Forked from
Méso-NH / Méso-NH code
2978 commits behind the upstream repository.
-
WAUTELET Philippe authored
* change intent of several dummy arguments * transform several arrays into allocatable * remove unused dummy arguments
WAUTELET Philippe authored* change intent of several dummy arguments * transform several arrays into allocatable * remove unused dummy arguments
phys_paramn.f90 56.40 KiB
!MNH_LIC Copyright 1995-2020 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! ########################
MODULE MODI_PHYS_PARAM_n
! ########################
!
!
INTERFACE
!
SUBROUTINE PHYS_PARAM_n(KTCOUNT,TPFILE,OCLOSE_OUT, &
PRAD,PSHADOWS,PKAFR,PGROUND,PMAFL,PDRAG,PTURB,PTRACER, &
PTIME_BU, PWETDEPAER, OMASKkids,OCLOUD_ONLY )
!
USE MODD_IO, ONLY: TFILEDATA
use modd_precision, only: MNHTIME
!
INTEGER, INTENT(IN) :: KTCOUNT ! temporal iteration count
TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Synchronous output file
LOGICAL, INTENT(IN) :: OCLOSE_OUT! conditional closure of the
! OUTPUT FM-file
! advection schemes
REAL(kind=MNHTIME), DIMENSION(2), INTENT(INOUT) :: PRAD,PSHADOWS,PKAFR,PGROUND,PTURB,PMAFL,PDRAG,PTRACER ! to store CPU
! time for computing time
REAL(kind=MNHTIME), DIMENSION(2), INTENT(INOUT) :: PTIME_BU ! time used in budget&LES budgets statistics
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PWETDEPAER
LOGICAL, DIMENSION(:,:), INTENT(IN) :: OMASKkids ! kids domains mask
LOGICAL, INTENT(OUT) :: OCLOUD_ONLY ! conditionnal radiation computations for
! the only cloudy columns
!
END SUBROUTINE PHYS_PARAM_n
!
END INTERFACE
!
END MODULE MODI_PHYS_PARAM_n
!
! ######################################################################
SUBROUTINE PHYS_PARAM_n(KTCOUNT,TPFILE,OCLOSE_OUT, &
PRAD,PSHADOWS,PKAFR,PGROUND,PMAFL,PDRAG,PTURB,PTRACER, &
PTIME_BU, PWETDEPAER, OMASKkids,OCLOUD_ONLY )
! ######################################################################
!
!!**** *PHYS_PARAM_n * -monitor of the parameterizations used by model _n
!!
!! PURPOSE
!! -------
! The purpose of this routine is to update the sources by adding the
! parameterized terms. This is realized by sequentially calling the
! specialized routines.
!
!!** METHOD
!! ------
!! The first parametrization is the radiation scheme:
!! ----------------
!! * CRAD = 'FIXE'
!! In this case, a temporal interpolation is performed for the downward
!! surface fluxes XFLALWD and XFLASWD.
!! * CRAD = 'ECMWF'
!! Several tests are performed before calling the radiation computations
!! interface with the ECMWF radiation scheme code. A control is made to
!! ensure that:
!! - the full radiation code is called at the first model timestep
!! - there is a priority for calling the full radiation instead of the
!! cloud-only approximation if both must be called at the current
!! timestep
!! - the cloud-only option (approximation) is coherent with the
!! occurence of one cloudy vertical column at least
!! If all the above conditions are fulfilled (GRAD is .TRUE.) then the
!! position of the sun is computed in routine SUNPOS_n and the interfacing
!! routine RADIATIONS is called to update the radiative tendency XDTHRAD
!! and the downward surface fluxes XFLALWD and XFLASWD. Finally, the
!! radiative tendency is integrated as a source term in the THETA prognostic
!! equation.
!!
!! The second parameterization is the soil scheme:
!! -----------
!!
!! externalized surface
!!
!! The third parameterization is the turbulence scheme:
!! -----------------
!! * CTURB='NONE'
!! no turbulent mixing is taken into account
!! * CTURB='TKEL'
!! The turbulent fluxes are computed according to a one and half order
!! closure of the hydrodynamical equations. This scheme is based on a
!! prognostic for the turbulent kinetic energy and a mixing length
!! computation ( the mesh size or a physically based length). Other
!! turbulent moments are diagnosed according to a stationarization of the
!! second order turbulent moments. This turbulent scheme forecasts
!! either a purely vertical turbulent mixing or 3-dimensional mixing
!! according to its internal degrees of freedom.
!!
!!
!! The LAST parameterization is the chemistry scheme:
!! -----------------
!! The chemistry part of MesoNH has two namelists, NAM_SOLVER for the
!! parameters concerning the stiff solver, and NAM_MNHCn concerning the
!! configuration and options of the chemistry module itself.
!! The switch LUSECHEM in NAM_CONF acitvates or deactivates the chemistry.
!! The only variables of MesoNH that are modified by chemistry are the
!! scalar variables. If calculation of chemical surface fluxes is
!! requested, those fluxes are calculated before
!! entering the turbulence scheme, since those fluxes are taken into
!! account by TURB as surface boundary conditions.
!! CAUTION: chemistry has allways to be called AFTER ALL OTHER TERMS
!! that affect the scalar variables (dynamical terms, forcing,
!! parameterizations (like TURB, CONVECTION), since it uses the variables
!! XRSVS as input in case of the time-split option.
!!
!! EXTERNAL
!! --------
!! Subroutine SUNPOS_n : computes the position of the sun
!! Subroutine RADIATIONS : computes the radiative tendency and fluxes
!! Subroutine TSZ0 : computes the surface from temporally
!! interpolated Ts and given z0
!! Subroutine ISBA : computes the surface fluxes from a soil scheme
!! Subroutine TURB : computes the turbulence source terms
!! Subroutine CONVECTION : computes the convection source term
!! Subroutine CH_SURFACE_FLUX_n: computes the surface flux for chemical
!! species
!! Subroutine CH_MONITOR_n : computes the chemistry source terms
!! that are applied to the scalar variables
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! USE MODD_DYN
!! USE MODD_CONF
!! USE MODD_CONF_n
!! USE MODD_CURVCOR_n
!! USE MODD_DYN_n
!! USE MODD_FIELD_n
!! USE MODD_GR_FIELD_n
!! USE MODD_LSFIELD_n
!! USE MODD_GRID_n
!! USE MODD_LBC_n
!! USE MODD_PARAM_RAD_n
!! USE MODD_RADIATIONS_n
!! USE MODD_REF_n
!! USE MODD_LUNIT_n
!! USE MODD_TIME_n
!! USE MODD_CH_MNHC_n
!!
!! REFERENCE
!! ---------
!! None
!!
!! AUTHOR
!! ------
!! J. Stein * Meteo-France *
!!
!! MODIFICATIONS
!! -------------
!! Original 05/01/95
!! Modifications Feb 14, 1995 (J.Cuxart) add the I/O arguments,
!! the director cosinus and change the names of the surface fluxes
!! Modifications March 21, 1995 (J.M.Carriere) take into account liquid
!! water
!! June 30,1995 (J.Stein) initialize at 0 the surf. fluxes
!! Modifications Sept. 1, 1995 (S.Belair) ISBA scheme
!! Modifications Sept.25, 1995 (J.Stein) switch on the radiation scheme
!! Modifications Sept. 11, 1995 (J.-P. Pinty) radiation scheme
!! Nov. 15, 1995 (J.Stein) cleaning + change the temporal
!! algorithm for the soil scheme-turbulence
!! Jan. 23, 1996 (J.Stein) add a new option for the surface
!! fluxes where Ts and z0 are given
!! March 18, 1996 (J.Stein) add the cloud fraction
!! March 28, 1996 (J.Stein) the soil scheme gives energy
!! fluxes + cleaning
!! June 17, 1996 (Lafore) statistics of computing time
!! August 4, 1996 (K. Suhre) add chemistry
!! Oct. 12, 1996 (J.Stein) use XSRCM in the turbulence
!! scheme
!! Nov. 18, 1996 (J.-P. Pinty) add domain translation
!! change arg. in radiations
!! Fev. 4, 1997 (J.Viviand) change isba's calling for ice
!! Jun. 22, 1997 (J.Stein) change the equation system and use
!! the absolute pressure
!! Jul. 09, 1997 (V.Masson) add directional z0
!! Jan. 24, 1998 (P.Bechtold) add convective transport for tracers
!! Jan. 24, 1998 (J.-P. Pinty) split SW and LW part for radiation
!! Mai. 10, 1999 (P.Bechtold) shallow convection
!! Oct. 20, 1999 (P.Jabouille) domain translation for turbulence
!! Jan. 04, 2000 (V.Masson) removes TSZ0 case
!! Jan. 04, 2000 (V.Masson) modifies albedo computation
! Jul 02, 2000 (F.Solmon/V.Masson) adaptation for patch approach
!! Nov. 15, 2000 (V.Masson) LES routines
!! Nov. 15, 2000 (V.Masson) effect of slopes on surface fluxes
!! Feb. 02, 2001 (P.Tulet) add friction velocities and aerodynamical
!! resistance (patch approach)
!! Jan. 04, 2000 (V.Masson) modify surf_rad_modif computation
!! Mar. 04, 2002 (F.Solmon) new interface for radiation call
!! Nov. 06, 2002 (V.Masson) LES budgets & budget time counters
!! Jan. 2004 (V.Masson) surface externalization
!! Jan. 13, 2004 (J.Escobar) bug correction : compute "GRAD" in parallel
!! Jan. 20, 2005 (P. Tulet) add dust sedimentation
!! Jan. 20, 2005 (P. Tulet) climatologic SSA
!! Jan. 20, 2005 (P. Tulet) add aerosol / dust scavenging
!! Jul. 2005 (N. Asencio) use the two-way result-fields
!! before ground_param call
!! May 2006 Remove EPS
!! Oct. 2007 (J.Pergaud) Add shallow_MF
!! Oct. 2009 (C.Lac) Introduction of different PTSTEP according to the
!! advection schemes
!! Oct. 2009 (V. MAsson) optimization of Pergaud et al massflux scheme
!! Aug. 2010 (V.Masson, C.Lac) Exchange of SBL_DEPTH for
!! reproducibility
!! Oct. 2010 (J.Escobar) init ZTIME_LES_MF ( pb detected with g95 )
!! Feb. 2011 (V.Masson, C.Lac) SBL_DEPTH values on outer pts
!! for RMC01
!! Sept.2011 (J.Escobar) init YINST_SFU ='M'
!!
!! Specific for 2D modeling :
!!
!! 06/2010 (P.Peyrille) add Call to aerozon.f90 if LAERO_FT=T
!! to update
!! aerosols and ozone climatology at each call to
!! phys_param otherwise it is constant to monthly average
!! 03/2013 (C.Lac) FIT temporal scheme
!! 01/2014 (C.Lac) correction for the nesting of 2D surface
!! fields if the number of the son model does not
!! follow the number of the dad model
!! J.Escobar 21/03/2013: for HALOK comment all NHALO=1 test
!! 2014 (M.Faivre)
!! 06/2016 (G.Delautier) phasage surfex 8
!! 2016 B.VIE LIMA
!! M. Leriche 02/2017 Avoid negative fluxes if sv=0 outside the physics domain
!! C.Lac 10/2017 : ch_monitor and aer_monitor extracted from phys_param
!! to be called directly by modeln as the last process
!! 02/2018 Q.Libois ECRAD
! P. Wautelet 28/03/2018: replace TEMPORAL_DIST by DATETIME_DISTANCE
! P. Wautelet 05/2016-04/2018: new data structures and calls for I/O
! P. Wautelet 28/03/2019: use MNHTIME for time measurement variables
! P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
! P. Wautelet 20/05/2019: add name argument to ADDnFIELD_ll + new ADD4DFIELD_ll subroutine
! P. Wautelet 21/11/2019: ZRG_HOUR and ZRAT_HOUR are now parameter arrays
!!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_ADV_n, ONLY : XRTKEMS
USE MODD_ARGSLIST_ll, ONLY : LIST_ll
USE MODD_BLANK
use modd_budget, only: lbudget_th, lbudget_rv, lbudget_rc, lbudget_ri, lbudget_sv, &
NBUDGET_TH, NBUDGET_RV, NBUDGET_RC, NBUDGET_RI, NBUDGET_SV1, &
tbudgets, xtime_bu_process
USE MODD_CH_AEROSOL
USE MODD_CH_MNHC_n, ONLY : LUSECHEM, &! indicates if chemistry is used
LCH_CONV_SCAV, &
LCH_CONV_LINOX
USE MODD_CLOUD_MF_n
USE MODD_CONDSAMP
USE MODD_CONF
USE MODD_CONF_n
USE MODD_CST
USE MODD_CURVCOR_n
USE MODD_DEEP_CONVECTION_n
USE MODD_DEF_EDDY_FLUX_n ! Ajout PP
USE MODD_DEF_EDDYUV_FLUX_n ! Ajout PP
USE MODD_DRAGTREE
USE MODD_DUST
USE MODD_DYN
USE MODD_DYN_n
USE MODD_FIELD_n
USE MODD_FRC
USE MODD_GRID
USE MODD_GRID_n
USE MODD_ICE_C1R3_DESCR, ONLY : XRTMIN_C1R3=>XRTMIN
USE MODD_IO, ONLY: TFILEDATA
USE MODD_LATZ_EDFLX
USE MODD_LBC_n
USE MODD_LES
USE MODD_LES_BUDGET
USE MODD_LSFIELD_n
USE MODD_LUNIT_n
USE MODD_METRICS_n
USE MODD_MNH_SURFEX_n
USE MODD_NESTING, ONLY : XWAY,NDAD, NDXRATIO_ALL, NDYRATIO_ALL
USE MODD_NSV
USE MODD_OUT_n
USE MODD_PARAM_C2R2, ONLY : LSEDC
USE MODD_PARAMETERS
USE MODD_PARAM_ICE, ONLY : LSEDIC
USE MODD_PARAM_KAFR_n
USE MODD_PARAM_LIMA, ONLY : MSEDC => LSEDC, XRTMIN_LIMA=>XRTMIN
USE MODD_PARAM_MFSHALL_n
USE MODD_PARAM_n
USE MODD_PARAM_RAD_n
USE MODD_PASPOL
USE MODD_PASPOL_n
USE MODD_PRECIP_n
use modd_precision, only: MNHTIME
USE MODD_RADIATIONS_n
USE MODD_RAIN_ICE_DESCR, ONLY : XRTMIN
USE MODD_REF_n
USE MODD_SALT
USE MODD_SHADOWS_n
USE MODD_SUB_PHYS_PARAM_n
USE MODD_TIME_n
USE MODD_TIME_n
USE MODD_TIME, ONLY : TDTEXP ! Ajout PP
USE MODD_TURB_CLOUD, ONLY : CTURBLEN_CLOUD,NMODEL_CLOUD, &
XCEI,XCEI_MIN,XCEI_MAX,XCOEF_AMPL_SAT
USE MODD_TURB_FLUX_AIRCRAFT_BALLOON, ONLY : XTHW_FLUX, XRCW_FLUX, XSVW_FLUX
USE MODD_TURB_n
USE MODE_AERO_PSD
use mode_budget, only: Budget_store_end, Budget_store_init
USE MODE_DATETIME
USE MODE_DUST_PSD
USE MODE_ll
USE MODE_MNH_TIMING
USE MODE_MODELN_HANDLER
USE MODE_MPPDB
USE MODE_SALT_PSD
USE MODI_AEROZON ! Ajout PP
USE MODI_CONDSAMP
USE MODI_CONVECTION
USE MODI_DRAG_VEG
USE MODI_DUST_FILTER
USE MODI_EDDY_FLUX_n ! Ajout PP
USE MODI_EDDY_FLUX_ONE_WAY_n ! Ajout PP
USE MODI_EDDYUV_FLUX_n ! Ajout PP
USE MODI_EDDYUV_FLUX_ONE_WAY_n ! Ajout PP
USE MODI_GROUND_PARAM_n
USE MODI_PASPOL
USE MODI_RADIATIONS
USE MODI_SALT_FILTER
USE MODI_SEDIM_DUST
USE MODI_SEDIM_SALT
USE MODI_SHALLOW_MF_PACK
USE MODI_SUNPOS_n
USE MODI_SURF_RAD_MODIF
USE MODI_SWITCH_SBG_LES_N
USE MODI_TURB
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
INTEGER, INTENT(IN) :: KTCOUNT ! temporal iteration count
TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Synchronous output file
LOGICAL, INTENT(IN) :: OCLOSE_OUT! conditional closure of the
! OUTPUT FM-file
! advection schemes
REAL(kind=MNHTIME), DIMENSION(2), INTENT(INOUT) :: PRAD,PSHADOWS,PKAFR,PGROUND,PTURB,PMAFL,PDRAG,PTRACER ! to store CPU
! time for computing time
REAL(kind=MNHTIME), DIMENSION(2), INTENT(INOUT) :: PTIME_BU ! time used in budget&LES budgets statistics
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PWETDEPAER
LOGICAL, DIMENSION(:,:), INTENT(IN) :: OMASKkids ! kids domains mask
LOGICAL, INTENT(OUT) :: OCLOUD_ONLY ! conditionnal radiation computations for
! the only cloudy columns
!
!
!* 0.2 declarations of local variables
!
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFU ! surface flux of x and
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFV ! y component of wind
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFTH ! surface flux of theta
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFRV ! surface flux of vapor
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSFSV ! surface flux of scalars
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFCO2! surface flux of CO2
!
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZDIR_ALB ! direct albedo
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSCA_ALB ! diffuse albedo
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZEMIS ! emissivity
REAL, DIMENSION(:,:), ALLOCATABLE :: ZTSRAD ! surface temperature
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZRGDST,ZSIGDST,ZNDST,ZSVDST
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZRGSLT,ZSIGSLT,ZNSLT,ZSVSLT
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZRGAER,ZSIGAER,ZNAER,ZSVAER
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZSVT
!
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZEXN ! Atmospheric density and Exner
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSIGMF ! MF contribution to XSIGS
!
REAL, DIMENSION(0:24), parameter :: ZRG_HOUR = (/ 0., 0., 0., 0., 0., 32.04, 114.19, &
228.01, 351.25, 465.49, 557.24, &
616.82, 638.33, 619.43, 566.56, &
474.71, 359.20, 230.87, 115.72, &
32.48, 0., 0., 0., 0., 0. /)
!
REAL, DIMENSION(0:24), parameter :: ZRAT_HOUR = (/ 326.00, 325.93, 325.12, 324.41, &
323.16, 321.95, 322.51, 325.16, &
328.01, 331.46, 335.58, 340.00, &
345.20, 350.32, 354.20, 356.58, &
356.56, 355.33, 352.79, 351.34, &
347.00, 342.00, 337.00, 332.00, &
326.00 /)
!
!
character(len=6) :: ynum
INTEGER :: IHOUR ! parameters necessary for the temporal
REAL :: ZTIME, ZDT ! interpolation
REAL :: ZTEMP_DIST ! time between 2 instants (in seconds)
!
LOGICAL :: GRAD ! conditionnal call for the full radiation
! computations
REAL :: ZRAD_GLOB_ll ! 'real' global parallel mask of 'GRAD'
INTEGER :: INFO_ll ! error report of parallel routines
! the only cloudy columns
!
REAL(kind=MNHTIME), DIMENSION(2) :: ZTIME1, ZTIME2, ZTIME3, ZTIME4 ! for computing time analysis
REAL(kind=MNHTIME), DIMENSION(2) :: ZTIME_LES_MF ! time spent in LES computation in shallow conv.
LOGICAL :: GDCONV ! conditionnal call for the deep convection
! computations
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZRC, ZRI, ZWT ! additional dummies
REAL, DIMENSION(:,:), ALLOCATABLE :: ZDXDY ! grid area
! for rc, ri, w required if main variables not allocated
!
INTEGER :: IIU, IJU, IKU ! dimensional indexes
!
INTEGER :: JSV ! Loop index for Scalar Variables
INTEGER :: JSWB ! loop on SW spectral bands
INTEGER :: IIB,IIE,IJB,IJE, IKB, IKE
INTEGER :: IMODEIDX
! index values for the Beginning or the End of the physical
! domain in x and y directions
TYPE(LIST_ll), POINTER :: TZFIELDS_ll ! list of fields to exchange
INTEGER :: IINFO_ll ! return code of parallel routine
!
!* variables for writing in a fm file
!
INTEGER :: IRESP ! IRESP : return-code if a problem appears
!in LFI subroutines at the open of the file
INTEGER :: ILUOUT ! logical unit numbers of output-listing
INTEGER :: IMI ! model index
INTEGER :: JKID ! loop index to look for the KID models
REAL :: ZINIRADIUSI, ZINIRADIUSJ ! ORILAM initial radius
REAL, DIMENSION(NMODE_DST) :: ZINIRADIUS ! DUST initial radius
REAL, DIMENSION(NMODE_SLT) :: ZINIRADIUS_SLT ! Sea Salt initial radius
REAL, DIMENSION(SIZE(XRSVS,1), SIZE(XRSVS,2), SIZE(XRSVS,3), SIZE(XRSVS,4)) :: ZRSVS
LOGICAL :: GCLD ! conditionnal call for dust wet deposition
! * arrays to store the surface fields before radiation and convection scheme
! calls
INTEGER :: IMODSON ! Number of son models of IMI with XWAY=2
INTEGER :: IKIDM ! index loop
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSAVE_INPRR,ZSAVE_INPRS,ZSAVE_INPRG,ZSAVE_INPRH
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSAVE_INPRC,ZSAVE_PRCONV,ZSAVE_PRSCONV
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZSAVE_DIRFLASWD, ZSAVE_SCAFLASWD,ZSAVE_DIRSRFSWD
!
!-----------------------------------------------------------------------------
NULLIFY(TZFIELDS_ll)
IMI=GET_CURRENT_MODEL_INDEX()
!
ILUOUT = TLUOUT%NLU
CALL GET_DIM_EXT_ll ('B',IIU,IJU)
IKU=SIZE(XTHT,3)
IKB = 1 + JPVEXT
IKE = IKU - JPVEXT
CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
!
ZTIME1 = 0.0_MNHTIME
ZTIME2 = 0.0_MNHTIME
ZTIME3 = 0.0_MNHTIME
ZTIME4 = 0.0_MNHTIME
PTIME_BU = 0._MNHTIME
ZTIME_LES_MF = 0.0_MNHTIME
PWETDEPAER(:,:,:,:) = 0.
!
!* allocation of variables used in more than one parameterization
!
ALLOCATE(ZSFU (IIU,IJU)) ! surface schemes + turbulence
ALLOCATE(ZSFV (IIU,IJU))
ALLOCATE(ZSFTH (IIU,IJU))
ALLOCATE(ZSFRV (IIU,IJU))
ALLOCATE(ZSFSV (IIU,IJU,NSV))
ALLOCATE(ZSFCO2(IIU,IJU))
!
!* if XWAY(son)=2 save surface fields before radiation or convective scheme
! calls
!
IMODSON = 0
DO JKID = IMI+1,NMODEL ! min value of the possible kids
IF (IMI == NDAD(JKID) .AND. XWAY(JKID) == 2. .AND. CPROGRAM=='MESONH' &
.AND. (CCONF == 'RESTA' .OR. (CCONF == 'START' .AND. KTCOUNT /= 1))) THEN
IMODSON = IMODSON + 1
END IF
END DO
!
IF (IMODSON /= 0 ) THEN
IF (LUSERC .AND. ( &
(LSEDIC .AND. CCLOUD(1:3) == 'ICE') .OR. &
(LSEDC .AND. (CCLOUD == 'C2R2' .OR. CCLOUD == 'KHKO')) .OR. &
(MSEDC .AND. CCLOUD=='LIMA') &
)) THEN
ALLOCATE( ZSAVE_INPRC(SIZE(XINPRC,1),SIZE(XINPRC,2),IMODSON))
ELSE
ALLOCATE( ZSAVE_INPRC(0,0,0))
END IF
IF (LUSERR) THEN
ALLOCATE( ZSAVE_INPRR(SIZE(XINPRR,1),SIZE(XINPRR,2),IMODSON))
ELSE
ALLOCATE( ZSAVE_INPRR(0,0,0))
END IF
IF (LUSERS) THEN
ALLOCATE( ZSAVE_INPRS(SIZE(XINPRS,1),SIZE(XINPRS,2),IMODSON))
ELSE
ALLOCATE( ZSAVE_INPRS(0,0,0))
END IF
IF (LUSERG) THEN
ALLOCATE( ZSAVE_INPRG(SIZE(XINPRG,1),SIZE(XINPRG,2),IMODSON))
ELSE
ALLOCATE( ZSAVE_INPRG(0,0,0))
END IF
IF (LUSERH) THEN
ALLOCATE( ZSAVE_INPRH(SIZE(XINPRH,1),SIZE(XINPRH,2),IMODSON))
ELSE
ALLOCATE( ZSAVE_INPRH(0,0,0))
END IF
IF (CDCONV /= 'NONE') THEN
ALLOCATE( ZSAVE_PRCONV(SIZE(XPRCONV,1),SIZE(XPRCONV,2),IMODSON))
ALLOCATE( ZSAVE_PRSCONV(SIZE(XPRSCONV,1),SIZE(XPRSCONV,2),IMODSON))
ELSE
ALLOCATE( ZSAVE_PRCONV(0,0,0))
ALLOCATE( ZSAVE_PRSCONV(0,0,0))
END IF
IF (CRAD /= 'NONE') THEN
ALLOCATE( ZSAVE_DIRFLASWD(SIZE(XDIRFLASWD,1),SIZE(XDIRFLASWD,2),SIZE(XDIRFLASWD,3),IMODSON))
ALLOCATE( ZSAVE_SCAFLASWD(SIZE(XSCAFLASWD,1),SIZE(XSCAFLASWD,2),SIZE(XSCAFLASWD,3),IMODSON))
ALLOCATE( ZSAVE_DIRSRFSWD(SIZE(XDIRSRFSWD,1),SIZE(XDIRSRFSWD,2),SIZE(XDIRSRFSWD,3),IMODSON))
ELSE
ALLOCATE( ZSAVE_DIRFLASWD(0,0,0,0))
ALLOCATE( ZSAVE_SCAFLASWD(0,0,0,0))
ALLOCATE( ZSAVE_DIRSRFSWD(0,0,0,0))
END IF
ENDIF
!
IKIDM=0
DO JKID = IMI+1,NMODEL ! min value of the possible kids
IF (IMI == NDAD(JKID) .AND. XWAY(JKID) == 2. .AND. CPROGRAM=='MESONH' &
.AND. (CCONF == 'RESTA' .OR. (CCONF == 'START' .AND. KTCOUNT /= 1))) THEN
! BUG if number of the son does not follow the number of the dad
! IKIDM = JKID-IMI
IKIDM = IKIDM + 1
IF (LUSERC .AND. ( &
(LSEDIC .AND. CCLOUD(1:3) == 'ICE') .OR. &
(LSEDC .AND. (CCLOUD == 'C2R2' .OR. CCLOUD == 'KHKO')) .OR. &
(MSEDC .AND. CCLOUD=='LIMA') &
)) THEN
ZSAVE_INPRC(:,:,IKIDM) = XINPRC(:,:)
END IF
IF (LUSERR) THEN
ZSAVE_INPRR(:,:,IKIDM) = XINPRR(:,:)
END IF
IF (LUSERS) THEN
ZSAVE_INPRS(:,:,IKIDM) = XINPRS(:,:)
END IF
IF (LUSERG) THEN
ZSAVE_INPRG(:,:,IKIDM) = XINPRG(:,:)
END IF
IF (LUSERH) THEN
ZSAVE_INPRH(:,:,IKIDM) = XINPRH(:,:)
END IF
IF (CDCONV /= 'NONE') THEN
ZSAVE_PRCONV(:,:,IKIDM) = XPRCONV(:,:)
ZSAVE_PRSCONV(:,:,IKIDM) = XPRSCONV(:,:)
END IF
IF (CRAD /= 'NONE') THEN
ZSAVE_DIRFLASWD(:,:,:,IKIDM) = XDIRFLASWD(:,:,:)
ZSAVE_SCAFLASWD(:,:,:,IKIDM) = XSCAFLASWD(:,:,:)
ZSAVE_DIRSRFSWD(:,:,:,IKIDM) = XDIRSRFSWD(:,:,:)
END IF
ENDIF
END DO
!
!-----------------------------------------------------------------------------
!
!* 1. RADIATION SCHEME
! ----------------
!
!
XTIME_BU_PROCESS = 0.
XTIME_LES_BU_PROCESS = 0.
!
CALL SECOND_MNH2(ZTIME1)
!
!
!* 1.1 Tests to control how the radiation package should be called (at the current timestep)
! -----------------------------------------------------------
!
!
GRAD = .FALSE.
OCLOUD_ONLY = .FALSE.
!
IF (CRAD /='NONE') THEN
!
! test to see if the partial radiations for cloudy must be called
!
IF (CRAD =='ECMW' .OR. CRAD =='ECRA') THEN
CALL DATETIME_DISTANCE(TDTRAD_CLONLY,TDTCUR,ZTEMP_DIST)
IF( MOD(NINT(ZTEMP_DIST/XTSTEP),NINT(XDTRAD_CLONLY/XTSTEP))==0 ) THEN
TDTRAD_CLONLY = TDTCUR
GRAD = .TRUE.
OCLOUD_ONLY = .TRUE.
END IF
END IF
!
! test to see if the full radiations must be called
!
CALL DATETIME_DISTANCE(TDTCUR,TDTRAD_FULL,ZTEMP_DIST)
IF( MOD(NINT(ZTEMP_DIST/XTSTEP),NINT(XDTRAD/XTSTEP))==0 ) THEN
TDTRAD_FULL = TDTCUR
GRAD = .TRUE.
OCLOUD_ONLY = .FALSE.
END IF
!
! tests to see if any cloud exists
!
IF (CRAD =='ECMW' .OR. CRAD =='ECRA') THEN
IF (GRAD .AND. NRR.LE.3 ) THEN
IF( MAXVAL(XCLDFR(:,:,:)).LE. 1.E-10 .AND. OCLOUD_ONLY ) THEN
GRAD = .FALSE. ! only the cloudy verticals would be
! refreshed but there is no clouds
END IF
END IF
!
IF (GRAD .AND. NRR.GE.4 ) THEN
IF( CCLOUD(1:3)=='ICE' )THEN
IF( MAXVAL(XRT(:,:,:,2)).LE.XRTMIN(2) .AND. &
MAXVAL(XRT(:,:,:,4)).LE.XRTMIN(4) .AND. OCLOUD_ONLY ) THEN
GRAD = .FALSE. ! only the cloudy verticals would be
! refreshed but there is no cloudwater and ice
END IF
END IF
IF( CCLOUD=='C3R5' )THEN
IF( MAXVAL(XRT(:,:,:,2)).LE.XRTMIN_C1R3(2) .AND. &
MAXVAL(XRT(:,:,:,4)).LE.XRTMIN_C1R3(4) .AND. OCLOUD_ONLY ) THEN
GRAD = .FALSE. ! only the cloudy verticals would be
! refreshed but there is no cloudwater and ice
END IF
END IF
IF( CCLOUD=='LIMA' )THEN
IF( MAXVAL(XRT(:,:,:,2)).LE.XRTMIN_LIMA(2) .AND. &
MAXVAL(XRT(:,:,:,4)).LE.XRTMIN_LIMA(4) .AND. OCLOUD_ONLY ) THEN
GRAD = .FALSE. ! only the cloudy verticals would be
! refreshed but there is no cloudwater and ice
END IF
END IF
END IF
END IF
!
END IF
!
! global parallel mask for 'GRAD'
ZRAD_GLOB_ll = 0.0
IF (GRAD) ZRAD_GLOB_ll = 1.0
CALL REDUCESUM_ll(ZRAD_GLOB_ll,INFO_ll)
if (ZRAD_GLOB_ll .NE. 0.0 ) GRAD = .TRUE.
!
!
IF( GRAD ) THEN
ALLOCATE(ZCOSZEN(IIU,IJU))
ALLOCATE(ZSINZEN(IIU,IJU))
ALLOCATE(ZAZIMSOL(IIU,IJU))
!
!
!* 1.2. Astronomical computations
! -------------------------
!
! Ajout PP
IF (.NOT. OCLOUD_ONLY .AND. KTCOUNT /= 1) THEN
IF (LAERO_FT) THEN
CALL AEROZON (XPABST,XTHT,XTSRAD,XLAT,XLON,TDTCUR,TDTEXP, &
NDLON,NFLEV,CAER,NAER,NSTATM, &
XSINDEL,XCOSDEL,XTSIDER,XCORSOL, &
XSTATM,XOZON, XAER)
END IF
END IF
!
CALL SUNPOS_n ( XZENITH, ZCOSZEN, ZSINZEN, ZAZIMSOL )
!
!* 1.3 Call to radiation scheme
! ------------------------
!
SELECT CASE ( CRAD )
!
!* 1.3.1 TOP of Atmposphere radiation
! ----------------------------
CASE('TOPA')
!
XFLALWD (:,:) = 300.
DO JSWB=1,NSWB_MNH
XDIRFLASWD(:,:,JSWB) = XI0 * MAX(COS(XZENITH(:,:)),0.)/REAL(NSWB_MNH)
XSCAFLASWD(:,:,JSWB) = 0.
END DO
XDTHRAD(:,:,:) = 0.
!
!* 1.3.1 FIXEd radiative surface fluxes
! ------------------------------
!
CASE('FIXE')
ZTIME = MOD(TDTCUR%TIME +XLON0*240., XDAY)
IHOUR = INT( ZTIME/3600. )
IF (IHOUR < 0) IHOUR=IHOUR + 24
ZDT = ZTIME/3600. - REAL(IHOUR)
XDIRFLASWD(:,:,:) =(( ZRG_HOUR(IHOUR+1)-ZRG_HOUR(IHOUR) )*ZDT + ZRG_HOUR(IHOUR)) / REAL(NSWB_MNH)
XFLALWD (:,:) = (ZRAT_HOUR(IHOUR+1)-ZRAT_HOUR(IHOUR))*ZDT + ZRAT_HOUR(IHOUR)
DO JSWB=1,NSWB_MNH
WHERE(ZCOSZEN(:,:)<0.) XDIRFLASWD(:,:,JSWB) = 0.
END DO
XSCAFLASWD(:,:,:) = XDIRFLASWD(:,:,:) * 0.2
XDIRFLASWD(:,:,:) = XDIRFLASWD(:,:,:) * 0.8
XDTHRAD(:,:,:) = 0.
!
!
!* 1.3.2 ECMWF or ECRAD radiative surface and atmospheric fluxes
! ----------------------------------------------
!
CASE('ECMW' , 'ECRA')
IF (LLES_MEAN) OCLOUD_ONLY=.FALSE.
XRADEFF(:,:,:)=0.0
XSWU(:,:,:)=0.0
XSWD(:,:,:)=0.0
XLWU(:,:,:)=0.0
XLWD(:,:,:)=0.0
XDTHRADSW(:,:,:)=0.0
XDTHRADLW(:,:,:)=0.0
CALL RADIATIONS ( OCLOSE_OUT, TPFILE, &
LCLEAR_SKY,OCLOUD_ONLY, NCLEARCOL_TM1,CEFRADL, CEFRADI,COPWSW,COPISW,&
COPWLW,COPILW, XFUDG, &
NDLON, NFLEV, NRAD_DIAG, NFLUX, NRAD,NAER,NSWB_OLD,NSWB_MNH,NLWB_MNH, &
NSTATM, NRAD_COLNBR, ZCOSZEN, XSEA, XCORSOL, &
XDIR_ALB, XSCA_ALB, XEMIS, XCLDFR, XCCO2, XTSRAD, XSTATM, XTHT, XRT, &
XPABST,XOZON, XAER,XDST_WL, XAER_CLIM, XSVT, &
XDTHRAD, XFLALWD, XDIRFLASWD, XSCAFLASWD, XRHODREF, XZZ , &
XRADEFF, XSWU, XSWD, XLWU, XLWD, XDTHRADSW, XDTHRADLW )
!
WRITE(UNIT=ILUOUT,FMT='(" RADIATIONS called for KTCOUNT=",I6, &
& "with the CLOUD_ONLY option set ",L2)') KTCOUNT,OCLOUD_ONLY
!
WHERE( XDIRFLASWD(:,:,1) + XSCAFLASWD(:,:,1) >0. )
XALBUV(:,:) = ( XDIR_ALB(:,:,1) * XDIRFLASWD(:,:,1) &
+ XSCA_ALB(:,:,1) * XSCAFLASWD(:,:,1) ) &
/ (XDIRFLASWD(:,:,1) + XSCAFLASWD(:,:,1) )
ELSEWHERE
XALBUV(:,:) = XDIR_ALB(:,:,1)
END WHERE
!
END SELECT
!
CALL SECOND_MNH2(ZTIME2)
!
PRAD = PRAD + ZTIME2 - ZTIME1
!
ZTIME1 = ZTIME2
!
CALL SURF_RAD_MODIF (XMAP, XXHAT, XYHAT, &
ZCOSZEN, ZSINZEN, ZAZIMSOL, XZS, XZS_XY, &
XDIRFLASWD, XDIRSRFSWD )
!
!* Azimuthal angle to be sent later to surface processes
! Defined in radian, clockwise, from North
!
XAZIM = ZAZIMSOL
!
CALL SECOND_MNH2(ZTIME2)
!
PSHADOWS = PSHADOWS + ZTIME2 - ZTIME1
!
ZTIME1 = ZTIME2
!
DEALLOCATE(ZCOSZEN)
DEALLOCATE(ZSINZEN)
DEALLOCATE(ZAZIMSOL)
!
END IF
!
!
!* 1.4 control prints
! --------------
!
!* 1.5 Radiative tendency integration
! ------------------------------
!
IF (CRAD /='NONE') THEN
if ( lbudget_th ) call Budget_store_init( tbudgets(NBUDGET_TH), 'RAD', xrths(:, :, :) )
XRTHS(:,:,:) = XRTHS(:,:,:) + XRHODJ(:,:,:)*XDTHRAD(:,:,:)
if ( lbudget_th ) call Budget_store_end ( tbudgets(NBUDGET_TH), 'RAD', xrths(:, :, :) )
END IF
!
CALL SECOND_MNH2(ZTIME2)
!
PRAD = PRAD + ZTIME2 - ZTIME1 &
- XTIME_LES_BU_PROCESS - XTIME_BU_PROCESS
!
PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS
!
!
!-----------------------------------------------------------------------------
!
!* 2. DEEP CONVECTION SCHEME
! ----------------------
!
ZTIME1 = ZTIME2
XTIME_BU_PROCESS = 0.
XTIME_LES_BU_PROCESS = 0.
!
CALL SECOND_MNH2(ZTIME1)
!
IF( CDCONV == 'KAFR' .OR. CSCONV == 'KAFR' ) THEN
if ( lbudget_th ) call Budget_store_init( tbudgets(NBUDGET_TH), 'DCONV', xrths(:, :, :) )
if ( lbudget_rv ) call Budget_store_init( tbudgets(NBUDGET_RV), 'DCONV', xrrs (:, :, :, 1) )
if ( lbudget_rc ) call Budget_store_init( tbudgets(NBUDGET_RC), 'DCONV', xrrs (:, :, :, 2) )
if ( lbudget_ri ) call Budget_store_init( tbudgets(NBUDGET_RI), 'DCONV', xrrs (:, :, :, 4) )
if ( lbudget_sv .and. lchtrans ) then
do jsv = 1, size( xrsvs, 4 )
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + jsv), 'DCONV', xrsvs (:, :, :, jsv) )
end do
end if
!
! test to see if the deep convection scheme should be called
!
GDCONV = .FALSE.
!
CALL DATETIME_DISTANCE(TDTDCONV,TDTCUR,ZTEMP_DIST)
IF( MOD(NINT(ZTEMP_DIST/XTSTEP),NINT(XDTCONV/XTSTEP))==0 ) THEN
TDTDCONV = TDTCUR
GDCONV = .TRUE.
END IF
!
IF( GDCONV ) THEN
IF (CDCONV == 'KAFR' .OR. CSCONV == 'KAFR' ) THEN
ALLOCATE( ZRC(IIU,IJU,IKU) )
ALLOCATE( ZRI(IIU,IJU,IKU) )
ALLOCATE( ZWT(IIU,IJU,IKU) )
ALLOCATE( ZDXDY(IIU,IJU) )
! Compute grid area
ZDXDY(:,:) = SPREAD(XDXHAT(1:IIU),2,IJU) * SPREAD(XDYHAT(1:IJU),1,IIU)
!
IF( LUSERC .AND. LUSERI ) THEN
ZRC(:,:,:) = XRT(:,:,:,2)
ZRI(:,:,:) = XRT(:,:,:,4)
ELSE IF( LUSERC .AND. (.NOT. LUSERI) ) THEN
ZRC(:,:,:) = XRT(:,:,:,2)
ZRI(:,:,:) = 0.0
ELSE
ZRC(:,:,:) = 0.0
ZRI(:,:,:) = 0.0
END IF
WRITE(UNIT=ILUOUT,FMT='(" CONVECTION called for KTCOUNT=",I6)') &
KTCOUNT
IF ( LFORCING .AND. L1D ) THEN
ZWT(:,:,:) = XWTFRC(:,:,:)
ELSE
ZWT(:,:,:) = XWT(:,:,:)
ENDIF
IF (LDUST) CALL DUST_FILTER(XSVT(:,:,:,NSV_DSTBEG:NSV_DSTEND), XRHODREF(:,:,:))
IF (LSALT) CALL SALT_FILTER(XSVT(:,:,:,NSV_SLTBEG:NSV_SLTEND), XRHODREF(:,:,:))
IF (LCH_CONV_LINOX) THEN
CALL CONVECTION( XDTCONV, CDCONV, CSCONV, LREFRESH_ALL, LDOWN, NICE, &
LSETTADJ, XTADJD, XTADJS, LDIAGCONV, NENSM, &
XPABST, XZZ, ZDXDY, &
XTHT, XRT(:,:,:,1), ZRC, ZRI, XUT, XVT, &
ZWT,XTKET(:,:,IKB), &
NCOUNTCONV, XDTHCONV, XDRVCONV, XDRCCONV, XDRICONV, &
XPRCONV, XPRSCONV, &
XUMFCONV,XDMFCONV,XMFCONV,XPRLFLXCONV,XPRSFLXCONV, &
XCAPE, NCLTOPCONV, NCLBASCONV, &
LCHTRANS, XSVT, XDSVCONV, &
LUSECHEM, LCH_CONV_SCAV, LCH_CONV_LINOX, &
LDUST, LSALT, &
XRHODREF, XIC_RATE, XCG_RATE )
ELSE
CALL CONVECTION( XDTCONV, CDCONV, CSCONV, LREFRESH_ALL, LDOWN, NICE, &
LSETTADJ, XTADJD, XTADJS, LDIAGCONV, NENSM, &
XPABST, XZZ, ZDXDY, &
XTHT, XRT(:,:,:,1), ZRC, ZRI, XUT, XVT, &
ZWT,XTKET(:,:,IKB), &
NCOUNTCONV, XDTHCONV, XDRVCONV, XDRCCONV, XDRICONV, &
XPRCONV, XPRSCONV, &
XUMFCONV,XDMFCONV,XMFCONV,XPRLFLXCONV,XPRSFLXCONV, &
XCAPE, NCLTOPCONV, NCLBASCONV, &
LCHTRANS, XSVT, XDSVCONV, &
LUSECHEM, LCH_CONV_SCAV, LCH_CONV_LINOX, &
LDUST, LSALT, &
XRHODREF )
END IF
!
DEALLOCATE( ZRC )
DEALLOCATE( ZRI )
DEALLOCATE( ZWT )
DEALLOCATE( ZDXDY )
END IF
END IF
!
! Deep convection tendency integration
!
XRTHS(:,:,:) = XRTHS(:,:,:) + XRHODJ(:,:,:) * XDTHCONV(:,:,:)
XRRS(:,:,:,1) = XRRS(:,:,:,1) + XRHODJ(:,:,:) * XDRVCONV(:,:,:)
!
!
! Aerosols size distribution
! Compute Rg and sigma before tracers convection tendency (for orilam, dust and sea
! salt)
!
IF ( LCHTRANS ) THEN ! update tracers for chemical transport
IF (LORILAM) ZRSVS(:,:,:,:) = XRSVS(:,:,:,:) !
IF ((LDUST)) THEN ! dust convective balance
ALLOCATE(ZSIGDST(IIU,IJU,IKU,NMODE_DST))
ALLOCATE(ZRGDST(IIU,IJU,IKU,NMODE_DST))
ALLOCATE(ZNDST(IIU,IJU,IKU,NMODE_DST))
ALLOCATE(ZSVDST(IIU,IJU,IKU,NSV_DST))
!
DO JSV=1,NMODE_DST
IMODEIDX = JPDUSTORDER(JSV)
IF (CRGUNITD=="MASS") THEN
ZINIRADIUS(JSV) = XINIRADIUS(IMODEIDX) * EXP(-3.*(LOG(XINISIG(IMODEIDX)))**2)
ELSE
ZINIRADIUS(JSV) = XINIRADIUS(IMODEIDX)
END IF
ZSIGDST(:,:,:,JSV) = XINISIG(IMODEIDX)
ZRGDST(:,:,:,JSV) = ZINIRADIUS(JSV)
ZNDST(:,:,:,JSV) = XN0MIN(IMODEIDX)
ENDDO
!
DO JSV=NSV_DSTBEG,NSV_DSTEND
ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) = XRSVS(:,:,:,JSV) * XTSTEP / XRHODJ(:,:,:)
ENDDO
CALL PPP2DUST(ZSVDST(IIB:IIE,IJB:IJE,IKB:IKE,:), XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),&
PSIG3D=ZSIGDST(IIB:IIE,IJB:IJE,IKB:IKE,:), PRG3D=ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:), &
PN3D=ZNDST(IIB:IIE,IJB:IJE,IKB:IKE,:))
END IF
!
IF ((LSALT)) THEN ! sea salt convective balance
ALLOCATE(ZSIGSLT(IIU,IJU,IKU,NMODE_SLT))
ALLOCATE(ZRGSLT(IIU,IJU,IKU,NMODE_SLT))
ALLOCATE(ZNSLT(IIU,IJU,IKU,NMODE_SLT))
ALLOCATE(ZSVSLT(IIU,IJU,IKU,NSV_SLT))
!
DO JSV=1,NMODE_SLT
IMODEIDX = JPSALTORDER(JSV)
IF (CRGUNITS=="MASS") THEN
ZINIRADIUS_SLT(JSV) = XINIRADIUS_SLT(IMODEIDX) * &
EXP(-3.*(LOG(XINISIG_SLT(IMODEIDX)))**2)
ELSE
ZINIRADIUS_SLT(JSV) = XINIRADIUS_SLT(IMODEIDX)
END IF
ZSIGSLT(:,:,:,JSV) = XINISIG_SLT(IMODEIDX)
ZRGSLT(:,:,:,JSV) = ZINIRADIUS_SLT(JSV)
ZNSLT(:,:,:,JSV) = XN0MIN_SLT(IMODEIDX)
ENDDO
!
DO JSV=NSV_SLTBEG,NSV_SLTEND
ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) = XRSVS(:,:,:,JSV) * XTSTEP / XRHODJ(:,:,:)
ENDDO
CALL PPP2SALT(ZSVSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),&
PSIG3D=ZSIGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), PRG3D=ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), &
PN3D=ZNSLT(IIB:IIE,IJB:IJE,IKB:IKE,:))
END IF
!
!
! Compute convective tendency for all tracers
!
IF (LCHTRANS) THEN
DO JSV = 1, SIZE(XRSVS,4)
XRSVS(:,:,:,JSV) = XRSVS(:,:,:,JSV) + XRHODJ(:,:,:) * XDSVCONV(:,:,:,JSV)
END DO
IF (LORILAM) THEN
DO JSV = NSV_AERBEG,NSV_AEREND
PWETDEPAER(:,:,:,JSV-NSV_AERBEG+1) = XDSVCONV(:,:,:,JSV) * XRHODJ(:,:,:)
XRSVS(:,:,:,JSV) = ZRSVS(:,:,:,JSV)
END DO
END IF
END IF
!
IF ((LDUST).AND.(LCHTRANS)) THEN ! dust convective balance
IF (CPROGRAM == "MESONH") THEN
DO JSV=NSV_DSTBEG,NSV_DSTEND
ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) = XRSVS(:,:,:,JSV) * XTSTEP / XRHODJ(:,:,:)
ENDDO
ELSE
DO JSV=NSV_DSTBEG,NSV_DSTEND
ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) = XSVT(:,:,:,JSV)
ENDDO
ENDIF
CALL DUST2PPP(ZSVDST(IIB:IIE,IJB:IJE,IKB:IKE,:), &
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), ZSIGDST(IIB:IIE,IJB:IJE,IKB:IKE,:),&
ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:))
DO JSV=NSV_DSTBEG,NSV_DSTEND
XRSVS(:,:,:,JSV) = ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) * XRHODJ(:,:,:) / XTSTEP
ENDDO
!
DEALLOCATE(ZSVDST)
DEALLOCATE(ZNDST)
DEALLOCATE(ZRGDST)
DEALLOCATE(ZSIGDST)
END IF
!
IF ((LSALT).AND.(LCHTRANS)) THEN ! sea salt convective balance
IF (CPROGRAM == "MESONH") THEN
DO JSV=NSV_SLTBEG,NSV_SLTEND
ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) = XRSVS(:,:,:,JSV) * XTSTEP / XRHODJ(:,:,:)
ENDDO
ELSE
DO JSV=NSV_SLTBEG,NSV_SLTEND
ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) = XSVT(:,:,:,JSV)
ENDDO
END IF
CALL SALT2PPP(ZSVSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), &
XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), ZSIGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:),&
ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:))
DO JSV=NSV_SLTBEG,NSV_SLTEND
XRSVS(:,:,:,JSV) = ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) * XRHODJ(:,:,:) / XTSTEP
ENDDO
!
DEALLOCATE(ZSVSLT)
DEALLOCATE(ZNSLT)
DEALLOCATE(ZRGSLT)
DEALLOCATE(ZSIGSLT)
END IF
!
END IF
!
IF( LUSERC .AND. LUSERI ) THEN
XRRS(:,:,:,2) = XRRS(:,:,:,2) + XRHODJ(:,:,:) * XDRCCONV(:,:,:)
XRRS(:,:,:,4) = XRRS(:,:,:,4) + XRHODJ(:,:,:) * XDRICONV(:,:,:)
!
ELSE IF ( LUSERC .AND. (.NOT. LUSERI) ) THEN
!
! If only cloud water but no cloud ice is used, the convective tendency
! for cloud ice is added to the tendency for cloud water
!
XRRS(:,:,:,2) = XRRS(:,:,:,2) + XRHODJ(:,:,:) * (XDRCCONV(:,:,:) + &
XDRICONV(:,:,:) )
! and cloud ice is melted
!
XRTHS(:,:,:) = XRTHS(:,:,:) - XRHODJ(:,:,:) * &
( XP00/XPABST(:,:,:) )**(XRD/XCPD) * XLMTT / XCPD * XDRICONV(:,:,:)
!
ELSE IF ( (.NOT. LUSERC) .AND. (.NOT. LUSERI) ) THEN
!
! If no cloud water and no cloud ice are used the convective tendencies for these
! variables are added to the water vapor tendency
!
XRRS(:,:,:,1) = XRRS(:,:,:,1) + XRHODJ(:,:,:) * (XDRCCONV(:,:,:) + &
XDRICONV(:,:,:) )
! and all cloud condensate is evaporated
!
XRTHS(:,:,:) = XRTHS(:,:,:) - XRHODJ(:,:,:) / XCPD * ( &
XLVTT * XDRCCONV(:,:,:) + XLSTT * XDRICONV(:,:,:) ) *&
( XP00 / XPABST(:,:,:) ) ** ( XRD / XCPD )
END IF
if ( lbudget_th ) call Budget_store_end( tbudgets(NBUDGET_TH), 'DCONV', xrths(:, :, :) )
if ( lbudget_rv ) call Budget_store_end( tbudgets(NBUDGET_RV), 'DCONV', xrrs (:, :, :, 1) )
if ( lbudget_rc ) call Budget_store_end( tbudgets(NBUDGET_RC), 'DCONV', xrrs (:, :, :, 2) )
if ( lbudget_ri ) call Budget_store_end( tbudgets(NBUDGET_RI), 'DCONV', xrrs (:, :, :, 4) )
if ( lbudget_sv .and. lchtrans ) then
do jsv = 1, size( xrsvs, 4 )
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + jsv), 'DCONV', xrsvs (:, :, :, jsv) )
end do
end if
END IF
!
CALL SECOND_MNH2(ZTIME2)
!
PKAFR = PKAFR + ZTIME2 - ZTIME1 &
- XTIME_LES_BU_PROCESS - XTIME_BU_PROCESS
!
PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS
!
!-----------------------------------------------------------------------------
!
!* 3. TURBULENT SURFACE FLUXES
! ------------------------
!
ZTIME1 = ZTIME2
!
IF (CSURF=='EXTE') THEN
CALL GOTO_SURFEX(IMI)
!
IF( LTRANS ) THEN
XUT(:,:,1+JPVEXT) = XUT(:,:,1+JPVEXT) + XUTRANS
XVT(:,:,1+JPVEXT) = XVT(:,:,1+JPVEXT) + XVTRANS
END IF
!
ALLOCATE(ZDIR_ALB(IIU,IJU,NSWB_MNH))
ALLOCATE(ZSCA_ALB(IIU,IJU,NSWB_MNH))
ALLOCATE(ZEMIS (IIU,IJU,NLWB_MNH))
ALLOCATE(ZTSRAD (IIU,IJU))
!
IKIDM=0
DO JKID = IMI+1,NMODEL ! min value of the possible kids
IF (IMI == NDAD(JKID) .AND. XWAY(JKID) == 2. .AND. &
CPROGRAM=='MESONH' .AND. &
(CCONF == 'RESTA' .OR. (CCONF == 'START' .AND. KTCOUNT /= 1))) THEN
! where kids exist, use the two-way output fields (i.e. OMASKkids true)
! rather than the farther calculations in radiation and convection schemes
! BUG if number of the son does not follow the number of the dad
! IKIDM = JKID-IMI
IKIDM = IKIDM + 1
IF (LUSERC .AND. ( &
(LSEDIC .AND. CCLOUD(1:3) == 'ICE') .OR. &
(LSEDC .AND. (CCLOUD == 'C2R2' .OR. CCLOUD == 'KHKO')) .OR. &
(MSEDC .AND. CCLOUD=='LIMA') &
)) THEN
WHERE (OMASKkids(:,:) )
XINPRC(:,:) = ZSAVE_INPRC(:,:,IKIDM)
ENDWHERE
END IF
IF (LUSERR) THEN
WHERE (OMASKkids(:,:) )
XINPRR(:,:) = ZSAVE_INPRR(:,:,IKIDM)
ENDWHERE
END IF
IF (LUSERS) THEN
WHERE (OMASKkids(:,:) )
XINPRS(:,:) = ZSAVE_INPRS(:,:,IKIDM)
ENDWHERE
END IF
IF (LUSERG) THEN
WHERE (OMASKkids(:,:) )
XINPRG(:,:) = ZSAVE_INPRG(:,:,IKIDM)
ENDWHERE
END IF
IF (LUSERH) THEN
WHERE (OMASKkids(:,:) )
XINPRH(:,:) = ZSAVE_INPRH(:,:,IKIDM)
ENDWHERE
END IF
IF (CDCONV /= 'NONE') THEN
WHERE (OMASKkids(:,:) )
XPRCONV(:,:) = ZSAVE_PRCONV(:,:,IKIDM)
XPRSCONV(:,:) = ZSAVE_PRSCONV(:,:,IKIDM)
ENDWHERE
END IF
IF (CRAD /= 'NONE') THEN
DO JSWB=1,NSWB_MNH
WHERE (OMASKkids(:,:) )
XDIRFLASWD(:,:,JSWB) = ZSAVE_DIRFLASWD(:,:,JSWB,IKIDM)
XSCAFLASWD(:,:,JSWB) = ZSAVE_SCAFLASWD(:,:,JSWB,IKIDM)
XDIRSRFSWD(:,:,JSWB) = ZSAVE_DIRSRFSWD(:,:,JSWB,IKIDM)
ENDWHERE
ENDDO
END IF
ENDIF
END DO
!
IF (IMODSON /= 0 ) THEN
DEALLOCATE( ZSAVE_INPRR,ZSAVE_INPRS,ZSAVE_INPRG,ZSAVE_INPRH)
DEALLOCATE( ZSAVE_INPRC,ZSAVE_PRCONV,ZSAVE_PRSCONV)
DEALLOCATE( ZSAVE_DIRFLASWD,ZSAVE_SCAFLASWD,ZSAVE_DIRSRFSWD)
END IF
CALL GROUND_PARAM_n(ZSFTH, ZSFRV, ZSFSV, ZSFCO2, ZSFU, ZSFV, &
ZDIR_ALB, ZSCA_ALB, ZEMIS, ZTSRAD )
!
IF (SIZE(XEMIS)>0) THEN
XDIR_ALB = ZDIR_ALB
XSCA_ALB = ZSCA_ALB
XEMIS = ZEMIS
XTSRAD = ZTSRAD
END IF
!
DEALLOCATE(ZDIR_ALB)
DEALLOCATE(ZSCA_ALB)
DEALLOCATE(ZEMIS )
DEALLOCATE(ZTSRAD )
!
!
IF( LTRANS ) THEN
XUT(:,:,1+JPVEXT) = XUT(:,:,1+JPVEXT) - XUTRANS
XVT(:,:,1+JPVEXT) = XVT(:,:,1+JPVEXT) - XVTRANS
END IF
!
ELSE
ZSFTH = 0.
ZSFRV = 0.
ZSFSV = 0.
ZSFCO2 = 0.
ZSFU = 0.
ZSFV = 0.
END IF
!
CALL SECOND_MNH2(ZTIME2)
!
PGROUND = PGROUND + ZTIME2 - ZTIME1
!
!-----------------------------------------------------------------------------
!
!* 3.1 EDDY FLUXES PARAMETRIZATION
! ------------------
!
IF (IMI==1) THEN ! On calcule les flus turb. comme preconise par PP
! Heat eddy fluxes
IF ( LTH_FLX ) CALL EDDY_FLUX_n(IMI,KTCOUNT,XVT,XTHT,XRHODJ,XRTHS,XVTH_FLUX_M,XWTH_FLUX_M)
!
! Momentum eddy fluxes
IF ( LUV_FLX ) CALL EDDYUV_FLUX_n(IMI,KTCOUNT,XVT,XTHT,XRHODJ,XRHODREF,XPABSM,XRVS,XVU_FLUX_M)
ELSE
! TEST pour maille infèrieure à 20km ?
! car pb d'instabilités ?
! Pour le modèle fils, on spawne les flux du modèle père
! Heat eddy fluxes
IF ( LTH_FLX ) CALL EDDY_FLUX_ONE_WAY_n (IMI,KTCOUNT,NDXRATIO_ALL(IMI),NDYRATIO_ALL(IMI),CLBCX,CLBCY)
!
! Momentum eddy fluxes
IF ( LUV_FLX ) CALL EDDYUV_FLUX_ONE_WAY_n (IMI,KTCOUNT,NDXRATIO_ALL(IMI),NDYRATIO_ALL(IMI),CLBCX,CLBCY)
!
END IF
!-----------------------------------------------------------------------------
!
!* 4. PASSIVE POLLUTANTS
! ------------------
!
ZTIME1 = ZTIME2
!
IF (LPASPOL) CALL PASPOL(XTSTEP, ZSFSV, ILUOUT, NVERB, OCLOSE_OUT, TPFILE)
!
!
!* 4b. PASSIVE POLLUTANTS FOR MASS-FLUX SCHEME DIAGNOSTICS
! ---------------------------------------------------
!
IF (LCONDSAMP) CALL CONDSAMP(XTSTEP, ZSFSV, ILUOUT, NVERB)
!
CALL SECOND_MNH2(ZTIME2)
!
PTRACER = PTRACER + ZTIME2 - ZTIME1
!-----------------------------------------------------------------------------
!
!* 5. Drag force
! ----------
!
ZTIME1 = ZTIME2
XTIME_BU_PROCESS = 0.
XTIME_LES_BU_PROCESS = 0.
!
IF (LDRAGTREE) CALL DRAG_VEG(XTSTEP,XUT,XVT,XTKET,LDEPOTREE,XVDEPOTREE, &
CCLOUD, XPABST,XTHT,XRT,XSVT, &
XRHODJ,XZZ,XRUS, XRVS, &
XRTKES, XRRS,XRSVS)
!
CALL SECOND_MNH2(ZTIME2)
!
PDRAG = PDRAG + ZTIME2 - ZTIME1 &
- XTIME_LES_BU_PROCESS - XTIME_BU_PROCESS
!
PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS
!
!-----------------------------------------------------------------------------
!
!* 6. TURBULENCE SCHEME
! -----------------
!
ZTIME1 = ZTIME2
XTIME_BU_PROCESS = 0.
XTIME_LES_BU_PROCESS = 0.
!
ZSFTH(:,:) = ZSFTH(:,:) * XDIRCOSZW(:,:)
ZSFRV(:,:) = ZSFRV(:,:) * XDIRCOSZW(:,:)
DO JSV=1,NSV
ZSFSV(:,:,JSV) = ZSFSV(:,:,JSV) * XDIRCOSZW(:,:)
END DO
!
IF (LLES_CALL) CALL SWITCH_SBG_LES_n
!
!
IF ( CTURB == 'TKEL' ) THEN
!
!* 6.1 complete surface flux fields on the border
!
!!$ IF(NHALO == 1) THEN
CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFTH, 'PHYS_PARAM_n::ZSFTH' )
CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFRV, 'PHYS_PARAM_n::ZSFRV' )
CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFU, 'PHYS_PARAM_n::ZSFU' )
CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFV, 'PHYS_PARAM_n::ZSFV' )
IF(NSV >0)THEN
DO JSV=1,NSV
write ( ynum, '( I6 ) ' ) jsv
CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFSV(:,:,JSV), 'PHYS_PARAM_n::ZSFSV:'//trim( adjustl( ynum ) ) )
END DO
END IF
CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFCO2, 'PHYS_PARAM_n::ZSFCO2' )
CALL UPDATE_HALO_ll(TZFIELDS_ll,IINFO_ll)
CALL CLEANLIST_ll(TZFIELDS_ll)
!!$ END IF
!
CALL MPPDB_CHECK2D(ZSFU,"phys_param::ZSFU",PRECISION)
!
IF ( CLBCX(1) /= "CYCL" .AND. LWEST_ll()) THEN
ZSFTH(IIB-1,:)=ZSFTH(IIB,:)
ZSFRV(IIB-1,:)=ZSFRV(IIB,:)
ZSFU(IIB-1,:)=ZSFU(IIB,:)
ZSFV(IIB-1,:)=ZSFV(IIB,:)
IF (NSV>0) THEN
ZSFSV(IIB-1,:,:)=ZSFSV(IIB,:,:)
WHERE ((ZSFSV(IIB-1,:,:).LT.0.).AND.(XSVT(IIB-1,:,IKB,:).EQ.0.))
ZSFSV(IIB-1,:,:) = 0.
END WHERE
ENDIF
ZSFCO2(IIB-1,:)=ZSFCO2(IIB,:)
END IF
IF ( CLBCX(2) /= "CYCL" .AND. LEAST_ll()) THEN
ZSFTH(IIE+1,:)=ZSFTH(IIE,:)
ZSFRV(IIE+1,:)=ZSFRV(IIE,:)
ZSFU(IIE+1,:)=ZSFU(IIE,:)
ZSFV(IIE+1,:)=ZSFV(IIE,:)
IF (NSV>0) THEN
ZSFSV(IIE+1,:,:)=ZSFSV(IIE,:,:)
WHERE ((ZSFSV(IIE+1,:,:).LT.0.).AND.(XSVT(IIE+1,:,IKB,:).EQ.0.))
ZSFSV(IIE+1,:,:) = 0.
END WHERE
ENDIF
ZSFCO2(IIE+1,:)=ZSFCO2(IIE,:)
END IF
IF ( CLBCY(1) /= "CYCL" .AND. LSOUTH_ll()) THEN
ZSFTH(:,IJB-1)=ZSFTH(:,IJB)
ZSFRV(:,IJB-1)=ZSFRV(:,IJB)
ZSFU(:,IJB-1)=ZSFU(:,IJB)
ZSFV(:,IJB-1)=ZSFV(:,IJB)
IF (NSV>0) THEN
ZSFSV(:,IJB-1,:)=ZSFSV(:,IJB,:)
WHERE ((ZSFSV(:,IJB-1,:).LT.0.).AND.(XSVT(:,IJB-1,IKB,:).EQ.0.))
ZSFSV(:,IJB-1,:) = 0.
END WHERE
ENDIF
ZSFCO2(:,IJB-1)=ZSFCO2(:,IJB)
END IF
IF ( CLBCY(2) /= "CYCL" .AND. LNORTH_ll()) THEN
ZSFTH(:,IJE+1)=ZSFTH(:,IJE)
ZSFRV(:,IJE+1)=ZSFRV(:,IJE)
ZSFU(:,IJE+1)=ZSFU(:,IJE)
ZSFV(:,IJE+1)=ZSFV(:,IJE)
IF (NSV>0) THEN
ZSFSV(:,IJE+1,:)=ZSFSV(:,IJE,:)
WHERE ((ZSFSV(:,IJE+1,:).LT.0.).AND.(XSVT(:,IJE+1,IKB,:).EQ.0.))
ZSFSV(:,IJE+1,:) = 0.
END WHERE
ENDIF
ZSFCO2(:,IJE+1)=ZSFCO2(:,IJE)
END IF
!
IF( LTRANS ) THEN
XUT(:,:,:) = XUT(:,:,:) + XUTRANS
XVT(:,:,:) = XVT(:,:,:) + XVTRANS
END IF
!
!
IF(ALLOCATED(XTHW_FLUX)) THEN
DEALLOCATE(XTHW_FLUX)
ALLOCATE(XTHW_FLUX(SIZE(XTHT,1),SIZE(XTHT,2),SIZE(XTHT,3)))
ELSE
ALLOCATE(XTHW_FLUX(SIZE(XTHT,1),SIZE(XTHT,2),SIZE(XTHT,3)))
END IF
IF(ALLOCATED(XRCW_FLUX)) THEN
DEALLOCATE(XRCW_FLUX)
ALLOCATE(XRCW_FLUX(SIZE(XTHT,1),SIZE(XTHT,2),SIZE(XTHT,3)))
ELSE
ALLOCATE(XRCW_FLUX(SIZE(XTHT,1),SIZE(XTHT,2),SIZE(XTHT,3)))
END IF
!
IF(ALLOCATED(XSVW_FLUX)) THEN
DEALLOCATE(XSVW_FLUX)
ALLOCATE(XSVW_FLUX(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),SIZE(XSVT,4)))
ELSE
ALLOCATE(XSVW_FLUX(SIZE(XSVT,1),SIZE(XSVT,2),SIZE(XSVT,3),SIZE(XSVT,4)))
END IF
!
CALL TURB(1,IKU,1,IMI,NRR, NRRL, NRRI, CLBCX, CLBCY, 1,NMODEL_CLOUD, &
OCLOSE_OUT,LTURB_FLX,LTURB_DIAG,LSUBG_COND,LRMC01, &
CTURBDIM,CTURBLEN,CTOM,CTURBLEN_CLOUD,CCLOUD,XIMPL, &
XTSTEP,TPFILE, &
XDXX,XDYY,XDZZ,XDZX,XDZY,XZZ, &
XDIRCOSXW,XDIRCOSYW,XDIRCOSZW,XCOSSLOPE,XSINSLOPE, &
XRHODJ,XTHVREF, &
ZSFTH,ZSFRV,ZSFSV,ZSFU,ZSFV, &
XPABST,XUT,XVT,XWT,XTKET,XSVT,XSRCT,XBL_DEPTH,XSBL_DEPTH, &
XCEI,XCEI_MIN,XCEI_MAX,XCOEF_AMPL_SAT, &
XTHT,XRT, &
XRUS,XRVS,XRWS,XRTHS,XRRS,XRSVS,XRTKES,XRTKEMS, XSIGS, XWTHVMF, &
XTHW_FLUX, XRCW_FLUX, XSVW_FLUX,XDYP, XTHP, XTR, XDISS, XLEM )
!
IF (LRMC01) THEN
CALL ADD2DFIELD_ll( TZFIELDS_ll, XSBL_DEPTH, 'PHYS_PARAM_n::XSBL_DEPTH' )
CALL UPDATE_HALO_ll(TZFIELDS_ll,IINFO_ll)
CALL CLEANLIST_ll(TZFIELDS_ll)
IF ( CLBCX(1) /= "CYCL" .AND. LWEST_ll()) THEN
XSBL_DEPTH(IIB-1,:)=XSBL_DEPTH(IIB,:)
END IF
IF ( CLBCX(2) /= "CYCL" .AND. LEAST_ll()) THEN
XSBL_DEPTH(IIE+1,:)=XSBL_DEPTH(IIE,:)
END IF
IF ( CLBCY(1) /= "CYCL" .AND. LSOUTH_ll()) THEN
XSBL_DEPTH(:,IJB-1)=XSBL_DEPTH(:,IJB)
END IF
IF ( CLBCY(2) /= "CYCL" .AND. LNORTH_ll()) THEN
XSBL_DEPTH(:,IJE+1)=XSBL_DEPTH(:,IJE)
END IF
END IF
!
CALL SECOND_MNH2(ZTIME3)
!
!-----------------------------------------------------------------------------
!
!* 7. EDMF SCHEME
! -----------
!
IF (CSCONV == 'EDKF') THEN
ALLOCATE(ZEXN (IIU,IJU,IKU))
ALLOCATE(ZSIGMF (IIU,IJU,IKU))
ZSIGMF(:,:,:)=0.
ZEXN(:,:,:)=(XPABST(:,:,:)/XP00)**(XRD/XCPD)
!$20131113 check3d on ZEXN
CALL MPPDB_CHECK3D(ZEXN,"physparan.7::ZEXN",PRECISION)
CALL ADD3DFIELD_ll( TZFIELDS_ll, ZEXN, 'PHYS_PARAM_n::ZEXN' )
!$20131113 add update_halo_ll
CALL UPDATE_HALO_ll(TZFIELDS_ll,IINFO_ll)
CALL CLEANLIST_ll(TZFIELDS_ll)
CALL MPPDB_CHECK3D(ZEXN,"physparam.7::ZEXN",PRECISION)
!
CALL SHALLOW_MF_PACK(NRR,NRRL,NRRI, CMF_UPDRAFT, CMF_CLOUD, LMIXUV, &
OCLOSE_OUT,LMF_FLX,TPFILE,ZTIME_LES_MF, &
XIMPL_MF, XTSTEP, &
XDZZ, XZZ, &
XRHODJ, XRHODREF, XPABST, ZEXN, ZSFTH, ZSFRV, &
XTHT,XRT,XUT,XVT,XWT,XTKET,XSVT, &
XRTHS,XRRS,XRUS,XRVS,XRSVS, &
ZSIGMF,XRC_MF, XRI_MF, XCF_MF, XWTHVMF)
!
ELSE
XWTHVMF(:,:,:)=0.
XRC_MF(:,:,:)=0.
XRI_MF(:,:,:)=0.
XCF_MF(:,:,:)=0.
ENDIF
!
CALL SECOND_MNH2(ZTIME4)
IF( LTRANS ) THEN
XUT(:,:,:) = XUT(:,:,:) - XUTRANS
XVT(:,:,:) = XVT(:,:,:) - XVTRANS
END IF
IF (CMF_CLOUD == 'STAT') THEN
XSIGS =SQRT( XSIGS**2 + ZSIGMF**2 )
ENDIF
IF (CSCONV == 'EDKF') THEN
DEALLOCATE(ZSIGMF)
DEALLOCATE(ZEXN)
ENDIF
END IF
!
IF (LLES_CALL) CALL SWITCH_SBG_LES_n
!
CALL SECOND_MNH2(ZTIME2)
!
PTURB = PTURB + ZTIME2 - ZTIME1 - (XTIME_LES-ZTIME_LES_MF) - XTIME_LES_BU_PROCESS &
- XTIME_BU_PROCESS - (ZTIME4 - ZTIME3)
!
PMAFL = PMAFL + ZTIME4 - ZTIME3 - ZTIME_LES_MF
!
PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS
!
!
!
!-------------------------------------------------------------------------------
!
!* deallocation of variables used in more than one parameterization
!
DEALLOCATE(ZSFU ) ! surface schemes + turbulence
DEALLOCATE(ZSFV )
DEALLOCATE(ZSFTH )
DEALLOCATE(ZSFRV )
DEALLOCATE(ZSFSV )
DEALLOCATE(ZSFCO2)
!
!-------------------------------------------------------------------------------
!
END SUBROUTINE PHYS_PARAM_n