Forked from
Méso-NH / Méso-NH code
4548 commits behind the upstream repository.
radar_scattering.f90 41.07 KiB
!MNH_LIC Copyright 1994-2013 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENCE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
!--------------- special set of characters for RCS information
!-----------------------------------------------------------------
! $Source$ $Revision$ $Date$
!-----------------------------------------------------------------
! ######spl
MODULE MODI_RADAR_SCATTERING
! #############################
!
INTERFACE
SUBROUTINE RADAR_SCATTERING(PT_RAY,PRHODREF_RAY,PR_RAY,PI_RAY,PCIT_RAY,PS_RAY,PG_RAY,PVDOP_RAY, &
PELEV,PX_H,PX_V,PW_H,PW_V,PZE,PBU_MASK_RAY)
REAL, DIMENSION(:,:,:,:,:,:),INTENT(IN) :: PT_RAY ! temperature interpolated along the rays
REAL, DIMENSION(:,:,:,:,:,:),INTENT(IN) :: PRHODREF_RAY !
REAL, DIMENSION(:,:,:,:,:,:),INTENT(IN) :: PR_RAY ! rainwater mixing ratio interpolated along the rays
REAL, DIMENSION(:,:,:,:,:,:),INTENT(IN) :: PI_RAY ! pristine ice mixing ratio interpolated along the rays
REAL, DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PCIT_RAY ! pristine ice concentration interpolated along the rays
REAL, DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PS_RAY !aggregates mixing ratio interpolated along the rays
REAL, DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PG_RAY ! graupel mixing ratio interpolated along the rays
REAL, DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PVDOP_RAY !Doppler radial velocity interpolated along the rays
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PELEV ! elevation
REAL, DIMENSION(:), INTENT(IN) :: PX_H ! Gaussian horizontal nodes
REAL, DIMENSION(:), INTENT(IN) :: PX_V ! Gaussian vertical nodes
REAL, DIMENSION(:), INTENT(IN) :: PW_H ! Gaussian horizontal weights
REAL, DIMENSION(:), INTENT(IN) :: PW_V ! Gaussian vertical weights
REAL,DIMENSION(:,:,:,:,:), INTENT(INOUT) :: PZE ! gate equivalent reflectivity factor (horizontal)
! convective/stratiform
REAL, DIMENSION(:,:,:,:,:,:),INTENT(INOUT) :: PBU_MASK_RAY
! /convective/stratiform
END SUBROUTINE RADAR_SCATTERING
END INTERFACE
END MODULE MODI_RADAR_SCATTERING
!
! ######spl
SUBROUTINE RADAR_SCATTERING(PT_RAY,PRHODREF_RAY,PR_RAY,PI_RAY,PCIT_RAY, &
PS_RAY,PG_RAY,PVDOP_RAY,PELEV,PX_H,PX_V,PW_H,PW_V,PZE,PBU_MASK_RAY)
! ##############################
!
!!**** *RADAR_SCATTERING* - computes radar reflectivities.
!!
!! PURPOSE
!! -------
!! Compute equivalent reflectivities of a mixed phase cloud.
!!
!!** METHOD
!! ------
!! The reflectivities are computed using the n(D) * sigma(D) formula. The
!! equivalent reflectiviy is the sum of the reflectivity produced by the
!! the raindrops and the equivalent reflectivities of the ice crystals.
!! The latter are computed using the mass-equivalent diameter.
!! Four types of diffusion are possible : Rayleigh, Mie, T-matrix, and
!! Rayleigh-Gans (Kerker, 1969, Chap. 10; Battan, 1973, Sec. 5.4; van de
!! Hulst, 1981, Sec. 6.32; Doviak and Zrnic, 1993, p. 249; Bringi and
!! Chandrasekar, 2001, Chap. 2).
!! The integration over diameters for Mie and T-matrix methods is done by
!! using Gauss-Laguerre quadrature (Press et al. 1986). Attenuation is taken
!! into account by computing the extinction efficiency and correcting
!! reflectivities along the beam path.
!! Gaussian quadrature methods are used to model the beam broadening (Gauss-
!! Hermite or Gauss-Legendre, see Press et al. 1986).
!!
!!
!! EXTERNAL
!! --------
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_CST
!! XLIGHTSPEED
!! XPI
!! Module MODD_ARF
!!
!! REFERENCE
!! ---------
!! Press, W. H., B. P. Flannery, S. A. Teukolsky et W. T. Vetterling, 1986:
!! Numerical Recipes: The Art of Scientific Computing. Cambridge University
!! Press, 818 pp.
!! Probert-Jones, J. R., 1962 : The radar equation in meteorology. Quart.
!! J. Roy. Meteor. Soc., 88, 485-495.
!!
!! AUTHOR
!! ------
!! O. Caumont & V. Ducrocq * Météo-France *
!!
!! MODIFICATIONS
!! -------------
!! Original 26/03/2004
!! O. Caumont 09/09/2009 minor changes to compute radial velocities when no
!! hydrometeors so as to emulate wind lidar
!! O. Caumont 21/12/2009 correction of bugs to compute KDP.
!! O. Caumont 11/02/2010 thresholding and conversion from linear to
!! log values after interpolation instead of before.
!! G.Tanguy 25/03/2010 Introduction of MODD_TMAT and ALLOCATE/DEALLOCATE
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST
USE MODD_PARAMETERS
USE MODD_RAIN_ICE_DESCR
USE MODD_RAIN_ICE_PARAM
USE MODD_RADAR, ONLY:XLAM_RAD,XSTEP_RAD,NBELEV,NDIFF,LATT,NPTS_GAULAG,LQUAD,XVALGROUND,NDGS, &
LFALL,LWBSCS,LWREFL,XREFLVDOPMIN
USE MODD_TMAT
!
USE MODE_ARF
USE MODE_FSCATTER
USE MODE_FGAU , ONLY:GAULAG
USE MODI_GAMMA, ONLY:GAMMA
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PT_RAY ! temperature interpolated along the rays
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PRHODREF_RAY !
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PR_RAY ! rainwater mixing ratio interpolated along the rays
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PI_RAY ! pristine ice mixing ratio interpolated along the rays
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PCIT_RAY !pristine ice concentration interpolated along the rays
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PS_RAY !aggregates mixing ratio interpolated along the rays
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PG_RAY ! graupel mixing ratio interpolated along the rays
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PVDOP_RAY !Doppler radial velocity interpolated along the rays
REAL,DIMENSION(:,:,:,:), INTENT(IN) :: PELEV ! elevation
REAL,DIMENSION(:), INTENT(IN) :: PX_H ! Gaussian horizontal nodes
REAL,DIMENSION(:), INTENT(IN) :: PX_V ! Gaussian vertical nodes
REAL,DIMENSION(:), INTENT(IN) :: PW_H ! Gaussian horizontal weights
REAL,DIMENSION(:), INTENT(IN) :: PW_V ! Gaussian vertical weights
REAL,DIMENSION(:,:,:,:,:), INTENT(INOUT) :: PZE ! gate equivalent reflectivity factor (horizontal & vertical)
! convective/stratiform
REAL,DIMENSION(:,:,:,:,:,:),INTENT(INOUT) :: PBU_MASK_RAY
! /convective/stratiform
!
!* 0.2 Declarations of local variables :
!
REAL, DIMENSION(:,:,:,:,:,:,:),ALLOCATABLE :: ZREFL! 1: radar reflectivity in dBZ, 2: ZDR, 3: KDP, 4: BU_MASK, 5-8: mixing ratios, 9-12: Z_j, 13: CIT, 14: height above ground, 15-18: specific attenuations, 19-22: total attenuations
REAL, DIMENSION(:,:,:,:,:,:,:),ALLOCATABLE :: ZAELOC ! local attenuation
REAL, DIMENSION(:,:,:),ALLOCATABLE :: ZAETOT ! 1: total attenuation, 2: // vertical
REAL :: ZAERINT,ZAEIINT,ZAESINT,ZAEGINT ! 1-4: total A_i
!
REAL,DIMENSION(:),ALLOCATABLE :: ZX,ZW ! Gauss-Laguerre points and weights
!
REAL,DIMENSION(4) :: ZREFLOC
REAL,DIMENSION(2) :: ZAETMP
REAL,DIMENSION(:),ALLOCATABLE :: ZVTEMP ! temp var for Gaussian quadrature 8 : r_r, 9 : r_i, 10 : r_s , 11 : r_g
REAL :: ZCXR=-1.0 ! for rain N ~ 1/N_0 (in Kessler parameterization)
REAL :: ZDMELT_FACT ! factor used to compute the equivalent melted diameter
REAL :: ZEQICE=0.224! factor used to convert the ice crystals reflectivity into an equivalent liquid water reflectivity (from Smith, JCAM 84)
REAL :: ZEXP ! anciliary parameter
REAL :: ZLBDA ! slope distribution parameter
REAL :: ZFRAC_ICE,ZD,ZDE ! auxiliary variables
REAL :: ZQSCA
REAL,DIMENSION(2) :: ZQEXT
REAL,DIMENSION(3) :: ZQBACK ! Q_b(HH),Q_b(VV) (backscattering efficiencies at horizontal and vertical polarizations, resp.)
COMPLEX :: QM,QMW,QMI,QK,QB ! dielectric parameters
!
INTEGER :: INBRAD,IIELV,INBAZIM,INBSTEPMAX,INPTS_H,INPTS_V ! sizes of the arrays
INTEGER :: IEL
INTEGER :: JI,JL,JEL,JAZ,JH,JV,JJ ! Loop variables of control
REAL :: ZLB ! depolarization factor along the spheroid symmetry axis
REAL :: XCXI ! should be defined with other parameters of microphysical scheme
REAL :: ZCR=0.,ZCI=0.,ZCS=0.,ZCG=0. ! coefficients to take into account fall speeds when simulating Doppler winds
REAL, DIMENSION(:,:,:,:),ALLOCATABLE :: ZCONC_BIN
INTEGER :: IVDOP,IMAX
LOGICAL :: LPART_MASK ! indicates a partial mask along the beam
INTEGER,PARAMETER :: IZER=5,IZEI=6,IZES=7,IZEG=8, IAER=10,IAEI=11,IAES=12,IAEG=13, IATR=14,IATI=15,IATS=16,IATG=17
!-------------------------------------------------------------------------------
!
!
!* 1. INITIALISATION
! --------------
INBRAD=SIZE(PT_RAY,1)
IIELV=SIZE(PT_RAY,2)
INBAZIM=SIZE(PT_RAY,3)
INBSTEPMAX=SIZE(PT_RAY,4)
INPTS_H=SIZE(PT_RAY,5)
INPTS_V=SIZE(PT_RAY,6)
!
! Initialisation for radial winds
IF(LFALL) THEN
ZCR=XCR
ZCI=XC_I
ZCS=XCS
ZCG=XCG
END IF
IF(NDIFF/=0) THEN
ALLOCATE(ZX(NPTS_GAULAG),ZW(NPTS_GAULAG))
CALL GAULAG(NPTS_GAULAG,ZX,ZW) ! for Mie and T-matrix and RG
END IF
!
IVDOP=9
IMAX=SIZE(PZE,5)
IF(.NOT.LWREFL) IMAX=IMAX+1
ALLOCATE(ZREFL(INBRAD,IIELV,INBAZIM,INBSTEPMAX,INPTS_H,INPTS_V,IMAX))
ZREFL(:,:,:,:,:,:,:)=0.
IF(LATT) THEN
ZREFL(:,:,:,:,:,:,IATR:IATG)=1.
END IF
PZE(:,:,:,:,:)=0.
IF (LATT)THEN
ALLOCATE(ZAELOC(INBRAD,IIELV,INBAZIM,INBSTEPMAX,INPTS_H,INPTS_V,2))
ALLOCATE(ZAETOT(INPTS_H,INPTS_V,2))
ZAELOC(:,:,:,:,:,:,:)=0. ! initialization of attenuation stuff (alpha_e for first gate)
ZAETOT(:,:,:)=1. ! initialization of attenuation stuff (total attenuation)
END IF
WRITE(0,*) 'BEFORE LOOP DIFFUSION'
IF(LWBSCS) THEN
ALLOCATE(ZCONC_BIN(INBRAD,IIELV,INBAZIM,INBSTEPMAX))
ZCONC_BIN(:,:,:,:)=0.
END IF
! LOOP OVER EVERYTHING
DO JI=1,INBRAD
IEL=NBELEV(JI)
DO JEL=1,IEL
DO JAZ=1,INBAZIM
DO JH=1,INPTS_H
DO JV=1,INPTS_V ! we go down to check partial masks
IF(LATT) THEN
ZAERINT=1.
ZAEIINT=1.
ZAESINT=1.
ZAEGINT=1.
END IF
LPART_MASK=.FALSE.
LOOPJL: DO JL=1,INBSTEPMAX
! REINDENTING FOR READIBILITY
IF(LPART_MASK) THEN ! THIS RAY IS MASKED
ZREFL(JI,JEL,JAZ,JL:INBSTEPMAX,JH,JV,1)=0.
EXIT LOOPJL
ELSE
! if not underground or outside of the MESO-NH domain and rain
IF(PT_RAY(JI,JEL,JAZ,JL,JH,JV) /= -XUNDEF) THEN
!
!---------------------------------------------------------------------------------------------------
!* 2. RAINDROPS
! ---------
!
IF(SIZE(PR_RAY,1) > 0) THEN
IF(PR_RAY(JI,JEL,JAZ,JL,JH,JV) > XRTMIN(3)) THEN
QMW=SQRT(QEPSW(PT_RAY(JI,JEL,JAZ,JL,JH,JV),XLIGHTSPEED/XLAM_RAD(JI)))
ZLBDA=XLBR*(PRHODREF_RAY(JI,JEL,JAZ,JL,JH,JV)*PR_RAY(JI,JEL,JAZ,JL,JH,JV))**XLBEXR
! ZLBDA=XLBR*(6E-3)**XLBEXR
QK=(QMW**2-1.)/(QMW**2+2.)
! DIFFUSION
IF(NDIFF==0.OR.NDIFF==4) THEN ! Rayleigh
ZREFLOC(1:2)=1.E18*XCCR*ZLBDA**(ZCXR-6.)*MOMG(XALPHAR,XNUR,6.)
IF(LWREFL) THEN ! weighting by reflectivities
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=-ZCR*SIN(PELEV(JI,JEL,JL,JV)) &
*1.E18*XCCR*ZLBDA**(ZCXR-6.-XDR)*MOMG(XALPHAR,XNUR,6.+XDR)
ELSE
ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)=XCCR*ZLBDA**ZCXR
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=-ZCR*SIN(PELEV(JI,JEL,JL,JV)) &
*XCCR*ZLBDA**(ZCXR-XDR)*MOMG(XALPHAR,XNUR,XDR)
END IF
IF(LATT) THEN
IF(NDIFF==0) THEN ! Rayleigh 3rd order
ZAETMP(:)=XCCR*ZLBDA**ZCXR*( &
XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAR,XNUR,XBR) /ZLBDA**XBR)
ELSE ! Rayleigh 6th order
ZAETMP(:)=XCCR*ZLBDA**ZCXR*( &
XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAR,XNUR,XBR) /ZLBDA**XBR &
+XPI**4/15./XLAM_RAD(JI)**3*AIMAG(QK**2*(QMW**4+27.*QMW**2+38.) &
/(2.*QMW**2+3.))*MOMG(XALPHAR,XNUR,5.*XBR/3.)/ZLBDA**(5.*XBR/3.)&
+2.*XPI**5/3. /XLAM_RAD(JI)**4*REAL(QK**2) &
* MOMG(XALPHAR,XNUR,2.*XBR) /ZLBDA**(2.*XBR))
END IF
END IF
ELSE ! MIE OR T-MATRIX
ZREFLOC(:)=0.
IF(LATT) ZAETMP(:)=0.
DO JJ=1,NPTS_GAULAG ! Gauss-Laguerre quadrature
SELECT CASE(NDIFF)
CASE(1) ! MIE
CALL BHMIE(XPI/XLAM_RAD(JI)*ZX(JJ)/ZLBDA,QMW,ZQEXT(1),ZQSCA,ZQBACK(1))
ZQBACK(2)=ZQBACK(1)
ZQBACK(3)=0.
CASE(2) ! NDIFF==2 T-matrix
! G. TANGUY Allocation des Tableaux de MODD_TMAT
ALLOCATE(XRT11(NPN6,NPN4,NPN4))
ALLOCATE(XRT12(NPN6,NPN4,NPN4))
ALLOCATE(XRT21(NPN6,NPN4,NPN4))
ALLOCATE(XRT22(NPN6,NPN4,NPN4))
ALLOCATE(XIT11(NPN6,NPN4,NPN4))
ALLOCATE(XIT12(NPN6,NPN4,NPN4))
ALLOCATE(XIT21(NPN6,NPN4,NPN4))
ALLOCATE(XIT22(NPN6,NPN4,NPN4))
ALLOCATE(XTR1(NPN2,NPN2))
ALLOCATE(XTI1(NPN2,NPN2))
ALLOCATE(XQR(NPN2,NPN2))
ALLOCATE(XQI(NPN2,NPN2))
ALLOCATE(XRGQR(NPN2,NPN2))
ALLOCATE(XRGQI(NPN2,NPN2))
ALLOCATE(XJ(NPNG2,NPN1))
ALLOCATE(XY(NPNG2,NPN1))
ALLOCATE(XJR(NPNG2,NPN1))
ALLOCATE(XJI(NPNG2,NPN1))
ALLOCATE(XDJ(NPNG2,NPN1))
ALLOCATE(XDY(NPNG2,NPN1))
ALLOCATE(XDJR(NPNG2,NPN1))
ALLOCATE(XDJI(NPNG2,NPN1))
CALL TMD(&!2,& !GTTE=1 SPHERES ; =2 OBLATE
ZX(JJ)/ZLBDA,&!Deq (m)
XLAM_RAD(JI),&!LAM: radar wavelength
REAL(QMW),& !MRR: real part of refractive index
AIMAG(QMW),& !MRI: imaginary part of refractive index (>=0)
NDGS,& !NDGS: number of division points in computing integrals over the surface particles (default=2)
2,& ! gouttes oscillantes ? (oui=1,non=2)
PELEV(JI,JEL,JL,JV)*180./XPI,&! elevation in deg
ZQBACK(1),ZQBACK(2),ZQBACK(3),ZQEXT(1),&
1./ARF(ZX(JJ)/ZLBDA)) ! axis ratio function
! ZQBACK(3)=ZQBACK(3)/ZLBDA**2
ZQBACK(3)=12.*ZQBACK(3)/ZX(JJ)**2/XPI
! DEALLOACTION DES TABLEAUX
DEALLOCATE(XRT11)
DEALLOCATE(XRT12)
DEALLOCATE(XRT21)
DEALLOCATE(XRT22)
DEALLOCATE(XIT11)
DEALLOCATE(XIT12)
DEALLOCATE(XIT21)
DEALLOCATE(XIT22)
DEALLOCATE(XTR1)
DEALLOCATE(XTI1)
DEALLOCATE(XQR)
DEALLOCATE(XQI)
DEALLOCATE(XRGQR)
DEALLOCATE(XRGQI)
DEALLOCATE(XJ)
DEALLOCATE(XY)
DEALLOCATE(XJR)
DEALLOCATE(XJI)
DEALLOCATE(XDJ)
DEALLOCATE(XDY)
DEALLOCATE(XDJR)
DEALLOCATE(XDJI)
CASE(3) ! NDIFF==3 RG
IF(ZX(JJ)/ZLBDA<.5E-3) THEN
ZLB=1./3.
ELSE
ZLB=1./(ARF(ZX(JJ)/ZLBDA))**2-1. ! f**2
ZLB=(1.+ZLB)/ZLB*(1.-ATAN(SQRT(ZLB))/SQRT(ZLB)) ! lambda_b
if(ZX(JJ)/ZLBDA>16.61E-3) print*, 'Negative axis ratio; reduce NPTS_GAULAG.'
END IF
ZQBACK(1)=4.*(XPI/XLAM_RAD(JI)*ZX(JJ)/ZLBDA)**4&
*ABS((QMW**2-1.)/3./(1.+.5*(1.-ZLB)*(QMW**2-1.)))**2
ZQBACK(2)=4.*(XPI/XLAM_RAD(JI)*ZX(JJ)/ZLBDA)**4*ABS((QMW**2-1.)/3.*&
(SIN(PELEV(JI,JEL,JL,JV))**2/(1.+.5*(1.-ZLB)*(QMW**2-1.))+& ! PELEV=PI+THETA_I
COS(PELEV(JI,JEL,JL,JV))**2/(1.+ZLB*(QMW**2-1.))) )**2 !
ZQBACK(3)=ZX(JJ)/ZLBDA**3*REAL((QMW**2-1.)**2*(3.*ZLB-1.)/(2.+(QMW**2-1.)*(ZLB+1.) &
+ZLB*(1.-ZLB)*(QMW**2-1.)**2))
IF(LATT) THEN
ZQEXT(1)=4.*(XPI/XLAM_RAD(JI)*ZX(JJ)/ZLBDA)*AIMAG((QMW**2-1.)/3./(1.+.5*(1.-ZLB)*(QMW**2-1.)))
ZQEXT(2)=4.*(XPI/XLAM_RAD(JI)*ZX(JJ)/ZLBDA)*AIMAG((QMW**2-1.)/3.*&
(SIN(PELEV(JI,JEL,JL,JV))**2/(1.+.5*(1.-ZLB)*(QMW**2-1.))+& ! PELEV=PI+THETA_I
COS(PELEV(JI,JEL,JL,JV))**2/(1.+ZLB*(QMW**2-1.))))
END IF
END SELECT
ZREFLOC(1:3)=ZREFLOC(1:3)+ZQBACK(1:3)*ZX(JJ)**2*ZW(JJ)
ZREFLOC(4)=ZREFLOC(4)+ZQBACK(1)*ZX(JJ)**(2+XDR)*ZW(JJ)
IF(LATT) ZAETMP(:)=ZAETMP(:)+ZQEXT(:)*ZX(JJ)**2*ZW(JJ)
END DO ! end loop Gauss-Laguerre quadrature
ZREFLOC(1:2)=1.E18*ZREFLOC(1:2)*(XLAM_RAD(JI)/XPI)**4/.93*XCCR/4./ZLBDA**3
ZREFLOC(3)=ZREFLOC(3)*XPI**2/6./XLAM_RAD(JI)*XCCR/ZLBDA &
*180.E3/XPI ! (in deg/km)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)*ZREFLOC(1) &
-ZCR*SIN(PELEV(JI,JEL,JL,JV))*ZREFLOC(4) &
*1.E18*(XLAM_RAD(JI)/XPI)**4/.93*XCCR/4./ZLBDA**(3+XDR)
IF(LATT) ZAETMP(:)=ZAETMP(:)*XPI*XCCR*ZLBDA**(ZCXR-2.*XBR/3.)/(4.*GAMMA(XNUR))
END IF
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)=ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)+ZREFLOC(1:3)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZER)=ZREFLOC(1) ! Z_e due to raindrops
IF(LATT) THEN
ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)=ZAETMP(:)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IAER)=ZAETMP(1)
IF(JL>1) ZAERINT=ZAERINT*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAER)*XSTEP_RAD)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZER)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IZER)*ZAERINT ! Z_r attenuated
END IF
END IF
! Total attenuation even if no hydrometeors
IF(LATT.AND.JL>1) ZREFL(JI,JEL,JAZ,JL,JH,JV,IATR)=ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IATR) &
*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAER)*XSTEP_RAD)
END IF
!
!---------------------------------------------------------------------------------------------------
!* 3. PRISTINE ICE
! ---------
!
IF (SIZE(PI_RAY,1)>0) THEN
IF(PI_RAY(JI,JEL,JAZ,JL,JH,JV) > XRTMIN(4) .AND. PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)> 527.82) THEN ! cit > 527.82 otherwise pbs due to interpolation
QMI=SQRT(QEPSI(PT_RAY(JI,JEL,JAZ,JL,JH,JV),XLIGHTSPEED/XLAM_RAD(JI)))
QK=(QMI**2-1.)/(QMI**2+2.)
ZDMELT_FACT=(6.*XAI)/(XPI*.92*XRHOLW)
ZEXP=2.*XBI
ZLBDA=XLBI*(PRHODREF_RAY(JI,JEL,JAZ,JL,JH,JV)*PI_RAY(JI,JEL,JAZ,JL,JH,JV)/ &
PCIT_RAY(JI,JEL,JAZ,JL,JH,JV))**XLBEXI
IF(NDIFF==0.OR.NDIFF==3.OR.NDIFF==4) THEN ! Rayleigh or Rayleigh-Gans (pristine ice = sphere)
ZREFLOC(1:2)=ZEQICE*.92**2*ZDMELT_FACT**2*1.E18*PCIT_RAY(JI,JEL,JAZ,JL,JH,JV) &
*ZLBDA**(XCXI-ZEXP)*MOMG(XALPHAI,XNUI,ZEXP)
ZREFLOC(3)=0.
IF(LWREFL) THEN ! weighting by reflectivities
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
-ZCI*SIN(PELEV(JI,JEL,JL,JV))*ZEQICE*.92**2*ZDMELT_FACT**2&
*1.E18*PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)*ZLBDA**(XCXI-ZEXP-XDI)*MOMG(XALPHAI,XNUI,ZEXP+XDI)
ELSE
ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)&
+PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)*ZLBDA**XCXI
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
-ZCI*SIN(PELEV(JI,JEL,JL,JV))&
*PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)*ZLBDA**(XCXI-XDI)*MOMG(XALPHAI,XNUI,XDI)
END IF
IF(LATT) THEN
IF(NDIFF==0.OR.NDIFF==3) THEN
ZAETMP(:)=PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)*ZLBDA**XCXI*( &
ZDMELT_FACT *XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAI,XNUI,XBI) /ZLBDA**XBI)
ELSE
ZAETMP(:)=PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)*ZLBDA**XCXI*( &
ZDMELT_FACT *XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAI,XNUI,XBI) /ZLBDA**XBI &
+ZDMELT_FACT**(5./3.)*XPI**4/15./XLAM_RAD(JI)**3 &
*AIMAG(QK**2*(QMI**4+27.*QMI**2+38.) &
/(2.*QMI**2+3.))*MOMG(XALPHAI,XNUI,5.*XBI/3.)/ZLBDA**(5.*XBI/3.) &
+ZDMELT_FACT**2 *2.*XPI**5/3. /XLAM_RAD(JI)**4*REAL(QK**2) &
* MOMG(XALPHAI,XNUI,2.*XBI) /ZLBDA**(2.*XBI))
END IF
END IF
ELSE ! MIE OR T-MATRIX
ZREFLOC(:)=0.
IF(LATT) ZAETMP(:)=0.
DO JJ=1,NPTS_GAULAG ! Gauss-Laguerre quadrature
ZD=ZX(JJ)**(1./XALPHAI)/ZLBDA
ZDE=ZDMELT_FACT**(1./3.)*ZD**(XBI/3.)
CALL BHMIE(XPI/XLAM_RAD(JI)*ZDE,QMI,ZQEXT(1),ZQSCA,ZQBACK(1))
! zqback=4.*(XPI/XLAM_RAD(JI))**4*ABS((QMI**2-1.)/(QMI**2+2.))**2* &
! ((ZX(JJ)**(1./XALPHAI)/ZLBDA/(XPI*XRHOLW/(6.*XAI))**(1./XBI))**(XBI/3.))**4 !! rayleigh
ZQBACK(2)=ZQBACK(1)
ZQBACK(3)=0.
ZREFLOC(1:3)=ZREFLOC(1:3)+ZQBACK(1:3)*ZX(JJ)**(XNUI-1.+2.*XBI/3./XALPHAI)*ZW(JJ)
ZREFLOC(4)=ZREFLOC(4)+ZQBACK(1)*ZX(JJ)**(XNUI-1.+2.*XBI/3./XALPHAI+XDI/XALPHAI)*ZW(JJ)
IF(LATT) ZAETMP(:)=ZAETMP(:)+ZQEXT(:)*ZX(JJ)**(XNUI-1.+2.*XBI/3./XALPHAI)*ZW(JJ)
END DO ! END Gauss-Laguerre quadrature
ZREFLOC(1:2)=1.E18*(XLAM_RAD(JI)/XPI)**4*PCIT_RAY(JI,JEL,JAZ,JL,JH,JV) &
*ZLBDA**(XCXI-2.*XBI/3.)/(4.*GAMMA(XNUI)*.93)*ZDMELT_FACT**(2./3.)*ZREFLOC(1:2)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
+PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)*ZREFLOC(1) &
-ZCI*SIN(PELEV(JI,JEL,JL,JV))*ZREFLOC(4) &
*1.E18*(XLAM_RAD(JI)/XPI)**4*PCIT_RAY(JI,JEL,JAZ,JL,JH,JV) &
*ZLBDA**(XCXI-2.*XBI/3.-XDI)/(4.*GAMMA(XNUI)*.93)*ZDMELT_FACT**(2./3.)
IF(LATT) ZAETMP(:)=ZAETMP(:)*XPI*PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)*ZLBDA**(XCXI-2.*XBI/3.)/(4.*GAMMA(XNUI))&
*ZDMELT_FACT**(2./3.)
END IF
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)=ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)+ZREFLOC(1:3)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZEI)=ZREFLOC(1) ! z_e due to pristine ice
IF(LATT) THEN
ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)=ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)+ZAETMP(:)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IAEI)=ZAETMP(1)
IF(JL>1) ZAEIINT=ZAEIINT*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAEI)*XSTEP_RAD)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZEI)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IZEI)*ZAEIINT ! Z_i attenuated
END IF
END IF
! Total attenuation even if no hydrometeors
IF(LATT.AND.JL>1) ZREFL(JI,JEL,JAZ,JL,JH,JV,IATI)=ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IATI) &
*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAEI)*XSTEP_RAD)
END IF
!---------------------------------------------------------------------------------------------------
!* 4. SNOW
! -----
!
IF (SIZE(PS_RAY,1)>0) THEN
IF(PS_RAY(JI,JEL,JAZ,JL,JH,JV) > 100000.*XRTMIN(5)) THEN
QMI=SQRT(QEPSI(PT_RAY(JI,JEL,JAZ,JL,JH,JV),XLIGHTSPEED/XLAM_RAD(JI)))
ZDMELT_FACT=6.*XAS/(XPI*.92*XRHOLW)
ZEXP=2.*XBS
ZLBDA= XLBS*( PRHODREF_RAY(JI,JEL,JAZ,JL,JH,JV)*PS_RAY(JI,JEL,JAZ,JL,JH,JV) )**XLBEXS
IF(NDIFF==0.OR.NDIFF==3.OR.NDIFF==4) THEN ! Rayleigh or Rayleigh-Gans
ZREFLOC(1:2)=ZEQICE*.92**2*ZDMELT_FACT**2*1.E18*XCCS*ZLBDA**(XCXS-ZEXP)*MOMG(XALPHAS,XNUS,ZEXP)
ZREFLOC(3)=0.
IF(LWREFL) THEN ! weighting by reflectivities
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
-ZCS*SIN(PELEV(JI,JEL,JL,JV))*ZEQICE*.92**2*ZDMELT_FACT**2&
*1.E18*XCCS*ZLBDA**(XCXS-ZEXP-XDS)*MOMG(XALPHAS,XNUS,ZEXP+XDS)
ELSE
ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)+XCCS*ZLBDA**XCXS
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
-ZCS*SIN(PELEV(JI,JEL,JL,JV))&
*XCCS*ZLBDA**(XCXS-XDS)*MOMG(XALPHAS,XNUS,XDS)
END IF
IF(LATT) THEN
IF(NDIFF==0.OR.NDIFF==3) THEN
ZAETMP(:)=XCCS*ZLBDA**XCXS*( &
ZDMELT_FACT *XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAS,XNUS,XBS) /ZLBDA**XBS)
ELSE
ZAETMP(:)=XCCS*ZLBDA**XCXS*( &
ZDMELT_FACT *XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAS,XNUS,XBS) /ZLBDA**XBS &
+ZDMELT_FACT**(5./3.)*XPI**4/15./XLAM_RAD(JI)**3 &
*AIMAG(QK**2*(QMI**4+27.*QMI**2+38.) &
/(2.*QMI**2+3.))*MOMG(XALPHAS,XNUS,5.*XBS/3.)/ZLBDA**(5.*XBS/3.) &
+ZDMELT_FACT**2 *2.*XPI**5/3. /XLAM_RAD(JI)**4*REAL(QK**2) &
* MOMG(XALPHAS,XNUS,2.*XBS) /ZLBDA**(2.*XBS))
END IF
END IF
ELSE ! MIE OR T-MATRIX
ZREFLOC(:)=0.
IF(LATT) ZAETMP(:)=0.
DO JJ=1,NPTS_GAULAG ! Gauss-Laguerre quadrature
ZD=ZX(JJ)**(1./XALPHAS)/ZLBDA
ZDE=ZDMELT_FACT**(1./3.)*ZD**(XBS/3.)
SELECT CASE(NDIFF)
CASE(1,2) ! MIE or T-matrix but we use Mie (particles are considered as isotropic=spheres)
CALL BHMIE(XPI/XLAM_RAD(JI)*ZDE,QMI,ZQEXT(1),ZQSCA,ZQBACK(1))
ZQBACK(2)=ZQBACK(1)
ZQBACK(3)=0.
END SELECT
ZREFLOC(1:3)=ZREFLOC(1:3)+ZQBACK(1:3)*ZX(JJ)**(XNUS-1.+2.*XBS/3./XALPHAS)*ZW(JJ)
ZREFLOC(4)=ZREFLOC(4)+ZQBACK(1)*ZX(JJ)**(XNUS-1.+2.*XBS/3./XALPHAS+XDS/XALPHAS)*ZW(JJ)
IF(LATT) ZAETMP(:)=ZAETMP(:)+ZQEXT(:)*ZX(JJ)**(XNUS-1.+2.*XBS/3./XALPHAS)*ZW(JJ)
END DO
ZREFLOC(1:2)=1.E18*(XLAM_RAD(JI)/XPI)**4*XCCS &
*ZLBDA**(XCXS-2.*XBS/3.)/(4.*GAMMA(XNUS)*.93)*ZDMELT_FACT**(2./3.)*ZREFLOC(1:2)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
+PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)*ZREFLOC(1) &
-ZCS*SIN(PELEV(JI,JEL,JL,JV))*ZREFLOC(4) &
*1.E18*(XLAM_RAD(JI)/XPI)**4*XCCS &
*ZLBDA**(XCXS-2.*XBS/3.-XDS)/(4.*GAMMA(XNUS)*.93)*ZDMELT_FACT**(2./3.)
IF(LATT) ZAETMP(:)=ZAETMP(:)*XPI*XCCS*ZLBDA**(XCXS-2.*XBS/3.)/(4.*GAMMA(XNUS))&
*ZDMELT_FACT**(2./3.)
END IF
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)=ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)+ZREFLOC(1:3)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZES)=ZREFLOC(1) ! Z_e due to snow
IF(LATT) THEN
ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)=ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)+ZAETMP(:)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IAES)=ZAETMP(1)
IF(JL>1) ZAESINT=ZAESINT*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAES)*XSTEP_RAD)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZES)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IZES)*ZAESINT ! Z_s attenuated
END IF
END IF
! Total attenuation even if no hydrometeors
IF(LATT.AND.JL>1) ZREFL(JI,JEL,JAZ,JL,JH,JV,IATS)=ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IATS) &
*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAES)*XSTEP_RAD)
END IF
!---------------------------------------------------------------------------------------------------
!* 5. GRAUPEL
! -------
!
!ZDG=.5 ! from Bringi & Chandrasekar 2001, p. 433
IF (SIZE(PG_RAY,1)>0) THEN
IF(PG_RAY(JI,JEL,JAZ,JL,JH,JV) > XRTMIN(6)) THEN
QMI=SQRT(QEPSI(MIN(PT_RAY(JI,JEL,JAZ,JL,JH,JV),XTT),XLIGHTSPEED/XLAM_RAD(JI)))
QMW=SQRT(QEPSW(MAX(PT_RAY(JI,JEL,JAZ,JL,JH,JV),XTT),XLIGHTSPEED/XLAM_RAD(JI)))
ZLBDA=XLBG*(PRHODREF_RAY(JI,JEL,JAZ,JL,JH,JV)*PG_RAY(JI,JEL,JAZ,JL,JH,JV))**XLBEXG
IF(PT_RAY(JI,JEL,JAZ,JL,JH,JV) > XTT) THEN ! mixture of ice and water
ZFRAC_ICE = .85
ELSE ! only ice
ZFRAC_ICE=1.
END IF
ZDMELT_FACT=6.*XAG/(XPI*XRHOLW*((1.-ZFRAC_ICE)+ZFRAC_ICE*0.92))
ZEXP=2.*XBG
QB=2.*QMW**2*(2.*QMI**2*LOG(QMI/QMW)/(QMI**2-QMW**2)-1.)/(QMI**2-QMW**2)
QM=SQRT(((1.-ZFRAC_ICE)*QMW**2+ZFRAC_ICE*QB*QMI**2)/(1.-ZFRAC_ICE+ZFRAC_ICE*QB)) ! Bohren & Battan (1982)
QK=(QM**2-1.)/(QM**2+2.)
IF(NDIFF==0.OR.NDIFF==3.OR.NDIFF==4) THEN
ZREFLOC(1:2)=ABS(QK)**2/.93*ZDMELT_FACT**2*1.E18*XCCG*ZLBDA**(XCXG-ZEXP)*MOMG(XALPHAG,XNUG,ZEXP)
ZREFLOC(3)=0.
IF(LWREFL) THEN ! weighting by reflectivities
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
-ZCG*SIN(PELEV(JI,JEL,JL,JV))*ABS(QK)**2/.93*ZDMELT_FACT**2&
*1.E18*XCCG*ZLBDA**(XCXG-ZEXP-XDG)*MOMG(XALPHAG,XNUG,ZEXP+XDG)
ELSE
ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)+XCCG*ZLBDA**XCXG
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
-ZCG*SIN(PELEV(JI,JEL,JL,JV))&
*XCCG*ZLBDA**(XCXG-XDG)*MOMG(XALPHAG,XNUG,XDG)
END IF
IF(LATT) THEN
IF(NDIFF==0.OR.NDIFF==3) THEN
ZAETMP(:)=XCCG*ZLBDA**XCXG*( &
ZDMELT_FACT *XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAG,XNUG,XBG) /ZLBDA**XBG)
ELSE
ZAETMP(:)=XCCG*ZLBDA**XCXG*( &
ZDMELT_FACT *XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAG,XNUG,XBG) /ZLBDA**XBG &
+ZDMELT_FACT**(5./3.)*XPI**4/15./XLAM_RAD(JI)**3 &
*AIMAG(QK**2*(QM**4+27.*QM**2+38.) &
/(2.*QM**2+3.))*MOMG(XALPHAG,XNUG,5.*XBG/3.)/ZLBDA**(5.*XBG/3.)&
+ZDMELT_FACT**2 *2.*XPI**5/3. /XLAM_RAD(JI)**4*REAL(QK**2) &
* MOMG(XALPHAG,XNUG,2.*XBG) /ZLBDA**(2.*XBG))
END IF
END IF
ELSE ! Mie or T-matrix
ZREFLOC(:)=0.
IF(LATT) ZAETMP(:)=0.
DO JJ=1,NPTS_GAULAG ! Gauss-Laguerre quadrature
ZD=ZX(JJ)**(1./XALPHAG)/ZLBDA
ZDE=ZDMELT_FACT**(1./3.)*ZD**(XBG/3.)
! SELECT CASE(NDIFF)
! CASE(0,3)
! ZQBACK(1)=4.*(XPI/XLAM_RAD(JI))**4*ABS(QK)**2*ZDE**4
! ZQEXT(1)=4.*(XPI*ZDE/XLAM_RAD(JI)*AIMAG(QK)&
! +(XPI*ZDE/XLAM_RAD(JI))**3*AIMAG(QK**2*(QM**4+27.*QM**2+38.)/(2.*QM**2+3.))/15.&
! +2.*(XPI*ZDE/XLAM_RAD(JI))**4*REAL(QK**2)/3.)
! CASE(1,2) ! MIE/T-MATRIX (we use Mie in both cases)
CALL BHMIE(XPI/XLAM_RAD(JI)*ZDE,QM,ZQEXT(1),ZQSCA,ZQBACK(1))
! END SELECT
ZQBACK(2)=ZQBACK(1)
ZQBACK(3)=0.
ZREFLOC(1:3)=ZREFLOC(1:3)+ZQBACK(1:3)*ZX(JJ)**(XNUG-1.+2.*XBG/3./XALPHAG)*ZW(JJ)
ZREFLOC(4)=ZREFLOC(4)+ZQBACK(1)*ZX(JJ)**(XNUG-1.+2.*XBG/3./XALPHAG+XDG/XALPHAG)*ZW(JJ)
IF(LATT) ZAETMP(:)=ZAETMP(:)+ZQEXT(:)*ZX(JJ)**(XNUG-1.+2.*XBG/3./XALPHAG)*ZW(JJ)
END DO
ZREFLOC(1:2)=ZREFLOC(1:2)*1.E18*(XLAM_RAD(JI)/XPI)**4*XCCG &
*ZLBDA**(XCXG-2.*XBG/3.)/(4.*GAMMA(XNUG)*.93)*ZDMELT_FACT**(2./3.)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
+PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)*ZREFLOC(1) &
-ZCG*SIN(PELEV(JI,JEL,JL,JV))*ZREFLOC(4) &
*1.E18*(XLAM_RAD(JI)/XPI)**4*XCCG &
*ZLBDA**(XCXG-2.*XBG/3.-XDG)/(4.*GAMMA(XNUG)*.93)*ZDMELT_FACT**(2./3.)
IF(LATT) ZAETMP(:)=ZAETMP(:)*XPI*XCCG*ZLBDA**(XCXG-2.*XBG/3.)/(4.*GAMMA(XNUG))&
*ZDMELT_FACT**(2./3.)
END IF
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)=ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)+ZREFLOC(1:3)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZEG)=ZREFLOC(1) ! z_e due to graupel
IF(LATT) THEN
ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)=ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)+ZAETMP(:)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IAEG)=ZAETMP(1)
IF(JL>1) ZAEGINT=ZAEGINT*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAEG)*XSTEP_RAD)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZEG)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IZEG)*ZAEGINT ! Z_g attenuated
END IF
END IF
! Total attenuation even if no hydrometeors
IF(LATT.AND.JL>1) ZREFL(JI,JEL,JAZ,JL,JH,JV,IATG)=ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IATG) &
*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAEG)*XSTEP_RAD)
END IF
IF(LWREFL) THEN ! weighting by reflectivities
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
+PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)*ZREFL(JI,JEL,JAZ,JL,JH,JV,1)
ELSE IF(LWBSCS) THEN ! weighting by hydrometeor concentrations
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
+PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)*ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)
ELSE IF(ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)/=0.) THEN ! no weighting
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)/ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)&
+PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)
END IF
ELSE
IF(JV==1.OR.ZREFL(JI,JEL,JAZ,JL,JH,MAX(JV-1,1),1)==-XUNDEF) THEN ! ground clutter
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:2)=-XUNDEF
ELSE ! outside model domain (top or lateral boundaries)
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:2)=0.
END IF
LPART_MASK=.TRUE.
END IF
END IF
END DO LOOPJL
END DO !JV
END DO !JH
END DO !JAZ
END DO !JEL
END DO !JI
!
! attenuation in dB/km
IF(LATT) ZREFL(:,:,:,:,:,:,IAER:IAEG)=4343.*2.*ZREFL(:,:,:,:,:,:,IAER:IAEG) ! specific attenuation
! convective/stratiform
ZREFL(:,:,:,:,:,:,4)=PBU_MASK_RAY(:,:,:,:,:,:) ! CSR
! /convective/stratiform
!---------------------------------------------------------------------------------------------------
!* 6. FINAL STEP : TOTAL ATTENUATION AND EQUIVALENT REFLECTIVITY FACTOR
! ---------------------------------------------------------------
!
ALLOCATE(ZVTEMP(IMAX))
DO JI=1,INBRAD
IEL=NBELEV(JI)
DO JEL=1,IEL
DO JAZ=1,INBAZIM
IF (LATT) ZAETOT(:,:,1:2)=1.
DO JL=1,INBSTEPMAX
IF(COUNT(ZREFL(JI,JEL,JAZ,JL,:,:,1)==-XUNDEF)==0.AND.COUNT(PT_RAY(JI,JEL,JAZ,JL,:,:)/=-XUNDEF)/=0) THEN ! if no undef point in gate JL and at least one point defined
DO JH=1,INPTS_H
ZVTEMP(:)=0.
DO JV=1,INPTS_V ! Loop on Jv
IF (JL > 1) THEN
IF(LATT) THEN ! we use ZALPHAE0=alpha_0 from last gate
ZAETOT(JH,JV,1:2)=ZAETOT(JH,JV,1:2)*EXP(-2.*ZAELOC(JI,JEL,JAZ,JL-1,JH,JV,:)*XSTEP_RAD)
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:2)=ZREFL(JI,JEL,JAZ,JL,JH,JV,1:2)*ZAETOT(JH,JV,1:2)!attenuated reflectivity
IF(LWREFL) ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)*ZAETOT(JH,JV,1)
END IF
END IF
IF(.NOT.(LWREFL.AND.LWBSCS)) THEN
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)
END IF
! Quadrature on vertical reflectivities +VDOP
IF(LQUAD) THEN
ZVTEMP(:)=ZVTEMP(:)+ZREFL(JI,JEL,JAZ,JL,JH,JV,:)*PW_V(ABS((2*JV-INPTS_V-1)/2)+1) &
*EXP(-2.*LOG(2.)*PX_V(ABS((2*JV-INPTS_V-1)/2)+1)**2)
ELSE
ZVTEMP(:)=ZVTEMP(:)+ZREFL(JI,JEL,JAZ,JL,JH,JV,:)*PW_V(ABS((2*JV-INPTS_V-1)/2)+1)
END IF
END DO ! End loop on JV
IF(LQUAD) THEN
PZE(JI,JEL,JAZ,JL,:)=PZE(JI,JEL,JAZ,JL,:)+ZVTEMP(1:SIZE(PZE,5))*PW_H(ABS((2*JH-INPTS_H-1)/2)+1) &
*EXP(-2.*LOG(2.)*PX_H(ABS((2*JH-INPTS_H-1)/2)+1)**2)
IF(LWBSCS) ZCONC_BIN(JI,JEL,JAZ,JL)=ZCONC_BIN(JI,JEL,JAZ,JL)+ZVTEMP(IMAX)* &
PW_H(ABS((2*JH-INPTS_H-1)/2)+1)*EXP(-2.*LOG(2.)*PX_H(ABS((2*JH-INPTS_H-1)/2)+1)**2)
ELSE
PZE(JI,JEL,JAZ,JL,:)=PZE(JI,JEL,JAZ,JL,:)+ZVTEMP(1:SIZE(PZE,5))*PW_H(ABS((2*JH-INPTS_H-1)/2)+1)
IF(LWBSCS) ZCONC_BIN(JI,JEL,JAZ,JL)=ZCONC_BIN(JI,JEL,JAZ,JL)+ZVTEMP(IMAX)* &
PW_H(ABS((2*JH-INPTS_H-1)/2)+1)
END IF
END DO ! End loop on JH
IF(LQUAD) THEN
PZE(JI,JEL,JAZ,JL,:)=PZE(JI,JEL,JAZ,JL,:)*2.*LOG(2.)/XPI
IF(LWBSCS) ZCONC_BIN(JI,JEL,JAZ,JL)=ZCONC_BIN(JI,JEL,JAZ,JL)*2.*LOG(2.)/XPI
ELSE
PZE(JI,JEL,JAZ,JL,:)=PZE(JI,JEL,JAZ,JL,:)/XPI! ELSE REMAINS -XUNDEF
IF(LWBSCS) ZCONC_BIN(JI,JEL,JAZ,JL)=ZCONC_BIN(JI,JEL,JAZ,JL)/XPI
END IF
IF(PZE(JI,JEL,JAZ,JL,1)>=10**(XREFLVDOPMIN/10.)) THEN ! Doppler velocities if Z>=XREFLVDOPMIN dBZ
IF(LWREFL) THEN
PZE(JI,JEL,JAZ,JL,IVDOP)=PZE(JI,JEL,JAZ,JL,IVDOP)/PZE(JI,JEL,JAZ,JL,1)
ELSE IF(LWBSCS) THEN
IF(ZCONC_BIN(JI,JEL,JAZ,JL)>0.) THEN
PZE(JI,JEL,JAZ,JL,IVDOP)=PZE(JI,JEL,JAZ,JL,IVDOP)/ZCONC_BIN(JI,JEL,JAZ,JL)
ELSE
PZE(JI,JEL,JAZ,JL,IVDOP)=-XUNDEF
END IF
END IF
ELSE
PZE(JI,JEL,JAZ,JL,IVDOP)=-XUNDEF
END IF
ELSE ! ground clutter or outside Meso-NH domain
PZE(JI,JEL,JAZ,JL,1:2)=-XUNDEF
END IF
IF(PZE(JI,JEL,JAZ,JL,1) < 0.) THEN ! flag bin when underground
PZE(JI,JEL,JAZ,JL,1)=XVALGROUND
PZE(JI,JEL,JAZ,JL,IZER:IZEG)=XVALGROUND
END IF
IF(LATT) THEN
WHERE(PZE(JI,JEL,JAZ,JL,IATR:IATG)<=0.)
PZE(JI,JEL,JAZ,JL,IATR:IATG)=XVALGROUND
END WHERE
END IF
END DO
END DO
END DO
END DO
DEALLOCATE(ZREFL,ZVTEMP)
WRITE(0,*) 'NB PZE VALGROUND :', COUNT(PZE(:,:,:,:,1) ==XVALGROUND)
WRITE(0,*) 'NB PZE > 0 :', COUNT(PZE(:,:,:,:,1)>0.)
WRITE(0,*) 'NB PZE = 0 :', COUNT(PZE(:,:,:,:,1)==0.)
WRITE(0,*) 'NB PZE < 0 :', COUNT(PZE(:,:,:,:,1) < 0.)-COUNT(PZE(:,:,:,:,1) ==XVALGROUND)
IF(NDIFF/=0) DEALLOCATE(ZX,ZW)
IF (LATT) DEALLOCATE(ZAELOC,ZAETOT)
WRITE(0,*) 'END OF RADAR SCATTERING'
END SUBROUTINE RADAR_SCATTERING