
!-------------------------------------------------------------------------------
!
!* 4. LOOP
! ----
!
!Maximum number of iterations
!We only count real iterations (those for which we *compute* tendencies)
!acc kernels
INB_ITER_MAX=NMAXITER
IF(XTSTEP_TS/=0.)THEN
INB_ITER_MAX=MAX(1, INT(PTSTEP/XTSTEP_TS)) !At least the number of iterations needed for the time-splitting
ZTSTEP=PTSTEP/INB_ITER_MAX
INB_ITER_MAX=MAX(NMAXITER, INB_ITER_MAX) !For the case XMRSTEP/=0. at the same time
ENDIF
!acc end kernels
!$acc kernels present_cr( IITER, ZTIME )
IITER(:)=0
ZTIME(:)=0. ! Current integration time (all points may have a different integration time)
!$acc end kernels
!$acc update self(ZTIME)
DO WHILE(ANY(ZTIME(:)<PTSTEP)) ! Loop to *really* compute tendencies
IF(XMRSTEP/=0.) THEN
!$acc kernels
! In this case we need to remember the mixing ratios used to compute the tendencies
! because when mixing ratio has evolved more than a threshold, we must re-compute tendecies
Z0RVT(:)=ZRVT(:)
Z0RCT(:)=ZRCT(:)
Z0RRT(:)=ZRRT(:)
Z0RIT(:)=ZRIT(:)
Z0RST(:)=ZRST(:)
Z0RGT(:)=ZRGT(:)
Z0RHT(:)=ZRHT(:)
!$acc end kernels
ENDIF
IF(XTSTEP_TS/=0.) THEN
!$acc kernels
! In this case we need to remember the time when tendencies were computed
! because when time has evolved more than a limit, we must re-compute tendecies
ZTIME_LASTCALL(:)=ZTIME(:)
!$acc end kernels
ENDIF
!$acc kernels
ZCOMPUTE(:)=MAX(0., -SIGN(1., ZTIME(:)-PTSTEP)) ! Compuation (1.) only for points for which integration time has not reached the timestep
GSOFT=.FALSE. ! We *really* compute the tendencies
!$acc loop independent
DO JL = 1, IMICRO
IITER(JL) = IITER(JL) + INT( ZCOMPUTE(JL) )
END DO
!$acc end kernels
!$acc update self(ZCOMPUTE)
DO WHILE(SUM(ZCOMPUTE(:))>0.) ! Loop to adjust tendencies when we cross the 0°C or when a specie disappears
!$acc kernels
IF(KRR==7) THEN
!$acc loop independent
DO JL=1, IMICRO
ZZT(JL) = ZTHT(JL) * ZEXN(JL)
ZLSFACT(JL)=(XLSTT+(XCPV-XCI)*(ZZT(JL)-XTT)) &
&/( (XCPD + XCPV*ZRVT(JL) + XCL*(ZRCT(JL)+ZRRT(JL)) &
&+ XCI*(ZRIT(JL)+ZRST(JL)+ZRGT(JL)+ZRHT(JL)))*ZEXN(JL) )
ZLVFACT(JL)=(XLVTT+(XCPV-XCL)*(ZZT(JL)-XTT)) &
&/( (XCPD + XCPV*ZRVT(JL) + XCL*(ZRCT(JL)+ZRRT(JL)) &
&+ XCI*(ZRIT(JL)+ZRST(JL)+ZRGT(JL)+ZRHT(JL)))*ZEXN(JL) )
ENDDO
ELSE
!$acc loop independent
DO JL=1, IMICRO
ZZT(JL) = ZTHT(JL) * ZEXN(JL)
ZLSFACT(JL)=(XLSTT+(XCPV-XCI)*(ZZT(JL)-XTT)) &
&/( (XCPD + XCPV*ZRVT(JL) + XCL*(ZRCT(JL)+ZRRT(JL)) &
&+ XCI*(ZRIT(JL)+ZRST(JL)+ZRGT(JL)))*ZEXN(JL) )
ZLVFACT(JL)=(XLVTT+(XCPV-XCL)*(ZZT(JL)-XTT)) &
&/( (XCPD + XCPV*ZRVT(JL) + XCL*(ZRCT(JL)+ZRRT(JL)) &
&+ XCI*(ZRIT(JL)+ZRST(JL)+ZRGT(JL)))*ZEXN(JL) )
ENDDO
ENDIF
!$acc end kernels
!
!*** 4.1 Tendecies computation
!
! Tendencies are *really* computed when GSOFT==.FALSE. and only adjusted otherwise
CALL ICE4_TENDENCIES(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, KKT, KKL, &
&KRR, GSOFT, ZCOMPUTE, &
&OWARM, CSUBG_RC_RR_ACCR, CSUBG_RR_EVAP, &
&HSUBG_AUCV_RC, HSUBG_AUCV_RI, CSUBG_PR_PDF, &
&ZEXN, ZRHODREF, ZLVFACT, ZLSFACT, I1, I2, I3, &
&ZPRES, ZCF, ZSIGMA_RC,&
&ZCIT, &
&ZZT, ZTHT, &
&ZRVT, ZRCT, ZRRT, ZRIT, ZRST, ZRGT, ZRHT, &
&ZRVHENI_MR, ZRRHONG_MR, ZRIMLTC_MR, ZRSRIMCG_MR, &
&ZRCHONI, ZRVDEPS, ZRIAGGS, ZRIAUTS, ZRVDEPG, &
&ZRCAUTR, ZRCACCR, ZRREVAV, &
&ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRRACCSS, ZRRACCSG, ZRSACCRG, ZRSMLTG, ZRCMLTSR, &
&ZRICFRRG, ZRRCFRIG, ZRICFRR, ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG, &
&ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, ZRWETGH, ZRWETGH_MR, ZRGMLTR, &
&ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH, ZRRWETH, &
&ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH, ZRGDRYH, ZRDRYHG, ZRHMLTR, &
&ZRCBERI, &
&ZRS_TEND, ZRG_TEND, ZRH_TEND, ZSSI, &
&ZA_TH, ZA_RV, ZA_RC, ZA_RR, ZA_RI, ZA_RS, ZA_RG, ZA_RH, &
&ZB_TH, ZB_RV, ZB_RC, ZB_RR, ZB_RI, ZB_RS, ZB_RG, ZB_RH, &
&ZHLC_HCF, ZHLC_LCF, ZHLC_HRC, ZHLC_LRC, &
&ZHLI_HCF, ZHLI_LCF, ZHLI_HRI, ZHLI_LRI, PRAINFR)
! External tendencies
!$acc kernels
IF(GEXT_TEND) THEN
!$acc loop independent
DO JL=1, IMICRO
ZA_TH(JL) = ZA_TH(JL) + ZEXT_TH(JL)
ZA_RV(JL) = ZA_RV(JL) + ZEXT_RV(JL)
ZA_RC(JL) = ZA_RC(JL) + ZEXT_RC(JL)
ZA_RR(JL) = ZA_RR(JL) + ZEXT_RR(JL)
ZA_RI(JL) = ZA_RI(JL) + ZEXT_RI(JL)
ZA_RS(JL) = ZA_RS(JL) + ZEXT_RS(JL)
ZA_RG(JL) = ZA_RG(JL) + ZEXT_RG(JL)
ZA_RH(JL) = ZA_RH(JL) + ZEXT_RH(JL)
ENDDO
ENDIF
!
!*** 4.2 Integration time
!
! If we can, we will use these tendencies until the end of the timestep
ZMAXTIME(:)=ZCOMPUTE(:) * (PTSTEP-ZTIME(:)) ! Remaining time until the end of the timestep
!We need to adjust tendencies when temperature reaches 0
IF(LFEEDBACKT) THEN
!$acc loop independent
DO JL=1, IMICRO
!Is ZB_TH enough to change temperature sign?
ZW1D(JL)=(ZTHT(JL) - XTT/ZEXN(JL)) * (ZTHT(JL) + ZB_TH(JL) - XTT/ZEXN(JL))
ZMAXTIME(JL)=ZMAXTIME(JL)*MAX(0., SIGN(1., ZW1D(JL)))
!Can ZA_TH make temperature change of sign?
ZW1D(JL)=MAX(0., -SIGN(1., 1.E-20 - ABS(ZA_TH(JL)))) ! WHERE(ABS(ZA_TH(:))>1.E-20)
ZTIME_THRESHOLD(JL)=(1. - ZW1D(JL))*(-1.) + &
ZW1D(JL) * &
(XTT/ZEXN(JL) - ZB_TH(JL) - ZTHT(JL))/ &
SIGN(MAX(ABS(ZA_TH(JL)), 1.E-20), ZA_TH(JL))
ZW1D(JL)=MAX(0., -SIGN(1., 1.E-20 - ZTIME_THRESHOLD(JL))) ! WHERE(ZTIME_THRESHOLD(:)>1.E-20)
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
ZW1D(JL) * MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL))
ENDDO
ENDIF
!We need to adjust tendencies when a specy disappears
!When a species is missing, only the external tendencies can be negative (and we must keep track of it)
!$acc loop independent
DO JL=1, IMICRO
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RV(JL)+1.E-20)) * & ! WHERE(ZA_RV(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(1)-ZRVT(JL))) ! WHERE(ZRVT(:)>XRTMIN(1))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RV(JL)+ZRVT(JL))/MIN(ZA_RV(JL), -1.E-20))
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RC(JL)+1.E-20)) * & ! WHERE(ZA_RC(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(2)-ZRCT(JL))) ! WHERE(ZRCT(:)>XRTMIN(2))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RC(JL)+ZRCT(JL))/MIN(ZA_RC(JL), -1.E-20))
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RR(JL)+1.E-20)) * & ! WHERE(ZA_RR(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(3)-ZRRT(JL))) ! WHERE(ZRRT(:)>XRTMIN(3))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RR(JL)+ZRRT(JL))/MIN(ZA_RR(JL), -1.E-20))
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RI(JL)+1.E-20)) * & ! WHERE(ZI_RV(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(4)-ZRIT(JL))) ! WHERE(ZRIT(:)>XRTMIN(4))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RI(JL)+ZRIT(JL))/MIN(ZA_RI(JL), -1.E-20))
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RS(JL)+1.E-20)) * & ! WHERE(ZA_RS(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(5)-ZRST(JL))) ! WHERE(ZRST(:)>XRTMIN(5))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RS(JL)+ZRST(JL))/MIN(ZA_RS(JL), -1.E-20))
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RG(JL)+1.E-20)) * & ! WHERE(ZA_RG(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(6)-ZRGT(JL))) ! WHERE(ZRGT(:)>XRTMIN(6))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RG(JL)+ZRGT(JL))/MIN(ZA_RG(JL), -1.E-20))
ENDDO
IF(KRR==7) THEN
!$acc loop independent
DO JL=1, IMICRO
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RH(JL)+1.E-20)) * & ! WHERE(ZA_RH(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(7)-ZRHT(JL))) ! WHERE(ZRHT(:)>XRTMIN(7))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RH(JL)+ZRHT(JL))/MIN(ZA_RH(JL), -1.E-20))
ENDDO
ENDIF
!We stop when the end of the timestep is reached
ZCOMPUTE(:)=ZCOMPUTE(:) * MAX(0., -SIGN(1., ZTIME(:)+ZMAXTIME(:)-PTSTEP))
!We must recompute tendencies when the end of the sub-timestep is reached
IF(XTSTEP_TS/=0.) THEN
!$acc loop independent
DO JL=1, IMICRO
ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX)
&MAX(0., -SIGN(1., ZTIME_LASTCALL(JL)+ZTSTEP-ZTIME(JL)-ZMAXTIME(JL))) ! WHERE(ZTIME(:)+ZMAXTIME(:)>ZTIME_LASTCALL(:)+ZTSTEP)
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * (ZTIME_LASTCALL(JL)-ZTIME(JL)+ZTSTEP)
ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL))
ENDDO
ENDIF
!We must recompute tendencies when the maximum allowed change is reached
!When a specy is missing, only the external tendencies can be active and we do not want to recompute
!the microphysical tendencies when external tendencies are negative (results won't change because specy was already missing)
IF(XMRSTEP/=0.) THEN
!$acc loop independent
DO JL=1, IMICRO
ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX)
&MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RV(JL)))) ! WHERE(ABS(ZA_RV(:))>1.E-20)
ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + &
&ZW1D(JL)*(SIGN(1., ZA_RV(JL))*XMRSTEP+Z0RVT(JL)-ZRVT(JL)-ZB_RV(JL))/ &
&SIGN(MAX(ABS(ZA_RV(JL)), 1.E-20), ZA_RV(JL))
ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.)
&MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:))
&MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRVT(JL))) + & !WHERE(ZRVT(:)>XRTMIN(6)) .OR.
&MAX(0., -SIGN(1., -ZA_RV(JL)))) !WHERE(ZA_RV(:)>0.)
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL))
ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL))
ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX)
&MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RC(JL)))) ! WHERE(ABS(ZA_RC(:))>1.E-20)
ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + &
&ZW1D(JL)*(SIGN(1., ZA_RC(JL))*XMRSTEP+Z0RCT(JL)-ZRCT(JL)-ZB_RC(JL))/ &
&SIGN(MAX(ABS(ZA_RC(JL)), 1.E-20), ZA_RC(JL))
ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.)
&MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:))
&MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRCT(JL))) + & !WHERE(ZRCT(:)>XRTMIN(6)) .OR.
&MAX(0., -SIGN(1., -ZA_RC(JL)))) !WHERE(ZA_RC(:)>0.)
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL))
ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL))
ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX)
&MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RR(JL)))) ! WHERE(ABS(ZA_RR(:))>1.E-20)
ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + &
&ZW1D(JL)*(SIGN(1., ZA_RR(JL))*XMRSTEP+Z0RRT(JL)-ZRRT(JL)-ZB_RR(JL))/ &
&SIGN(MAX(ABS(ZA_RR(JL)), 1.E-20), ZA_RR(JL))
ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.)
&MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:))
&MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRRT(JL))) + & !WHERE(ZRRT(:)>XRTMIN(6)) .OR.
&MAX(0., -SIGN(1., -ZA_RR(JL)))) !WHERE(ZA_RR(:)>0.)
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL))
ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL))
ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX)
&MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RI(JL)))) ! WHERE(ABS(ZA_RI(:))>1.E-20)
ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + &
&ZW1D(JL)*(SIGN(1., ZA_RI(JL))*XMRSTEP+Z0RIT(JL)-ZRIT(JL)-ZB_RI(JL))/ &
&SIGN(MAX(ABS(ZA_RI(JL)), 1.E-20), ZA_RI(JL))
ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.)
&MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:))
&MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRIT(JL))) + & !WHERE(ZRIT(:)>XRTMIN(6)) .OR.
&MAX(0., -SIGN(1., -ZA_RI(JL)))) !WHERE(ZA_RI(:)>0.)
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL))
ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL))
ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX)
&MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RS(JL)))) ! WHERE(ABS(ZA_RS(:))>1.E-20)
ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + &
&ZW1D(JL)*(SIGN(1., ZA_RS(JL))*XMRSTEP+Z0RST(JL)-ZRST(JL)-ZB_RS(JL))/ &
&SIGN(MAX(ABS(ZA_RS(JL)), 1.E-20), ZA_RS(JL))
ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.)
&MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:))
&MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRST(JL))) + & !WHERE(ZRST(:)>XRTMIN(6)) .OR.
&MAX(0., -SIGN(1., -ZA_RS(JL)))) !WHERE(ZA_RS(:)>0.)
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL))
ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL))
ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX)
&MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RG(JL)))) ! WHERE(ABS(ZA_RG(:))>1.E-20)
ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + &
&ZW1D(JL)*(SIGN(1., ZA_RG(JL))*XMRSTEP+Z0RGT(JL)-ZRGT(JL)-ZB_RG(JL))/ &
&SIGN(MAX(ABS(ZA_RG(JL)), 1.E-20), ZA_RG(JL))
ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.)
&MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:))
&MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRGT(JL))) + & !WHERE(ZRGT(:)>XRTMIN(6)) .OR.
&MAX(0., -SIGN(1., -ZA_RG(JL)))) !WHERE(ZA_RG(:)>0.)
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL))
ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL))
ENDDO
IF(KRR==7) THEN
!$acc loop independent
DO JL=1, IMICRO
ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX)
&MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RH(JL)))) ! WHERE(ABS(ZA_RH(:))>1.E-20)
ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + &
&ZW1D(JL)*(SIGN(1., ZA_RH(JL))*XMRSTEP+Z0RHT(JL)-ZRHT(JL)-ZB_RH(JL))/ &
&SIGN(MAX(ABS(ZA_RH(JL)), 1.E-20), ZA_RH(JL))
ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.)
&MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:))
&MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRHT(JL))) + & !WHERE(ZRHT(:)>XRTMIN(6)) .OR.
&MAX(0., -SIGN(1., -ZA_RH(JL)))) !WHERE(ZA_RH(:)>0.)
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL))
ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL))
ENDDO
ENDIF
!$acc loop independent
DO JL=1, IMICRO
ZW1D(JL)=MAX(ABS(ZB_RV(JL)), ABS(ZB_RC(JL)), ABS(ZB_RR(JL)), ABS(ZB_RI(JL)), &
&ABS(ZB_RS(JL)), ABS(ZB_RG(JL)), ABS(ZB_RH(JL)))
ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & !WHERE(IITER(:)<INB_ITER_MAX)
&MAX(0., -SIGN(1., XMRSTEP-ZW1D(JL))) !WHERE(ZW1D(:)>XMRSTEP)
ZMAXTIME(JL)=(1.-ZW1D(JL))*ZMAXTIME(JL)
ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL))
ENDDO
ENDIF
!
!*** 4.3 New values of variables for next iteration
!
!$acc loop independent
DO JL=1, IMICRO
ZTHT(JL)=ZTHT(JL)+ZA_TH(JL)*ZMAXTIME(JL)+ZB_TH(JL)
ZRVT(JL)=ZRVT(JL)+ZA_RV(JL)*ZMAXTIME(JL)+ZB_RV(JL)
ZRCT(JL)=ZRCT(JL)+ZA_RC(JL)*ZMAXTIME(JL)+ZB_RC(JL)
ZRRT(JL)=ZRRT(JL)+ZA_RR(JL)*ZMAXTIME(JL)+ZB_RR(JL)
ZRIT(JL)=ZRIT(JL)+ZA_RI(JL)*ZMAXTIME(JL)+ZB_RI(JL)
ZRST(JL)=ZRST(JL)+ZA_RS(JL)*ZMAXTIME(JL)+ZB_RS(JL)
ZRGT(JL)=ZRGT(JL)+ZA_RG(JL)*ZMAXTIME(JL)+ZB_RG(JL)
ZCIT(JL)=ZCIT(JL) * MAX(0., -SIGN(1., -ZRIT(JL))) ! WHERE(ZRIT(:)==0.) ZCIT(:) = 0.
ENDDO
IF(KRR==7) ZRHT(:)=ZRHT(:)+ZA_RH(:)*ZMAXTIME(:)+ZB_RH(:)
!
!*** 4.4 Mixing ratio change due to each process
!
IF(LBU_ENABLE) THEN
ZTOT_RVHENI(:)= ZTOT_RVHENI(:) +ZRVHENI_MR(:)
ZTOT_RCHONI(:)= ZTOT_RCHONI(:) +ZRCHONI(:) *ZMAXTIME(:)
ZTOT_RRHONG(:)= ZTOT_RRHONG(:) +ZRRHONG_MR(:)
ZTOT_RVDEPS(:)= ZTOT_RVDEPS(:) +ZRVDEPS(:) *ZMAXTIME(:)
ZTOT_RIAGGS(:)= ZTOT_RIAGGS(:) +ZRIAGGS(:) *ZMAXTIME(:)
ZTOT_RIAUTS(:)= ZTOT_RIAUTS(:) +ZRIAUTS(:) *ZMAXTIME(:)
ZTOT_RVDEPG(:)= ZTOT_RVDEPG(:) +ZRVDEPG(:) *ZMAXTIME(:)
ZTOT_RCAUTR(:)= ZTOT_RCAUTR(:) +ZRCAUTR(:) *ZMAXTIME(:)
ZTOT_RCACCR(:)= ZTOT_RCACCR(:) +ZRCACCR(:) *ZMAXTIME(:)
ZTOT_RREVAV(:)= ZTOT_RREVAV(:) +ZRREVAV(:) *ZMAXTIME(:)
ZTOT_RCRIMSS(:)=ZTOT_RCRIMSS(:)+ZRCRIMSS(:)*ZMAXTIME(:)
ZTOT_RCRIMSG(:)=ZTOT_RCRIMSG(:)+ZRCRIMSG(:)*ZMAXTIME(:)
ZTOT_RSRIMCG(:)=ZTOT_RSRIMCG(:)+ZRSRIMCG(:)*ZMAXTIME(:)+ZRSRIMCG_MR(:)
ZTOT_RRACCSS(:)=ZTOT_RRACCSS(:)+ZRRACCSS(:)*ZMAXTIME(:)
ZTOT_RRACCSG(:)=ZTOT_RRACCSG(:)+ZRRACCSG(:)*ZMAXTIME(:)
ZTOT_RSACCRG(:)=ZTOT_RSACCRG(:)+ZRSACCRG(:)*ZMAXTIME(:)
ZTOT_RSMLTG(:)= ZTOT_RSMLTG(:) +ZRSMLTG(:) *ZMAXTIME(:)
ZTOT_RCMLTSR(:)=ZTOT_RCMLTSR(:)+ZRCMLTSR(:) *ZMAXTIME(:)
ZTOT_RICFRRG(:)=ZTOT_RICFRRG(:)+ZRICFRRG(:)*ZMAXTIME(:)
ZTOT_RRCFRIG(:)=ZTOT_RRCFRIG(:)+ZRRCFRIG(:)*ZMAXTIME(:)
ZTOT_RICFRR(:)= ZTOT_RICFRR(:) +ZRICFRR(:) *ZMAXTIME(:)
ZTOT_RCWETG(:)= ZTOT_RCWETG(:) +ZRCWETG(:) *ZMAXTIME(:)
ZTOT_RIWETG(:)= ZTOT_RIWETG(:) +ZRIWETG(:) *ZMAXTIME(:)
ZTOT_RRWETG(:)= ZTOT_RRWETG(:) +ZRRWETG(:) *ZMAXTIME(:)
ZTOT_RSWETG(:)= ZTOT_RSWETG(:) +ZRSWETG(:) *ZMAXTIME(:)
ZTOT_RWETGH(:)= ZTOT_RWETGH(:) +ZRWETGH(:) *ZMAXTIME(:)+ZRWETGH_MR(:)
ZTOT_RCDRYG(:)= ZTOT_RCDRYG(:) +ZRCDRYG(:) *ZMAXTIME(:)
ZTOT_RIDRYG(:)= ZTOT_RIDRYG(:) +ZRIDRYG(:) *ZMAXTIME(:)
ZTOT_RRDRYG(:)= ZTOT_RRDRYG(:) +ZRRDRYG(:) *ZMAXTIME(:)
ZTOT_RSDRYG(:)= ZTOT_RSDRYG(:) +ZRSDRYG(:) *ZMAXTIME(:)
ZTOT_RGMLTR(:)= ZTOT_RGMLTR(:) +ZRGMLTR(:) *ZMAXTIME(:)
ZTOT_RCWETH(:)= ZTOT_RCWETH(:) +ZRCWETH(:) *ZMAXTIME(:)
ZTOT_RIWETH(:)= ZTOT_RIWETH(:) +ZRIWETH(:) *ZMAXTIME(:)
ZTOT_RSWETH(:)= ZTOT_RSWETH(:) +ZRSWETH(:) *ZMAXTIME(:)
ZTOT_RGWETH(:)= ZTOT_RGWETH(:) +ZRGWETH(:) *ZMAXTIME(:)
ZTOT_RRWETH(:)= ZTOT_RRWETH(:) +ZRRWETH(:) *ZMAXTIME(:)
ZTOT_RCDRYH(:)= ZTOT_RCDRYH(:) +ZRCDRYH(:) *ZMAXTIME(:)
ZTOT_RIDRYH(:)= ZTOT_RIDRYH(:) +ZRIDRYH(:) *ZMAXTIME(:)
ZTOT_RSDRYH(:)= ZTOT_RSDRYH(:) +ZRSDRYH(:) *ZMAXTIME(:)
ZTOT_RRDRYH(:)= ZTOT_RRDRYH(:) +ZRRDRYH(:) *ZMAXTIME(:)
ZTOT_RGDRYH(:)= ZTOT_RGDRYH(:) +ZRGDRYH(:) *ZMAXTIME(:)
ZTOT_RDRYHG(:)= ZTOT_RDRYHG(:) +ZRDRYHG(:) *ZMAXTIME(:)
ZTOT_RHMLTR(:)= ZTOT_RHMLTR(:) +ZRHMLTR(:) *ZMAXTIME(:)
ZTOT_RIMLTC(:)= ZTOT_RIMLTC(:) +ZRIMLTC_MR(:)
ZTOT_RCBERI(:)= ZTOT_RCBERI(:) +ZRCBERI(:) *ZMAXTIME(:)
ENDIF
!
!*** 4.5 Next loop
!
GSOFT=.TRUE. ! We try to adjust tendencies (inner while loop)
ZTIME(:)=ZTIME(:)+ZMAXTIME(:)
!$acc end kernels
!$acc update self(ZCOMPUTE)
ENDDO
!$acc update self(ZTIME)
ENDDO
!-------------------------------------------------------------------------------
!
!* 5. UNPACKING DIAGNOSTICS
! ---------------------
!
! !$acc kernels
IF(IMICRO>0) THEN
!$acc kernels present_cr( ZHLC_HCF3D, ZHLC_LCF3D, ZHLC_HRC3D, ZHLC_LRC3D, ZHLI_HCF3D, ZHLI_LCF3D, ZHLI_HRI3D, ZHLI_LRI3D )
ZHLC_HCF3D(:,:,:)=0.
ZHLC_LCF3D(:,:,:)=0.
ZHLC_HRC3D(:,:,:)=0.
ZHLC_LRC3D(:,:,:)=0.
ZHLI_HCF3D(:,:,:)=0.
ZHLI_LCF3D(:,:,:)=0.
ZHLI_HRI3D(:,:,:)=0.
ZHLI_LRI3D(:,:,:)=0.
!$acc loop independent
DO JL=1,IMICRO
ZHLC_HCF3D(I1(JL), I2(JL), I3(JL)) = ZHLC_HCF(JL)
ZHLC_LCF3D(I1(JL), I2(JL), I3(JL)) = ZHLC_LCF(JL)
ZHLC_HRC3D(I1(JL), I2(JL), I3(JL)) = ZHLC_HRC(JL)
ZHLC_LRC3D(I1(JL), I2(JL), I3(JL)) = ZHLC_LRC(JL)
ZHLI_LCF3D(I1(JL), I2(JL), I3(JL)) = ZHLI_LCF(JL)
ZHLI_HCF3D(I1(JL), I2(JL), I3(JL)) = ZHLI_HCF(JL)
ZHLI_HRI3D(I1(JL), I2(JL), I3(JL)) = ZHLI_HRI(JL)
ZHLI_LRI3D(I1(JL), I2(JL), I3(JL)) = ZHLI_LRI(JL)
PCIT(I1(JL), I2(JL), I3(JL)) = ZCIT(JL)
END DO
!$acc end kernels
ELSE
!$acc kernels present_cr( PRAINFR, ZHLC_HCF3D, ZHLC_LCF3D, ZHLC_HRC3D, ZHLC_LRC3D, ZHLI_HCF3D, ZHLI_LCF3D, ZHLI_HRI3D, ZHLI_LRI3D, PCIT )
PRAINFR(:,:,:)=0.
ZHLC_HCF3D(:,:,:)=0.
ZHLC_LCF3D(:,:,:)=0.
ZHLC_HRC3D(:,:,:)=0.
ZHLC_LRC3D(:,:,:)=0.
ZHLI_HCF3D(:,:,:)=0.
ZHLI_LCF3D(:,:,:)=0.
ZHLI_HRI3D(:,:,:)=0.
ZHLI_LRI3D(:,:,:)=0.
PCIT(:,:,:) = 0.
!$acc end kernels
ENDIF
!$acc kernels present_cr( PEVAP3D )
IF(OWARM) THEN
PEVAP3D(:,:,:) = 0.
!$acc loop independent
DO JL=1,IMICRO
PEVAP3D(I1(JL), I2(JL), I3(JL)) = ZRREVAV(JL)
END DO
ENDIF
!
!
!* 6. COMPUTES THE SLOW COLD PROCESS SOURCES OUTSIDE OF ODMICRO POINTS
! ----------------------------------------------------------------
!
GDNOTMICRO = .NOT.ODMICRO
ZLSFACT3D(:,:,:) = ZZ_LSFACT(:,:,:)/PEXN(:,:,:)
!$acc end kernels
CALL ICE4_NUCLEATION_WRAPPER(KIT, KJT, KKT, GDNOTMICRO, &
PTHT, PPABST, PRHODREF, PEXN, ZLSFACT3D, ZT, &
PRVT, &
PCIT, ZZ_RVHENI_MR)
!$acc kernels
!$acc loop independent collapse(3)
DO JK = 1, KKT
DO JJ = 1, KJT
DO JI = 1, KIT
ZZ_LSFACT(JI,JJ,JK)=ZZ_LSFACT(JI,JJ,JK)/PEXNREF(JI,JJ,JK)
ZZ_LVFACT(JI,JJ,JK)=ZZ_LVFACT(JI,JJ,JK)/PEXNREF(JI,JJ,JK)
ZZ_RVHENI(JI,JJ,JK) = MIN(PRVS(JI,JJ,JK), ZZ_RVHENI_MR(JI,JJ,JK)/PTSTEP)
PRIS(JI,JJ,JK)=PRIS(JI,JJ,JK)+ZZ_RVHENI(JI,JJ,JK)
PRVS(JI,JJ,JK)=PRVS(JI,JJ,JK)-ZZ_RVHENI(JI,JJ,JK)
PTHS(JI,JJ,JK)=PTHS(JI,JJ,JK) + ZZ_RVHENI(JI,JJ,JK)*ZZ_LSFACT(JI,JJ,JK)
ENDDO
ENDDO
ENDDO
!$acc end kernels
!$acc update self(PRIS,PRVS,PTHS)
!
if ( lbu_enable ) then
!Note: there is an other contribution for HENU later
if ( lbudget_th ) call Budget_store_end( tbudgets(NBUDGET_TH), 'HENU', pths(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rv ) call Budget_store_end( tbudgets(NBUDGET_RV), 'HENU', prvs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'HENU', zz_rvheni(:, :, :) * prhodj(:, :, :) )
end if
!-------------------------------------------------------------------------------
!
!* 7. UNPACKING AND TOTAL TENDENCIES
! ------------------------------
!
!
!*** 7.1 total tendencies limited by available species
!
! ZW_??S variables will contain the new S variables values
!
IF(GEXT_TEND) THEN
!$acc kernels
!Z..T variables contain the exeternal tendency, we substract it
!$acc loop independent
DO CONCURRENT ( JL = 1 : IMICRO )
ZRVT(JL) = ZRVT(JL) - ZEXT_RV(JL) * PTSTEP
ZRCT(JL) = ZRCT(JL) - ZEXT_RC(JL) * PTSTEP
ZRRT(JL) = ZRRT(JL) - ZEXT_RR(JL) * PTSTEP
ZRIT(JL) = ZRIT(JL) - ZEXT_RI(JL) * PTSTEP
ZRST(JL) = ZRST(JL) - ZEXT_RS(JL) * PTSTEP
ZRGT(JL) = ZRGT(JL) - ZEXT_RG(JL) * PTSTEP
ZTHT(JL) = ZTHT(JL) - ZEXT_TH(JL) * PTSTEP
END DO
!$acc end kernels
IF (KRR==7) THEN
!$acc kernels
!$acc loop independent
DO CONCURRENT ( JL = 1 : IMICRO )
ZRHT(JL) = ZRHT(JL) - ZEXT_RH(JL) * PTSTEP
END DO
!$acc end kernels
END IF
END IF
!$acc update self(ZRVT)
!Tendencies computed from difference between old state and new state (can be negative)
#ifndef MNH_OPENACC
ZW_RVS(:,:,:) = 0.
ZW_RCS(:,:,:) = 0.
ZW_RRS(:,:,:) = 0.
ZW_RIS(:,:,:) = 0.
ZW_RSS(:,:,:) = 0.
ZW_RGS(:,:,:) = 0.
ZW_RHS(:,:,:) = 0.
DO JL=1,IMICRO
ZW_RVS(I1(JL), I2(JL), I3(JL)) = ( ZRVT(JL) - PRVT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP
ZW_RCS(I1(JL), I2(JL), I3(JL)) = ( ZRCT(JL) - PRCT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP
ZW_RRS(I1(JL), I2(JL), I3(JL)) = ( ZRRT(JL) - PRRT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP
ZW_RIS(I1(JL), I2(JL), I3(JL)) = ( ZRIT(JL) - PRIT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP
ZW_RSS(I1(JL), I2(JL), I3(JL)) = ( ZRST(JL) - PRST(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP
ZW_RGS(I1(JL), I2(JL), I3(JL)) = ( ZRGT(JL) - PRGT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP
END DO
IF(KRR==7) THEN
DO JL=1,IMICRO
ZW_RHS(I1(JL), I2(JL), I3(JL)) = ( ZRHT(JL) - PRHT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP
END DO
END IF
#else
IF (KRR==7) THEN
!PW: probably not working (see ELSE branch)
CALL PRINT_MSG(NVERB_WARNING,'GEN','RAIN_ICE_RED','OpenACC: KRR=7 not yet tested')
!PW:BUG: CCE 13.0.0 crash if kernels region is enabled here
!acc kernels
IDX = 0
DO JK=1,SIZE(ODMICRO,3)
DO JJ=1,SIZE(ODMICRO,2)
DO JI=1,SIZE(ODMICRO,1)
IF (ODMICRO(JI,JJ,JK)) THEN
IDX = IDX+1
ZW_RVS(JI,JJ,JK) = ( ZRVT(IDX) - PRVT(JI,JJ,JK) ) * ZINV_TSTEP
ZW_RCS(JI,JJ,JK) = ( ZRCT(IDX) - PRCT(JI,JJ,JK) ) * ZINV_TSTEP
ZW_RRS(JI,JJ,JK) = ( ZRRT(IDX) - PRRT(JI,JJ,JK) ) * ZINV_TSTEP
ZW_RIS(JI,JJ,JK) = ( ZRIT(IDX) - PRIT(JI,JJ,JK) ) * ZINV_TSTEP
ZW_RSS(JI,JJ,JK) = ( ZRST(IDX) - PRST(JI,JJ,JK) ) * ZINV_TSTEP
ZW_RGS(JI,JJ,JK) = ( ZRGT(IDX) - PRGT(JI,JJ,JK) ) * ZINV_TSTEP
ZW_RHS(JI,JJ,JK) = ( ZRHT(IDX) - PRHT(JI,JJ,JK) ) * ZINV_TSTEP
ELSE
ZW_RVS(JI,JJ,JK) = 0.
ZW_RCS(JI,JJ,JK) = 0.
ZW_RRS(JI,JJ,JK) = 0.
ZW_RIS(JI,JJ,JK) = 0.
ZW_RSS(JI,JJ,JK) = 0.
ZW_RGS(JI,JJ,JK) = 0.
ZW_RHS(JI,JJ,JK) = 0.
END IF
END DO
END DO
END DO
!acc end kernels
ELSE
!PW: BUG: this should work...
! !$acc kernels
! ZW_RVS(JI,JJ,JK) = 0.
! ZW_RCS(JI,JJ,JK) = 0.
! ZW_RRS(JI,JJ,JK) = 0.
! ZW_RIS(JI,JJ,JK) = 0.
! ZW_RSS(JI,JJ,JK) = 0.
! ZW_RGS(JI,JJ,JK) = 0.
! !$acc loop independent
! DO JL=1,IMICRO
! ZW_RVS(I1(JL), I2(JL), I3(JL)) = ( ZRVT(JL) - PRVT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP
! ZW_RCS(I1(JL), I2(JL), I3(JL)) = ( ZRCT(JL) - PRCT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP
! ZW_RRS(I1(JL), I2(JL), I3(JL)) = ( ZRRT(JL) - PRRT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP
! ZW_RIS(I1(JL), I2(JL), I3(JL)) = ( ZRIT(JL) - PRIT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP
! ZW_RSS(I1(JL), I2(JL), I3(JL)) = ( ZRST(JL) - PRST(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP
! ZW_RGS(I1(JL), I2(JL), I3(JL)) = ( ZRGT(JL) - PRGT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP
! END DO
! !$acc end kernels
#if 0
!$acc kernels
IDX = 0
DO JK=1,SIZE(ODMICRO,3)
DO JJ=1,SIZE(ODMICRO,2)
DO JI=1,SIZE(ODMICRO,1)
IF (ODMICRO(JI,JJ,JK)) THEN
IDX = IDX+1
ZW_RVS(JI,JJ,JK) = ( ZRVT(IDX) - PRVT(JI,JJ,JK) ) * ZINV_TSTEP
ZW_RCS(JI,JJ,JK) = ( ZRCT(IDX) - PRCT(JI,JJ,JK) ) * ZINV_TSTEP
ZW_RRS(JI,JJ,JK) = ( ZRRT(IDX) - PRRT(JI,JJ,JK) ) * ZINV_TSTEP
ZW_RIS(JI,JJ,JK) = ( ZRIT(IDX) - PRIT(JI,JJ,JK) ) * ZINV_TSTEP
ZW_RSS(JI,JJ,JK) = ( ZRST(IDX) - PRST(JI,JJ,JK) ) * ZINV_TSTEP
ZW_RGS(JI,JJ,JK) = ( ZRGT(IDX) - PRGT(JI,JJ,JK) ) * ZINV_TSTEP
ELSE
ZW_RVS(JI,JJ,JK) = 0.
ZW_RCS(JI,JJ,JK) = 0.
ZW_RRS(JI,JJ,JK) = 0.
ZW_RIS(JI,JJ,JK) = 0.
ZW_RSS(JI,JJ,JK) = 0.
ZW_RGS(JI,JJ,JK) = 0.
END IF
END DO
END DO
END DO
!
ZW_RHS(:,:,:) = 0.
!$acc end kernels
#else
!$acc kernels
ZW_RVS(:,:,:) = PRVT(:,:,:)
ZW_RCS(:,:,:) = PRCT(:,:,:)
ZW_RRS(:,:,:) = PRRT(:,:,:)
ZW_RIS(:,:,:) = PRIT(:,:,:)
ZW_RSS(:,:,:) = PRST(:,:,:)
ZW_RGS(:,:,:) = PRGT(:,:,:)
!$acc loop independent
DO JL=1,IMICRO
ZW_RVS(I1(JL), I2(JL), I3(JL)) = ZRVT(JL)
ZW_RCS(I1(JL), I2(JL), I3(JL)) = ZRCT(JL)
ZW_RRS(I1(JL), I2(JL), I3(JL)) = ZRRT(JL)
ZW_RIS(I1(JL), I2(JL), I3(JL)) = ZRIT(JL)
ZW_RSS(I1(JL), I2(JL), I3(JL)) = ZRST(JL)
ZW_RGS(I1(JL), I2(JL), I3(JL)) = ZRGT(JL)
END DO
!$acc end kernels
!
!$acc kernels
ZW_RVS(:,:,:) = ( ZW_RVS(:,:,:) - PRVT(:,:,:) ) * ZINV_TSTEP
ZW_RCS(:,:,:) = ( ZW_RCS(:,:,:) - PRCT(:,:,:) ) * ZINV_TSTEP
ZW_RRS(:,:,:) = ( ZW_RRS(:,:,:) - PRRT(:,:,:) ) * ZINV_TSTEP
ZW_RIS(:,:,:) = ( ZW_RIS(:,:,:) - PRIT(:,:,:) ) * ZINV_TSTEP
ZW_RSS(:,:,:) = ( ZW_RSS(:,:,:) - PRST(:,:,:) ) * ZINV_TSTEP
ZW_RGS(:,:,:) = ( ZW_RGS(:,:,:) - PRGT(:,:,:) ) * ZINV_TSTEP
!
ZW_RHS(:,:,:) = 0.
!$acc end kernels
#endif
ENDIF
#endif
!$acc kernels
ZW_THS(:,:,:) = (ZW_RCS(:,:,:)+ZW_RRS(:,:,:) )*ZZ_LVFACT(:,:,:) + &
& (ZW_RIS(:,:,:)+ZW_RSS(:,:,:)+ZW_RGS(:,:,:)+ZW_RHS(:,:,:))*ZZ_LSFACT(:,:,:)
!We apply these tendencies to the S variables
ZW_RVS(:,:,:) = PRVS(:,:,:) + ZW_RVS(:,:,:)
ZW_RCS(:,:,:) = PRCS(:,:,:) + ZW_RCS(:,:,:)
ZW_RRS(:,:,:) = PRRS(:,:,:) + ZW_RRS(:,:,:)
ZW_RIS(:,:,:) = PRIS(:,:,:) + ZW_RIS(:,:,:)
ZW_RSS(:,:,:) = PRSS(:,:,:) + ZW_RSS(:,:,:)
ZW_RGS(:,:,:) = PRGS(:,:,:) + ZW_RGS(:,:,:)
IF(KRR==7) ZW_RHS(:,:,:) = PRHS(:,:,:) + ZW_RHS(:,:,:)
ZW_THS(:,:,:) = PTHS(:,:,:) + ZW_THS(:,:,:)
!$acc end kernels
if ( lbu_enable ) then
if ( lbudget_th ) call Budget_store_init( tbudgets(NBUDGET_TH), 'CORR', zw_ths(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rv ) call Budget_store_init( tbudgets(NBUDGET_RV), 'CORR', zw_rvs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rc ) call Budget_store_init( tbudgets(NBUDGET_RC), 'CORR', zw_rcs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_init( tbudgets(NBUDGET_RR), 'CORR', zw_rrs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_init( tbudgets(NBUDGET_RI), 'CORR', zw_ris(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_init( tbudgets(NBUDGET_RS), 'CORR', zw_rss(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_init( tbudgets(NBUDGET_RG), 'CORR', zw_rgs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rh ) call Budget_store_init( tbudgets(NBUDGET_RH), 'CORR', zw_rhs(:, :, :) * prhodj(:, :, :) )
end if
!We correct negativities with conservation
CALL CORRECT_NEGATIVITIES(KIT, KJT, KKT, KRR, ZW_RVS, ZW_RCS, ZW_RRS, &
&ZW_RIS, ZW_RSS, ZW_RGS, &
&ZW_THS, ZZ_LVFACT, ZZ_LSFACT, ZW_RHS)
if ( lbu_enable ) then
if ( lbudget_th ) call Budget_store_end( tbudgets(NBUDGET_TH), 'CORR', zw_ths(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rv ) call Budget_store_end( tbudgets(NBUDGET_RV), 'CORR', zw_rvs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rc ) call Budget_store_end( tbudgets(NBUDGET_RC), 'CORR', zw_rcs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_end( tbudgets(NBUDGET_RR), 'CORR', zw_rrs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_end( tbudgets(NBUDGET_RI), 'CORR', zw_ris(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_end( tbudgets(NBUDGET_RS), 'CORR', zw_rss(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_end( tbudgets(NBUDGET_RG), 'CORR', zw_rgs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rh ) call Budget_store_end( tbudgets(NBUDGET_RH), 'CORR', zw_rhs(:, :, :) * prhodj(:, :, :) )
end if
!
!*** 7.2 LBU_ENABLE case
!
IF(LBU_ENABLE) THEN
#ifdef MNH_OPENACC
CALL PRINT_MSG(NVERB_FATAL,'GEN','RAIN_ICE_RED','OpenACC: LBU_ENABLE=.true. not yet implemented')
#endif
!$acc update self(ZINV_TSTEP)
allocate( zw1( size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) )
allocate( zw2( size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) )
allocate( zw3( size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) )
allocate( zw4( size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) )
if ( krr == 7 ) then
allocate( zw5( size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) )
allocate( zw6( size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) )
end if
if ( lbudget_th ) then
allocate( zz_diff( size( zz_lsfact, 1 ), size( zz_lsfact, 2 ), size( zz_lsfact, 3 ) ) )
zz_diff(:, :, :) = zz_lsfact(:, :, :) - zz_lvfact(:, :, :)
end if
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RVHENI(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'HENU', zw(:, :, :) * zz_lsfact(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rv ) call Budget_store_add( tbudgets(NBUDGET_RV), 'HENU', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'HENU', zw(:, :, :) * prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RCHONI(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'HON', zw(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'HON', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'HON', zw(:, :, :) * prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RRHONG(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'SFR', zw(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'SFR', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'SFR', zw(:, :, :) * prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RVDEPS(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'DEPS', zw(:, :, :) * zz_lsfact(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rv ) call Budget_store_add( tbudgets(NBUDGET_RV), 'DEPS', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'DEPS', zw(:, :, :) * prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RIAGGS(JL) * ZINV_TSTEP
END DO
if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'AGGS', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'AGGS', zw(:, :, :) * prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RIAUTS(JL) * ZINV_TSTEP
END DO
if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'AUTS', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'AUTS', zw(:, :, :) * prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RVDEPG(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'DEPG', zw(:, :, :) * zz_lsfact(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rv ) call Budget_store_add( tbudgets(NBUDGET_RV), 'DEPG', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'DEPG', zw(:, :, :) * prhodj(:, :, :) )
IF(OWARM) THEN
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RCAUTR(JL) * ZINV_TSTEP
END DO
if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'AUTO', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'AUTO', zw(:, :, :) * prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RCACCR(JL) * ZINV_TSTEP
END DO
if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'ACCR', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'ACCR', zw(:, :, :) * prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RREVAV(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'REVA', -zw(:, :, :) * zz_lvfact(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rv ) call Budget_store_add( tbudgets(NBUDGET_RV), 'REVA', zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'REVA', -zw(:, :, :) * prhodj(:, :, :) )
ENDIF
ZW1(:,:,:) = 0.
DO JL=1,IMICRO
ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RCRIMSS(JL) * ZINV_TSTEP
END DO
ZW2(:,:,:) = 0.
DO JL=1,IMICRO
ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RCRIMSG(JL) * ZINV_TSTEP
END DO
ZW3(:,:,:) = 0.
DO JL=1,IMICRO
ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RSRIMCG(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) &
call Budget_store_add( tbudgets(NBUDGET_TH), 'RIM', ( zw1(:, :, :) + zw2(:, :, :) ) * zz_diff(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'RIM', ( -zw1(:, :, :) - zw2(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'RIM', ( zw1(:, :, :) - zw3(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'RIM', ( zw2(:, :, :) + zw3(:, :, :) ) * prhodj(:, :, :) )
ZW1(:,:,:) = 0.
DO JL=1,IMICRO
ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RRACCSS(JL) * ZINV_TSTEP
END DO
ZW2(:,:,:) = 0.
DO JL=1,IMICRO
ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RRACCSG(JL) * ZINV_TSTEP
END DO
ZW3(:,:,:) = 0.
DO JL=1,IMICRO
ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RSACCRG(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) &
call Budget_store_add( tbudgets(NBUDGET_TH), 'ACC', ( zw1(:, :, :) + zw2(:, :, :) ) * zz_diff(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'ACC', ( -zw1(:, :, :) - zw2(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'ACC', ( zw1(:, :, :) - zw3(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'ACC', ( zw2(:, :, :) + zw3(:, :, :) ) * prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RSMLTG(JL) * ZINV_TSTEP
END DO
if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'CMEL', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'CMEL', zw(:, :, :) * prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RCMLTSR(JL) * ZINV_TSTEP
END DO
if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'CMEL', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'CMEL', zw(:, :, :) * prhodj(:, :, :) )
ZW1(:,:,:) = 0.
DO JL=1,IMICRO
ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RICFRRG(JL) * ZINV_TSTEP
END DO
ZW2(:,:,:) = 0.
DO JL=1,IMICRO
ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RRCFRIG(JL) * ZINV_TSTEP
END DO
ZW3(:,:,:) = 0.
DO JL=1,IMICRO
ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RICFRR(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) &
call Budget_store_add( tbudgets(NBUDGET_TH), 'CFRZ', zw2(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'CFRZ', ( -zw2(:, :, :) + zw3(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'CFRZ', ( -zw1(:, :, :) - zw3(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'CFRZ', ( zw1(:, :, :) + zw2(:, :, :) ) * prhodj(:, :, :) )
ZW1(:,:,:) = 0.
DO JL=1,IMICRO
ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RCWETG(JL) * ZINV_TSTEP
END DO
ZW2(:,:,:) = 0.
DO JL=1,IMICRO
ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RRWETG(JL) * ZINV_TSTEP
END DO
ZW3(:,:,:) = 0.
DO JL=1,IMICRO
ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RIWETG(JL) * ZINV_TSTEP
END DO
ZW4(:,:,:) = 0.
DO JL=1,IMICRO
ZW4(I1(JL), I2(JL), I3(JL)) = ZTOT_RSWETG(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) &
call Budget_store_add( tbudgets(NBUDGET_TH), 'WETG', ( zw1(:, :, :) + zw2(:, :, :) ) * zz_diff(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'WETG', -zw1(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'WETG', -zw2(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'WETG', -zw3(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'WETG', -zw4(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'WETG', ( zw1(:, :, :) + zw2(:, :, :) &
+ zw3(:, :, :) + zw4(:, :, :) ) &
* prhodj(:, :, :) )
IF(KRR==7) THEN
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RWETGH(JL) * ZINV_TSTEP
END DO
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'GHCV', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rh ) call Budget_store_add( tbudgets(NBUDGET_RH), 'GHCV', zw(:, :, :) * prhodj(:, :, :) )
END IF
ZW1(:,:,:) = 0.
DO JL=1,IMICRO
ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RCDRYG(JL) * ZINV_TSTEP
END DO
ZW2(:,:,:) = 0.
DO JL=1,IMICRO
ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RRDRYG(JL) * ZINV_TSTEP
END DO
ZW3(:,:,:) = 0.
DO JL=1,IMICRO
ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RIDRYG(JL) * ZINV_TSTEP
END DO
ZW4(:,:,:) = 0.
DO JL=1,IMICRO
ZW4(I1(JL), I2(JL), I3(JL)) = ZTOT_RSDRYG(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) &
call Budget_store_add( tbudgets(NBUDGET_TH), 'DRYG', ( zw1(:, :, :) + zw2(:, :, :) ) * zz_diff(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'DRYG', -zw1(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'DRYG', -zw2(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'DRYG', -zw3(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'DRYG', -zw4(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'DRYG', ( zw1(:, :, :) + zw2(:, :, :) &
+ zw3(:, :, :) + zw4(:, :, :) ) &
* prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RGMLTR(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'GMLT', -zw(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'GMLT', zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'GMLT', -zw(:, :, :) * prhodj(:, :, :) )
IF(KRR==7) THEN
ZW1(:,:,:) = 0.
DO JL=1,IMICRO
ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RCWETH(JL) * ZINV_TSTEP
END DO
ZW2(:,:,:) = 0.
DO JL=1,IMICRO
ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RRWETH(JL) * ZINV_TSTEP
END DO
ZW3(:,:,:) = 0.
DO JL=1,IMICRO
ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RIWETH(JL) * ZINV_TSTEP
END DO
ZW4(:,:,:) = 0.
DO JL=1,IMICRO
ZW4(I1(JL), I2(JL), I3(JL)) = ZTOT_RSWETH(JL) * ZINV_TSTEP
END DO
ZW5(:,:,:) = 0.
DO JL=1,IMICRO
ZW5(I1(JL), I2(JL), I3(JL)) = ZTOT_RGWETH(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) &
call Budget_store_add( tbudgets(NBUDGET_TH), 'WETH', ( zw1(:, :, :) + zw2(:, :, :) ) * zz_diff(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'WETH', -zw1(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'WETH', -zw2(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'WETH', -zw3(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'WETH', -zw4(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'WETH', -zw5(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rh ) call Budget_store_add( tbudgets(NBUDGET_RH), 'WETH', ( zw1(:, :, :) + zw2(:, :, :) + zw3(:, :, :) &
+ zw4(:, :, :) + zw5(:, :, : ) ) &
* prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RGWETH(JL) * ZINV_TSTEP
END DO
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'HGCV', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rh ) call Budget_store_add( tbudgets(NBUDGET_RH), 'HGCV', zw(:, :, :) * prhodj(:, :, :) )
ZW1(:,:,:) = 0.
DO JL=1,IMICRO
ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RCDRYH(JL) * ZINV_TSTEP
END DO
ZW2(:,:,:) = 0.
DO JL=1,IMICRO
ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RRDRYH(JL) * ZINV_TSTEP
END DO
ZW3(:,:,:) = 0.
DO JL=1,IMICRO
ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RIDRYH(JL) * ZINV_TSTEP
END DO
ZW4(:,:,:) = 0.
DO JL=1,IMICRO
ZW4(I1(JL), I2(JL), I3(JL)) = ZTOT_RSDRYH(JL) * ZINV_TSTEP
END DO
ZW5(:,:,:) = 0.
DO JL=1,IMICRO
ZW5(I1(JL), I2(JL), I3(JL)) = ZTOT_RGDRYH(JL) * ZINV_TSTEP
END DO
ZW6(:,:,:) = 0.
DO JL=1,IMICRO
ZW6(I1(JL), I2(JL), I3(JL)) = ZTOT_RDRYHG(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) &
call Budget_store_add( tbudgets(NBUDGET_TH), 'DRYH', ( zw1(:, :, :) + zw2(:, :, :) ) * zz_diff(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'DRYH', -zw1(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'DRYH', -zw2(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'DRYH', -zw3(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'DRYH', -zw4(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'DRYH', ( -zw5(:, :, :) + zw6(:, :, : ) ) * prhodj(:, :, :) )
if ( lbudget_rh ) call Budget_store_add( tbudgets(NBUDGET_RH), 'DRYH', ( zw1(:, :, :) + zw2(:, :, :) + zw3(:, :, :) &
+ zw4(:, :, :) + zw5(:, :, : )- zw6(:, :, :) ) &
* prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RHMLTR(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'HMLT', -zw(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'HMLT', zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rh ) call Budget_store_add( tbudgets(NBUDGET_RH), 'HMLT', -zw(:, :, :) * prhodj(:, :, :) )
ENDIF
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RIMLTC(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'IMLT', -zw(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'IMLT', zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'IMLT', -zw(:, :, :) * prhodj(:, :, :) )
ZW(:,:,:) = 0.
DO JL=1,IMICRO
ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RCBERI(JL) * ZINV_TSTEP
END DO
if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'BERFI', zw(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'BERFI', -zw(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'BERFI', zw(:, :, :) * prhodj(:, :, :) )
deallocate( zw1, zw2, zw3, zw4 )
if ( krr == 7 ) deallocate( zw5, zw6 )
if ( lbudget_th ) deallocate( zz_diff )
ENDIF
!
!*** 7.3 Final tendencies
!
!$acc kernels
PRVS(:,:,:) = ZW_RVS(:,:,:)
PRCS(:,:,:) = ZW_RCS(:,:,:)
PRRS(:,:,:) = ZW_RRS(:,:,:)
PRIS(:,:,:) = ZW_RIS(:,:,:)
PRSS(:,:,:) = ZW_RSS(:,:,:)
PRGS(:,:,:) = ZW_RGS(:,:,:)
IF (KRR==7) THEN
PRHS(:,:,:) = ZW_RHS(:,:,:)
ENDIF
PTHS(:,:,:) = ZW_THS(:,:,:)
!$acc end kernels
!
!-------------------------------------------------------------------------------
!
!* 8. COMPUTE THE SEDIMENTATION (RS) SOURCE
! -------------------------------------
!
IF(LSEDIM_AFTER) THEN
!
!* 8.1 sedimentation
!
if ( lbudget_rc .and. osedic ) call Budget_store_init( tbudgets(NBUDGET_RC), 'SEDI', prcs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_init( tbudgets(NBUDGET_RR), 'SEDI', prrs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_init( tbudgets(NBUDGET_RI), 'SEDI', pris(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_init( tbudgets(NBUDGET_RS), 'SEDI', prss(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_init( tbudgets(NBUDGET_RG), 'SEDI', prgs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rh ) call Budget_store_init( tbudgets(NBUDGET_RH), 'SEDI', prhs(:, :, :) * prhodj(:, :, :) )
!Init only if not osedic (to prevent crash with double init)
!Remark: the 2 source terms SEDI and DEPO could be mixed and stored in the same source term (SEDI)
! if osedic=T and ldeposc=T (a warning is printed in ini_budget in that case)
if ( lbudget_rc .and. ldeposc .and. .not.osedic ) &
call Budget_store_init( tbudgets(NBUDGET_RC), 'DEPO', prcs(:, :, :) * prhodj(:, :, :) )
IF(HSEDIM=='STAT') THEN
!SR: It *seems* that we must have two separate calls for ifort
IF(KRR==7) THEN
CALL ICE4_SEDIMENTATION_STAT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
&PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, &
&PRHODREF, PPABST, PTHT, PRHODJ, &
&PRCS, PRCS*PTSTEP, PRRS, PRRS*PTSTEP, PRIS, PRIS*PTSTEP,&
&PRSS, PRSS*PTSTEP, PRGS, PRGS*PTSTEP,&
&PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, &
&PSEA=PSEA, PTOWN=PTOWN, &
&PINPRH=PINPRH, PRHT=PRHS*PTSTEP, PRHS=PRHS, PFPR=PFPR)
ELSE
CALL ICE4_SEDIMENTATION_STAT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
&PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ,&
&PRHODREF, PPABST, PTHT, PRHODJ, &
&PRCS, PRCS*PTSTEP, PRRS, PRRS*PTSTEP, PRIS, PRIS*PTSTEP,&
&PRSS, PRSS*PTSTEP, PRGS, PRGS*PTSTEP,&
&PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, &
&PSEA=PSEA, PTOWN=PTOWN, &
&PFPR=PFPR)
ENDIF
!$acc kernels
PINPRS(:,:) = PINPRS(:,:) + ZINPRI(:,:)
!$acc end kernels
!No negativity correction here as we apply sedimentation on PR.S*PTSTEP variables
ELSEIF(HSEDIM=='SPLI') THEN
!SR: It *seems* that we must have two separate calls for ifort
IF(KRR==7) THEN
CALL ICE4_SEDIMENTATION_SPLIT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
&PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, &
&PRHODREF, PPABST, PTHT, PRHODJ, &
&PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,&
&PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, &
&PSEA=PSEA, PTOWN=PTOWN, &
&PINPRH=PINPRH, PRHT=PRHT, PRHS=PRHS, PFPR=PFPR)
ELSE
CALL ICE4_SEDIMENTATION_SPLIT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
&PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, &
&PRHODREF, PPABST, PTHT, PRHODJ, &
&PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,&
&PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, &
&PSEA=PSEA, PTOWN=PTOWN, &
&PFPR=PFPR)
ENDIF
!$acc kernels
PINPRS(:,:) = PINPRS(:,:) + ZINPRI(:,:)
!$acc end kernels
!We correct negativities with conservation
!SPLI algorith uses a time-splitting. Inside the loop a temporary m.r. is used.
! It is initialized with the m.r. at T and is modified by two tendencies:
! sedimentation tendency and an external tendency which represents all other
! processes (mainly advection and microphysical processes). If both tendencies
! are negative, sedimentation can remove a specie at a given sub-timestep. From
! this point sedimentation stops for the remaining sub-timesteps but the other tendency
! will be still active and will lead to negative values.
! We could prevent the algorithm to not consume too much a specie, instead we apply
! a correction here.
CALL CORRECT_NEGATIVITIES(KIT, KJT, KKT, KRR, PRVS, PRCS, PRRS, &
&PRIS, PRSS, PRGS, &
&PTHS, ZZ_LVFACT, ZZ_LSFACT, PRHS)
ELSE
call Print_msg( NVERB_FATAL, 'GEN', 'RAIN_ICE_RED', 'no sedimentation scheme for HSEDIM='//HSEDIM )
END IF
!
!* 8.2 budget storage
!
if ( lbudget_rc .and. osedic ) call Budget_store_end( tbudgets(NBUDGET_RC), 'SEDI', prcs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_end( tbudgets(NBUDGET_RR), 'SEDI', prrs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_end( tbudgets(NBUDGET_RI), 'SEDI', pris(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_end( tbudgets(NBUDGET_RS), 'SEDI', prss(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_end( tbudgets(NBUDGET_RG), 'SEDI', prgs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rh ) call Budget_store_end( tbudgets(NBUDGET_RH), 'SEDI', prhs(:, :, :) * prhodj(:, :, :) )
!If osedic=T and ldeposc=T, DEPO is in fact mixed and stored with the SEDI source term
!(a warning is printed in ini_budget in that case)
if ( lbudget_rc .and. ldeposc .and. .not.osedic) &
call Budget_store_end( tbudgets(NBUDGET_RC), 'DEPO', prcs(:, :, :) * prhodj(:, :, :) )
!sedimentation of rain fraction
IF (PRESENT(PRHS)) THEN
CALL ICE4_RAINFR_VERT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, KKT, KKL, PRAINFR, PRRS(:,:,:)*PTSTEP, &
&PRSS(:,:,:)*PTSTEP, PRGS(:,:,:)*PTSTEP, PRHS(:,:,:)*PTSTEP)
ELSE
CALL ICE4_RAINFR_VERT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, KKT, KKL, PRAINFR, PRRS(:,:,:)*PTSTEP, &
&PRSS(:,:,:)*PTSTEP, PRGS(:,:,:)*PTSTEP)
ENDIF
ENDIF
!$acc end data
#ifdef MNH_OPENACC
!Release all memory allocated with MNH_MEM_GET calls since last call to MNH_MEM_POSITION_PIN
CALL MNH_MEM_RELEASE()
#endif
IF (MPPDB_INITIALIZED) THEN
!Check all INOUT arrays
CALL MPPDB_CHECK(PCIT,"RAIN_ICE_RED end:PCIT")
CALL MPPDB_CHECK(PTHS,"RAIN_ICE_RED end:PTHS")
CALL MPPDB_CHECK(PRVS,"RAIN_ICE_RED end:PRVS")
CALL MPPDB_CHECK(PRCS,"RAIN_ICE_RED end:PRCS")
CALL MPPDB_CHECK(PRRS,"RAIN_ICE_RED end:PRRS")
CALL MPPDB_CHECK(PRIS,"RAIN_ICE_RED end:PRIS")
CALL MPPDB_CHECK(PRSS,"RAIN_ICE_RED end:PRSS")
CALL MPPDB_CHECK(PRGS,"RAIN_ICE_RED end:PRGS")
CALL MPPDB_CHECK(PINDEP,"RAIN_ICE_RED end:PINDEP")
!Check all OUT arrays
CALL MPPDB_CHECK(PINPRC,"RAIN_ICE_RED end:PINPRC")
CALL MPPDB_CHECK(PINPRR,"RAIN_ICE_RED end:PINPRR")
CALL MPPDB_CHECK(PEVAP3D,"RAIN_ICE_RED end:PEVAP3D")
CALL MPPDB_CHECK(PINPRS,"RAIN_ICE_RED end:PINPRS")
CALL MPPDB_CHECK(PINPRG,"RAIN_ICE_RED end:PINPRG")
CALL MPPDB_CHECK(PRAINFR,"RAIN_ICE_RED end:PRAINFR")
IF (PRESENT(PINPRH)) CALL MPPDB_CHECK(PINPRH,"RAIN_ICE_RED end:PINPRH")
IF (PRESENT(PFPR)) CALL MPPDB_CHECK(PFPR, "RAIN_ICE_RED end:PFPR")
END IF
!$acc end data
CONTAINS
!
SUBROUTINE CORRECT_NEGATIVITIES(KIT, KJT, KKT, KRR, PRV, PRC, PRR, &
&PRI, PRS, PRG, &
&PTH, PLVFACT, PLSFACT, PRH)
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: KIT, KJT, KKT, KRR
REAL, DIMENSION(KIT, KJT, KKT), INTENT(INOUT) :: PRV, PRC, PRR, PRI, PRS, PRG, PTH
REAL, DIMENSION(KIT, KJT, KKT), INTENT(IN) :: PLVFACT, PLSFACT
REAL, DIMENSION(KIT, KJT, KKT), OPTIONAL, INTENT(INOUT) :: PRH
!
INTEGER :: JI, JJ, JK
!
!
#ifndef MNH_OPENACC
LOGICAL, DIMENSION(:,:,:), allocatable :: GW
REAL, DIMENSION(:,:,:), allocatable :: ZW
#else
LOGICAL, DIMENSION(:,:,:), POINTER, CONTIGUOUS :: GW
REAL, DIMENSION(:,:,:), POINTER, CONTIGUOUS :: ZW
#endif
!
!
IF (MPPDB_INITIALIZED) THEN
!Check all IN arrays
CALL MPPDB_CHECK(PLVFACT,"CORRECT_NEGATIVITIES beg:PLVFACT")
CALL MPPDB_CHECK(PLSFACT,"CORRECT_NEGATIVITIES beg:PLSFACT")
!Check all INOUT arrays
CALL MPPDB_CHECK(PRV,"CORRECT_NEGATIVITIES beg:PRV")
CALL MPPDB_CHECK(PRC,"CORRECT_NEGATIVITIES beg:PRC")
CALL MPPDB_CHECK(PRR,"CORRECT_NEGATIVITIES beg:PRR")
CALL MPPDB_CHECK(PRI,"CORRECT_NEGATIVITIES beg:PRI")
CALL MPPDB_CHECK(PRS,"CORRECT_NEGATIVITIES beg:PRS")
CALL MPPDB_CHECK(PRG,"CORRECT_NEGATIVITIES beg:PRG")
IF(PRESENT(PRH)) CALL MPPDB_CHECK(PRH,"CORRECT_NEGATIVITIES beg:PRH")
CALL MPPDB_CHECK(PTH,"CORRECT_NEGATIVITIES beg:PTH")
END IF
!$acc data present( PRV, PRC, PRR, PRI, PRS, PRG, PTH, PLVFACT, PLSFACT )
#ifndef MNH_OPENACC
allocate( gw(size( prv, 1 ), size( prv, 2 ), size( prv, 3 ) ) )
allocate( zw(size( prv, 1 ), size( prv, 2 ), size( prv, 3 ) ) )
#else
!Pin positions in the pools of MNH memory
CALL MNH_MEM_POSITION_PIN()
CALL MNH_MEM_GET( gw, size( prv, 1 ), size( prv, 2 ), size( prv, 3 ) )
CALL MNH_MEM_GET( zw, size( prv, 1 ), size( prv, 2 ), size( prv, 3 ) )
!$acc data present( GW, ZW )
#endif
!$acc data present( PRH ) if ( present( PRH ) )
!$acc kernels
!We correct negativities with conservation
! 1) deal with negative values for mixing ratio, except for vapor
DO JK = 1, KKT
DO JJ = 1, KJT
DO JI = 1, KIT
ZW(JI,JJ,JK) =PRC(JI,JJ,JK)-MAX(PRC(JI,JJ,JK), 0.)
PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK)
PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLVFACT(JI,JJ,JK)
PRC(JI,JJ,JK)=PRC(JI,JJ,JK)-ZW(JI,JJ,JK)
ZW(JI,JJ,JK) =PRR(JI,JJ,JK)-MAX(PRR(JI,JJ,JK), 0.)
PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK)
PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLVFACT(JI,JJ,JK)
PRR(JI,JJ,JK)=PRR(JI,JJ,JK)-ZW(JI,JJ,JK)
ZW(JI,JJ,JK) =PRI(JI,JJ,JK)-MAX(PRI(JI,JJ,JK), 0.)
PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK)
PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK)
PRI(JI,JJ,JK)=PRI(JI,JJ,JK)-ZW(JI,JJ,JK)
ZW(JI,JJ,JK) =PRS(JI,JJ,JK)-MAX(PRS(JI,JJ,JK), 0.)
PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK)
PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK)
PRS(JI,JJ,JK)=PRS(JI,JJ,JK)-ZW(JI,JJ,JK)
ZW(JI,JJ,JK) =PRG(JI,JJ,JK)-MAX(PRG(JI,JJ,JK), 0.)
PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK)
PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK)
PRG(JI,JJ,JK)=PRG(JI,JJ,JK)-ZW(JI,JJ,JK)
ENDDO
ENDDO
ENDDO
IF(KRR==7) THEN
DO JK = 1, KKT
DO JJ = 1, KJT
DO JI = 1, KIT
ZW(JI,JJ,JK) =PRH(JI,JJ,JK)-MAX(PRH(JI,JJ,JK), 0.)
PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK)
PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK)
PRH(JI,JJ,JK)=PRH(JI,JJ,JK)-ZW(JI,JJ,JK)
ENDDO
ENDDO
ENDDO
ENDIF
! 2) deal with negative vapor mixing ratio
DO JK = 1, KKT
DO JJ = 1, KJT
DO JI = 1, KIT
! for rc and ri, we keep ice fraction constant
ZW(JI,JJ,JK)=MIN(1., MAX(XRTMIN(1)-PRV(JI,JJ,JK), 0.) / &
&MAX(PRC(JI,JJ,JK)+PRI(JI,JJ,JK), 1.E-20)) ! Proportion of rc+ri to convert into rv
PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)* &
&(PRC(JI,JJ,JK)*PLVFACT(JI,JJ,JK)+PRI(JI,JJ,JK)*PLSFACT(JI,JJ,JK))
PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK)*(PRC(JI,JJ,JK)+PRI(JI,JJ,JK))
PRC(JI,JJ,JK)=(1.-ZW(JI,JJ,JK))*PRC(JI,JJ,JK)
PRI(JI,JJ,JK)=(1.-ZW(JI,JJ,JK))*PRI(JI,JJ,JK)
ZW(JI,JJ,JK)=MIN(MAX(PRR(JI,JJ,JK), 0.), &
&MAX(XRTMIN(1)-PRV(JI,JJ,JK), 0.)) ! Quantity of rr to convert into rv
PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK)
PRR(JI,JJ,JK)=PRR(JI,JJ,JK)-ZW(JI,JJ,JK)
PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLVFACT(JI,JJ,JK)
ZW(JI,JJ,JK)=MIN(MAX(PRS(JI,JJ,JK), 0.), &
&MAX(XRTMIN(1)-PRV(JI,JJ,JK), 0.)) ! Quantity of rs to convert into rv
PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK)
PRS(JI,JJ,JK)=PRS(JI,JJ,JK)-ZW(JI,JJ,JK)
PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK)
ZW(JI,JJ,JK)=MIN(MAX(PRG(JI,JJ,JK), 0.), &
&MAX(XRTMIN(1)-PRV(JI,JJ,JK), 0.)) ! Quantity of rg to convert into rv
PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK)
PRG(JI,JJ,JK)=PRG(JI,JJ,JK)-ZW(JI,JJ,JK)
PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK)
ENDDO
ENDDO
ENDDO
IF(KRR==7) THEN
DO JK = 1, KKT
DO JJ = 1, KJT
DO JI = 1, KIT
ZW(JI,JJ,JK)=MIN(MAX(PRH(JI,JJ,JK), 0.), &
&MAX(XRTMIN(1)-PRV(JI,JJ,JK), 0.)) ! Quantity of rh to convert into rv
PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK)
PRH(JI,JJ,JK)=PRH(JI,JJ,JK)-ZW(JI,JJ,JK)
PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK)
ENDDO
ENDDO
ENDDO
ENDIF
!$acc end kernels
!$acc end data
!$acc end data
#ifdef MNH_OPENACC
!Release all memory allocated with MNH_MEM_GET calls since last call to MNH_MEM_POSITION_PIN
CALL MNH_MEM_RELEASE()
#endif
!$acc end data
IF (MPPDB_INITIALIZED) THEN
!Check all INOUT arrays
CALL MPPDB_CHECK(PRV,"CORRECT_NEGATIVITIES end:PRV")
CALL MPPDB_CHECK(PRC,"CORRECT_NEGATIVITIES end:PRC")
CALL MPPDB_CHECK(PRR,"CORRECT_NEGATIVITIES end:PRR")
CALL MPPDB_CHECK(PRI,"CORRECT_NEGATIVITIES end:PRI")
CALL MPPDB_CHECK(PRS,"CORRECT_NEGATIVITIES end:PRS")
CALL MPPDB_CHECK(PRG,"CORRECT_NEGATIVITIES end:PRG")
IF(PRESENT(PRH)) CALL MPPDB_CHECK(PRH,"CORRECT_NEGATIVITIES end:PRH")
CALL MPPDB_CHECK(PTH,"CORRECT_NEGATIVITIES end:PTH")
END IF
END SUBROUTINE CORRECT_NEGATIVITIES
!
END SUBROUTINE RAIN_ICE_RED