Newer
Older
##############################################
## Hide/Show : level 1
## Fatalities
output$hide_fatalities <- eventReactive({
input$button_fatalities
},{
if(input$button_fatalities%%2 == 1) TRUE else FALSE
}, ignoreInit = TRUE)
outputOptions(output, "hide_fatalities", suspendWhenHidden = FALSE)
## Population Size
output$hide_pop_size <- eventReactive({
input$button_pop_size
},{
if(input$button_pop_size%%2 == 1) TRUE else FALSE
}, ignoreInit = TRUE)
outputOptions(output, "hide_pop_size", suspendWhenHidden = FALSE)
## Population Growth
output$hide_pop_growth <- eventReactive({
input$button_pop_growth
},{
if(input$button_pop_growth%%2 == 1) TRUE else FALSE
}, ignoreInit = TRUE)
outputOptions(output, "hide_pop_growth", suspendWhenHidden = FALSE)
## Carrying capacity
output$hide_carrying_cap <- eventReactive({
input$button_carrying_cap
},{
if(input$button_carrying_cap%%2 == 1) TRUE else FALSE
}, ignoreInit = TRUE)
outputOptions(output, "hide_carrying_cap", suspendWhenHidden = FALSE)
# Display Carrying capacity Unit Info
output$carrying_cap_unit_info <- renderText({
if(input$pop_size_unit == "Npair"){
paste0("Nombre de couple")
} else {
paste0("Effectif total")
}
})
##############################################
## Hide/Show : level 2
#------------
# Hide all
#------------
shinyjs::hide("fatalities_mean")
shinyjs::hide("fatalities_se")

thierrychambert
committed
shinyjs::hide("fatalities_lower")
shinyjs::hide("fatalities_upper")
shinyjs::hide("farm_number_cumulated")
shinyjs::hide("fatalities_mat_cumulated")
shinyjs::hide("pop_size_lower")
shinyjs::hide("pop_size_upper")
shinyjs::hide("pop_size_mean")
shinyjs::hide("pop_size_se")
shinyjs::hide("pop_size_mat_expert")
shinyjs::hide("pop_growth_lower")
shinyjs::hide("pop_growth_upper")
shinyjs::hide("pop_growth_mean")
shinyjs::hide("pop_growth_se")
shinyjs::hide("pop_growth_mat_expert")
shinyjs::hide("pop_trend")
shinyjs::hide("pop_trend_strength")
shinyjs::hide("carrying_capacity")
shinyjs::hide("carrying_cap_mat_expert")
shinyjs::hide("carrying_cap_run_expert")
#------------
# Show some
#------------
# Show inputs for fatalities part
# Show inputs for none cumulated impacts scenario
if(input$analysis_choice == "scenario"){
shinyjs::show("fatalities_input_type")
if(input$fatalities_input_type == "itvl"){

thierrychambert
committed
shinyjs::show("fatalities_lower")
shinyjs::show("fatalities_upper")
if(input$fatalities_input_type == "val"){
shinyjs::show("fatalities_mean")
shinyjs::show("fatalities_se")
}
}
}
# Show inputs for cumulated scenario
if(input$analysis_choice == "cumulated"){
shinyjs::hide("fatalities_input_type")
shinyjs::show("farm_number_cumulated")
shinyjs::show("fatalities_mat_cumulated")
# Show inputs for population size part
if(input$button_pop_size%%2 == 1){
shinyjs::show("pop_size_input_type")
if(input$pop_size_input_type == "itvl"){
shinyjs::show("pop_size_lower")
shinyjs::show("pop_size_upper")
}
shinyjs::show("pop_size_mean")
shinyjs::show("pop_size_se")
}
# Show inputs for population trend/growth part
if(input$button_pop_growth%%2 == 1){
shinyjs::show("pop_growth_input_type")
if(input$pop_growth_input_type == "itvl"){
shinyjs::show("pop_growth_lower")
shinyjs::show("pop_growth_upper")
}
shinyjs::show("pop_growth_mean")
shinyjs::show("pop_growth_se")
}
if(input$pop_trend != "stable"){
shinyjs::show("pop_trend_strength")
}
# Show inputs for carrying capacity part
if(input$button_carrying_cap%%2 == 1){
shinyjs::show("carrying_cap_input_type")
if(input$carrying_cap_input_type == "val"){
shinyjs::show("carrying_capacity")
}
if(input$carrying_cap_input_type == "eli_exp"){
shinyjs::show("carrying_cap_mat_expert")
shinyjs::show("carrying_cap_run_expert")
}
}
# Show inputs vital rates part
}) # en observe show/hide
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
##############################################
## Reactive values

thierrychambert
committed
out <- reactiveValues(run = NULL, msg = NULL)
ready <- reactiveValues(fatalities = TRUE, pop_size = TRUE, pop_growth = TRUE, carrying_capacity = TRUE)
nsim = NULL,
cumulated_impacts = FALSE,
fatalities_se = NULL,
onset_time = NULL,
onset_year = NULL,
pop_size_mean = NULL,
pop_size_se = NULL,
pop_growth_mean = NULL,
pop_growth_se = NULL,
fecundities = NULL,
survivals = NULL,
s_calibrated = NULL,
f_calibrated = NULL,
vr_calibrated = NULL,
theta = NULL,
model_demo = NULL,
time_horzion = NULL,
coeff_var_environ = NULL,
fatal_constant = NULL,
fatalities_eli_result = NULL,
pop_size_eli_result = NULL,
pop_growth_eli_result = NULL,
carrying_cap_eli_result = NULL
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
#####
################################################
## Update the vital rate matrix (mat_fill_vr)
## when changing species in the list
##----------------------------------------------
# Function to create the matrix
create.matrice <- function(data_sf, species){
out_mat <- data_sf %>%
filter(species == data_sf$Nom_espece) %>%
select(classes_age, survie, fecondite)
return(out_mat)
# Update the vital rate matrix (mat_fill_vr) when changing species in the list
input$species_choice
}, {
if(input$species_choice == "Espce gnrique") {} else {
tab_species <- create.matrice(data_sf = data_sf, species = input$species_choice)
if(all(is.na(tab_species))) {
updateMatrixInput(session, inputId = "mat_fill_vr",
value = matrix(data = NA,
nrow = 4,
ncol = 2,
dimnames = list(c("Juv 1", "Juv 2", "Juv 3", "Adulte"), c("Survie", "Fcondit"))))
} else {
number_age_class <- nrow(tab_species)
ages <- tab_species$classes_age
survivals <- tab_species$survie
fecundities <- tab_species$fecondite
updateMatrixInput(session, inputId = "mat_fill_vr",
value = matrix(data = c(survivals, fecundities),
nrow = number_age_class,
ncol = 2,
dimnames = list(ages, c("Survie", "Fcondit"))))
} # end if 2
} # end if 1
}) # end observeEvent species_list
#####
##############################################
## Update matrix cumulated impact
##-------------------------------------------
observeEvent({
input$farm_number_cumulated
}, {
nfarm <- input$farm_number_cumulated
init_cumul_new <- init_cumul[1:nfarm,]
updateMatrixInput(session, inputId = "fatalities_mat_cumulated",
value = matrix(init_cumul_new, nrow = nfarm, ncol = 3, byrow = FALSE,
dimnames = list(paste("Parc", c(1:nfarm)),
c("Moyenne",
"Erreur-type",
#####
##--------------------------------------------
##--------------------------------------------
# Function to run the elication analysis
func_eli <- function(mat_expert){
t_mat_expert <- t(mat_expert)
vals <- t_mat_expert[2:4,]
Cp <- t_mat_expert[5,]
weights <- t_mat_expert[1,]
out <- elicitation(vals, Cp, weights)
return(list(out = out, mean = out$mean_smooth, SE = sqrt(out$var_smooth)))
}
# Function to plot the elication analysis output
plot_expert <- function(out, show_se = TRUE, ...){
plot_elicitation(out, ylab = "", xlab = "Valeur du paramtre", cex.lab = 1.2, yaxt = "n")
mtext(text = "Densit de probabilit", side = 2, line = 2, cex = 1.2)
y2 <- dgamma(x = out$mean_smooth, shape = out$shape_smooth, rate = out$rate_smooth)
xx <- qgamma(p = c(0.01,0.99), shape = out$shape_smooth, rate = out$rate_smooth)
clip(xx[1], xx[2], -100, y2)
abline(v = out$mean_smooth, lwd = 3, col = "darkblue")
mtext(text = paste("Moyenne = ", round(out$mean_smooth,2)), side = 3, line = 2.5, cex = 1.2, adj = 0)
if(show_se) mtext(text = paste("Erreur-type = ", round(sqrt(out$var_smooth), 2)), side = 3, line = 1, cex = 1.2, adj = 0)
}
## Fatalities
##----------------------
observeEvent({
input$fatalities_run_expert
}, {
if( all(!is.na(input$fatalities_mat_expert)) ) {
param$fatalities_eli_result <- func_eli(input$fatalities_mat_expert)
output$title_distri_plot <- renderText({ "Mortalits annuelles" })
output$distri_plot <- renderPlot({ plot_expert(param$fatalities_eli_result$out) })
} else {
print("missing value")
} # end if
}) # end observeEvent
## Population size
##----------------------
observeEvent({
input$pop_size_run_expert
}, {
if(all(!is.na(input$pop_size_mat_expert))) {
## run elicitation analysis
param$pop_size_eli_result <- func_eli(input$pop_size_mat_expert)
output$title_distri_plot <- renderText({ "Taille de population" })
output$distri_plot <- renderPlot({ plot_expert(param$pop_size_eli_result$out) })
} else {
print("missing value")
} # end if
}) # end observeEvent
## Population growth
##----------------------
observeEvent({
input$pop_growth_run_expert
},{
if(all(!is.na(input$pop_growth_mat_expert))) {
## run elicitation analysis
param$pop_growth_eli_result <- func_eli(input$pop_growth_mat_expert)
output$title_distri_plot <- renderText({ "Taux de croissance de la population" })
output$distri_plot <- renderPlot({ plot_expert(param$pop_growth_eli_result$out) })
} else {
print("missing value")
} # end if
}) # end observeEvent
## Carrying capacity
##----------------------
observeEvent({
input$carrying_cap_run_expert
},{
if(all(!is.na(input$carrying_cap_mat_expert))) {
## run elicitation analysis
param$carrying_cap_eli_result <- func_eli(input$carrying_cap_mat_expert)
output$title_distri_plot <- renderText({ "Capacit de charge" })
output$distri_plot <- renderPlot({ plot_expert(param$carrying_cap_eli_result$out, show_se = FALSE) })
} else {
print("missing value")
} # end if
}) # end observeEvent
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
#####
#####
##--------------------------------------------
## Display parameter distribution
##--------------------------------------------
# Function to plot a gamma distribution
plot_gamma <- function(mu, se, show_mode = TRUE, show_mean = TRUE, show_se = TRUE, ...){
## Define shape and scale parameter of gamma distribution
shape = (mu/se)^2
scale = se^2/mu
par(mar = c(5, 4, 6, 2))
curve(dgamma(x, shape=shape, scale=scale), from = max(0,mu-3*se), to = mu+4*se, lwd = 3, col = "darkblue", yaxt = "n",
ylab = "", xlab = "Valeur du paramtre", cex.lab = 1.2)
mtext(text = "Densit de probabilit", side = 2, line = 2, cex = 1.2)
# show mode
MU <- (shape-1)*scale
y_MU <- dgamma(x = MU, shape = shape, scale = scale)
xx <- qgamma(p = c(0.01,0.99), shape = shape, scale = scale)
clip(xx[1], xx[2], -100, y_MU)
abline(v = MU, lwd = 3, col = "darkblue")
# show mean
y_mu <- dgamma(x = mu, shape = shape, scale = scale)
clip(xx[1], xx[2], -100, y_mu)
abline(v = mu, lwd = 2, col = "darkblue", lty = 2)
if(show_mode) mtext(text = paste("Mode = ", round(MU, 1)), side = 3, line = 4, cex = 1.2, adj = 0)
if(show_mean) mtext(text = paste("Moyenne = ", round(mu, 1)), side = 3, line = 2.5, cex = 1.2, adj = 0)
if(show_se) mtext(text = paste("Erreur-type = ", round(se, 2)), side = 3, line = 1, cex = 1.2, adj = 0)

thierrychambert
committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
} # end function plot_gamma
plot_gamma_cumulated_impacts <- function(mu, se, nparc, ...){
## Define shape and scale parameter of gamma distribution
shape = (mu/se)^2
scale = se^2/mu
## Define x and y lim
xx = yy = list()
for(j in 1:nparc){
xx[[j]] = seq(from = max(0,mu[j]-4*se[j]), to = mu[j]+4*se[j], length.out = 1e3)
yy[[j]] = dgamma(xx[[j]], shape=shape[j], scale=scale[j])
}
ylim = c(min(unlist(yy)), max(unlist(yy))*1.4)
xlim = c(min(unlist(xx)), max(unlist(xx)))
## Plot
j=1
curve(dgamma(x, shape=shape[j], scale=scale[j]),
from = max(0,mu[j]-4*se[j]), to = mu[j]+4*se[j], n = 1e4,
xlim = xlim, ylim = ylim,
lwd = 3, col = j, yaxt = "n", xaxt = "n",
#xaxp = c(round(xlim[1]), round(xlim[2]), n = 10),
ylab = "", xlab = "Valeur du paramtre", cex.lab = 1.2)
axis(side = 1, at = seq(round(xlim[1]), round(xlim[2]),
by = max(round((round(xlim[2])-round(xlim[1]))/10),1) ))
mtext(text = "Densit de probabilit", side = 2, line = 2, cex = 1.2)
y1 <- dgamma(x = mu[j], shape = shape[j], scale = scale[j])
segments(x0 = mu[j], y0 = 0, y1 = y1, lty = 2, lwd = 3, col = j)
points(x = mu[j], y = y1, pch = 19, cex = 1.5, col = j)
for(j in 2:nparc){
curve(dgamma(x, shape=shape[j], scale=scale[j]),
from = max(0,mu[j]-4*se[j]), to = mu[j]+4*se[j], n = 1e4,
lwd = 3, col = j, yaxt = "n",
ylab = "", xlab = "Valeur du paramtre", cex.lab = 1.2, add = TRUE)
y1 <- dgamma(x = mu[j], shape = shape[j], scale = scale[j])
segments(x0 = mu[j], y0 = 0, y1 = y1, lty = 2, lwd = 3, col = j)
points(x = mu[j], y = y1, pch = 19, cex = 1.5, col = j)
}
legend(x = xlim[1], y = ylim[2], legend = paste("Parc", 1:nparc),
lwd = 3, col = 1:nparc, text.col = 1:nparc, cex = 1.5,
bty = "n", horiz = TRUE)
} # end function plot_gamma_cumulated_impacts
########################
## Fatalities
##----------------------
observeEvent({
input$analysis_choice
input$button_fatalities
input$fatalities_input_type
input$fatalities_run_expert
input$farm_number_cumulated
input$fatalities_mat_cumulated
},{
if(input$analysis_choice != "cumulated"){
# Show from input values: if button is ON and input_type is set on "value" or "itvl" (thus not "eli_exp")
if(input$button_fatalities%%2 == 1 & input$fatalities_input_type != "eli_exp"){
output$title_distri_plot <- renderText({ "Mortalits annuelles" })
output$distri_plot <- renderPlot({
if(input$fatalities_input_type == "itvl"){
req(input$fatalities_lower, input$fatalities_upper)
plot_gamma(mu = tail(param$fatalities_mean, -1), se = tail(param$fatalities_se, -1))
}else{
req(input$fatalities_mean, input$fatalities_se)
plot_gamma(mu = tail(param$fatalities_mean, -1), se = tail(param$fatalities_se, -1))
}
})
} else {
# Show from elicitation expert: if button is ON and input_type is set on "expert elicitation"
if(input$button_fatalities%%2 == 1 & input$fatalities_input_type == "eli_exp"){
if(!is.null(param$fatalities_eli_result)){
output$title_distri_plot <- renderText({ "Mortalits annuelles" })
output$distri_plot <- renderPlot({ plot_expert(param$fatalities_eli_result$out) })
} else {
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
# Hide otherwise (when button is OFF)
}else{
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
}

thierrychambert
committed
# When analysis = cumulated impacts
}else{
output$title_distri_plot <- renderText({ "Mortalits annuelles par parc (impacts cumuls)" })
# Plot: note we use the "NULL + delay" sequence only to avoid error message in R console
output$distri_plot <- NULL
delay(5,
output$distri_plot <- renderPlot({
plot_gamma_cumulated_impacts(mu = input$fatalities_mat_cumulated[,1],

thierrychambert
committed
se = input$fatalities_mat_cumulated[,2],
nparc = input$farm_number_cumulated)

thierrychambert
committed
} # end "if"
########################
## Population size
##----------------------
observeEvent({
input$button_pop_size
},{
# Show from input values: if button is ON and input_type is set on "value"
if(input$button_pop_size%%2 == 1 & input$pop_size_input_type != "eli_exp"){
output$title_distri_plot <- renderText({ "Taille initiale de la population" })
output$distri_plot <- renderPlot({
req(param$pop_size_mean, param$pop_size_se)
plot_gamma(mu = param$pop_size_mean, se = param$pop_size_se)
})
} else {
# Show from elicitation expert: if button is ON and input_type is set on "expert elicitation"
if(input$button_pop_size%%2 == 1 & input$pop_size_input_type == "eli_exp"){
if(!is.null(param$pop_size_eli_result)){
output$title_distri_plot <- renderText({ "Taille initiale de la population" })
output$distri_plot <- renderPlot({ plot_expert(param$pop_size_eli_result$out) })
} else {
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
# Hide otherwise (when button is OFF)
}else{
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
########################
## Population growth
##----------------------
observeEvent({
input$pop_growth_input_type
input$button_pop_growth
},{
# Show from input values: if button is ON and input_type is set on "value" or "interval"
if(input$button_pop_growth%%2 == 1 & input$pop_growth_input_type != "eli_exp" & input$pop_growth_input_type != "trend"){
output$title_distri_plot <- renderText({ "Taux de croissance de la population" })
output$distri_plot <- renderPlot({
req(param$pop_growth_mean, param$pop_growth_se > 0)
plot_gamma(mu = param$pop_growth_mean, se = param$pop_growth_se)
})
} else {
# Show from elicitation expert: if button is ON and input_type is set on "expert elicitation"
if(input$button_pop_growth%%2 == 1 & input$pop_growth_input_type == "eli_exp"){
if(!is.null(param$pop_growth_eli_result)){
output$title_distri_plot <- renderText({ "Taux de croissance de la population" })
output$distri_plot <- renderPlot({ plot_expert(param$pop_growth_eli_result$out) })
} else {
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
# Hide otherwise (when button is OFF)
}else{
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
}
}, ignoreInit = FALSE)
########################
## Carrying capacity
##----------------------
observeEvent({
input$carrying_cap_input_type
input$button_carrying_cap
},{
# Show from elicitation expert: if button is ON and input_type is set on "expert elicitation"
if(input$button_carrying_cap%%2 == 1 & input$carrying_cap_input_type == "eli_exp"){
if(!is.null(param$carrying_cap_eli_result)){
output$title_distri_plot <- renderText({ "Capacit de charge" })
output$distri_plot <- renderPlot({ plot_expert(param$carrying_cap_eli_result$out) })
} else {
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
# Hide otherwise (when button is OFF)
}else{
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
}, ignoreInit = FALSE)
#####
#####
##-------------------------------------------------
## Display parameter values (on the side panel)
##-------------------------------------------------
#################################
##-------------------------------
output$fatalities_mean_info <- renderText({
paste0(c("Moyenne : ",
paste0(c(tail(param$fatalities_mean, -1)), collapse = ", ")
), collapse = "")
})
output$fatalities_se_info <- renderText({
paste0(c("Erreur-type : ",
paste0(c(tail(param$fatalities_se, -1)), collapse = ", ")
), collapse = "")
})

thierrychambert
committed
#################################
## Poplutation size
##-------------------------------
## UNIT

thierrychambert
committed
output$pop_size_unit_info <- renderText({
if(!is.null(param$pop_size_unit)){
if(param$pop_size_unit == "Npair"){
paste0("Nombre de couple")

thierrychambert
committed
paste0("Effectif total")

thierrychambert
committed
output$pop_size_mean_info <- renderText({ paste0("Moyenne : ", param$pop_size_mean) })
output$pop_size_se_info <- renderText({ paste0("Erreur-type : ", param$pop_size_se) })
#################################
## Population growth
##-------------------------------

thierrychambert
committed
output$pop_growth_mean_info <- renderText({ paste0("Moyenne : ", param$pop_growth_mean) })
output$pop_growth_se_info <- renderText({ paste0("Erreur-type : ", param$pop_growth_se) })
#################################

thierrychambert
committed
## Carrying capacity
##-------------------------------
# UNIT (like pop size)

thierrychambert
committed
# Source info "unit"
if(is.null(param$pop_size_unit)){
unit1 <- input$pop_size_unit
}else{
unit1 <- param$pop_size_unit
}

thierrychambert
committed

thierrychambert
committed
if(unit1 == "Npair"){
info1 <- paste0("Nombre de couple")

thierrychambert
committed
info1 <- paste0("Effectif total")

thierrychambert
committed
paste0(info1, " : ", param$carrying_capacity)
#################################
##-------------------------------
#####
##--------------------------------------------
## Select parameter values for simulations
##--------------------------------------------

thierrychambert
committed
# Functions to calculate mean and SD from lower & upper values
get_mu <- function(lower, upper) (lower + upper)/2
get_sd <- function(lower, upper, coverage) ((abs(upper - lower)/2))/qnorm(1-((1-coverage)/2))
#################################
## Cumulated impacts or not ?
##-------------------------------
observeEvent({
input$run
}, {
if(input$analysis_choice == "scenario"){
param$cumulated_impacts = FALSE
} else {
param$cumulated_impacts = TRUE
} # end if
}) # end observeEvent
#################################
## Fatalities
##-------------------------------
observe({
# Case 1 : Not cumulated effects (if1)
if(input$analysis_choice == "scenario"){
# Case 1.1 : Values from expert elicitation (if2)
if(input$fatalities_input_type == "eli_exp"){
if(!(is.null(param$fatalities_eli_result))){
param$fatalities_mean <- c(0, round(param$fatalities_eli_result$mean, 2))
param$onset_time <- NULL

thierrychambert
committed
param$fatalities_se <- c(0, round(param$fatalities_eli_result$SE, 3))
ready$fatalities <- TRUE
} else {
ready$fatalities <- FALSE
}
} else {
if(input$fatalities_input_type == "val"){
# Case 1.2 : Values directly provided as mean & SE
param$fatalities_mean <- c(0, input$fatalities_mean)
param$onset_time <- NULL
param$fatalities_se <- c(0, input$fatalities_se)
ready$fatalities <- TRUE
}else{
# Case 1.3 : Values directly provided as lower/upper interval

thierrychambert
committed
param$fatalities_mean <- c(0, round(get_mu(lower = input$fatalities_lower, upper = input$fatalities_upper), 2))

thierrychambert
committed
param$fatalities_se <- c(0, round(get_sd(lower = input$fatalities_lower, upper = input$fatalities_upper, coverage = CP), 3))
} # end (if2)
# Case 2 : Cumulated effects (if-else 1)
} else {
ready$fatalities <- TRUE
param$fatalities_mean <- c(0, input$fatalities_mat_cumulated[,1])
param$fatalities_se <- c(0, input$fatalities_mat_cumulated[,2])
param$onset_year <- c(min(input$fatalities_mat_cumulated[,3]), input$fatalities_mat_cumulated[,3])
param$onset_time <- param$onset_year - min(param$onset_year) + 1
} # end (if1)
}) # end observe
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
#################################
## Population size
##-------------------------------
observe({
# Case 1 : Values from expert elicitation
if(input$pop_size_input_type == "eli_exp"){
if(!(is.null(param$pop_size_eli_result))){
param$pop_size_mean <- round(param$pop_size_eli_result$mean)
param$pop_size_se <- round(param$pop_size_eli_result$SE)
ready$pop_size <- TRUE
} else {
ready$pop_size <- FALSE
}
} else {
if(input$pop_size_input_type == "val"){
# Case 2 : Values directly provided as mean & SE
ready$pop_size <- TRUE
param$pop_size_mean <- input$pop_size_mean
param$pop_size_se <- input$pop_size_se
}else{
# Case 3 : Values directly provided as lower/upper interval
ready$pop_size <- TRUE
param$pop_size_mean <- round(get_mu(lower = input$pop_size_lower, upper = input$pop_size_upper), 2)
param$pop_size_se <- round(get_sd(lower = input$pop_size_lower, upper = input$pop_size_upper, coverage = CP), 3)
} # end (if3)
}
param$pop_size_unit <- input$pop_size_unit
})
#################################
## Population growth
##-------------------------------
observe({
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
# Case 1 : Values from expert elicitation
if(input$pop_growth_input_type == "eli_exp"){
if(!(is.null(param$pop_growth_eli_result))){
param$pop_growth_mean <- round(min(1 + param$rMAX_species, round(param$pop_growth_eli_result$mean, 2)), 2)
param$pop_growth_se <- round(param$pop_growth_eli_result$SE, 2)
ready$pop_growth <- TRUE
} else {
ready$pop_growth <- FALSE
}
} else {
# Case 2 : Trend information
if(input$pop_growth_input_type == "trend"){
ready$pop_growth <- TRUE
if(input$pop_trend == "growth") {
if(input$pop_trend_strength == "weak") {
param$pop_growth_mean <- 1.01
} else if(input$pop_trend_strength == "average"){
param$pop_growth_mean <- 1.03
} else {
param$pop_growth_mean <- 1.06
}
} else if(input$pop_trend == "decline"){
if(input$pop_trend_strength == "weak") {
param$pop_growth_mean <- 0.99
} else if(input$pop_trend_strength == "average"){
param$pop_growth_mean <- 0.97
} else {
param$pop_growth_mean <- 0.94
}
} else {
param$pop_growth_mean <- 1
}
param$pop_growth_se <- 0
# Case 3 : Values directly provided (i.e., not from expert elicitation)
} else {
if(input$pop_growth_input_type == "val"){
# Case 2 : Values directly provided as mean & SE
ready$pop_growth <- TRUE
param$pop_growth_mean <- round(min(1 + param$rMAX_species, input$pop_growth_mean), 3)
param$pop_growth_se <- input$pop_growth_se
}else{
# Case 3 : Values directly provided as lower/upper interval
ready$pop_growth <- TRUE
param$pop_growth_mean <- round(min(1 + param$rMAX_species,
round(get_mu(lower = input$pop_growth_lower, upper = input$pop_growth_upper), 2)
), 3)
param$pop_growth_se <- round(get_sd(lower = input$pop_growth_lower, upper = input$pop_growth_upper, coverage = CP), 3)
} # end (if3)
}
}
})
#################################
## Carrying capacity
##------------------------------
observe({
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
if(input$carrying_cap_input_type == "eli_exp"){
if(!(is.null(param$carrying_cap_eli_result))){
param$carrying_capacity <- round(param$carrying_cap_eli_result$mean)
ready$carrying_capacity <- TRUE
} else {
ready$carrying_capacity <- FALSE
}
} else {
ready$carrying_capacity <- TRUE
param$carrying_capacity <- input$carrying_capacity
}
})
#############################################
## Survivals, fecundities and rMAX_species
##-------------------------------------------
observeEvent({
input$run
}, {
param$survivals <- input$mat_fill_vr[,1]
param$fecundities <- input$mat_fill_vr[,2]
param$rMAX_species <- rMAX_spp(surv = tail(param$survivals,1), afr = min(which(param$fecundities != 0)))
}) # end observeEvent
#####
#############################################
## Calibration of survivals & fecundities
##-------------------------------------------
observeEvent({
input$run
},{
param$vr_calibrated <- calibrate_params(
inits = init_calib(s = param$survivals, f = param$fecundities, lam0 = param$pop_growth_mean),
f = param$fecundities, s = param$survivals, lam0 = param$pop_growth_mean
)
param$s_calibrated <- head(param$vr_calibrated, length(param$survivals))
param$f_calibrated <- tail(param$vr_calibrated, length(param$fecundities))
})
#####
############################################################
## Observe parameter values to be used in simulations run
##----------------------------------------------------------
observe({
param # required to ensure up-to-date values are run
# simple inputs
param$nsim <- input$nsim
param$fatal_constant <- input$fatal_constant
# fixed in global environment (for now)
param$theta = theta
param$time_horzion = time_horzion
param$coeff_var_environ = coeff_var_environ
}) # end observe
#####
#####
##-----------------------------------------------------------------------------------
## RUN SIMULATIONS
##-----------------------------------------------------------------------------------
observeEvent({
input$run
}, {

thierrychambert
committed
if(ready$fatalities & ready$pop_size & ready$pop_growth & ready$carrying_capacity){
withProgress(message = 'Simulation progress', value = 0, {
out$run <- run_simul_shiny(nsim = param$nsim,
cumulated_impacts = param$cumulated_impacts,

thierrychambert
committed
fatalities_mean = param$fatalities_mean,
fatalities_se = param$fatalities_se,
onset_time = param$onset_time,

thierrychambert
committed
pop_size_mean = param$pop_size_mean,
pop_size_se = param$pop_size_se,
pop_size_type = param$pop_size_unit,

thierrychambert
committed
pop_growth_mean = param$pop_growth_mean,
pop_growth_se = param$pop_growth_se,

thierrychambert
committed
survivals = param$s_calibrated,