Newer
Older
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initial stuff
{
## Load libraries
library(shiny)
library(shinyjs)
library(shinyMatrix)
library(tidyverse)
library(eolpop)
## Load species list
species_data <- read.csv("./inst/ShinyApp/species_list.csv", sep = ",")
species_list <- unique(as.character(species_data$NomEspece))
## Load survival and fecundities data
data_sf <- read.csv("./inst/ShinyApp/survivals_fecundities_species.csv", sep = ",")#, encoding = "UTF-8")
(data_sf)
# Fixed parameters (for now)
nsim = 10
coeff_var_environ = 0.10
time_horzion = 30
theta = 1 # DD parameter theta
}
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Pre-fill data
{
## Data elicitation pre-fill data
# fatalities
eli_fatalities <- c(1.0, 2, 5, 8, 0.80,
0.2, 0, 3, 6, 0.90,
0.2, 2, 4, 10, 0.90,
0.1, 1, 3, 7, 0.70)
# population size
eli_pop_size <- c(1.0, 150, 200, 250, 0.80,
0.5, 120, 180, 240, 0.90,
0.8, 170, 250, 310, 0.90,
0.3, 180, 200, 230, 0.70)
# carrying capacity
eli_carrying_cap <- c(1.0, 500, 700, 1000, 0.80,
0.5, 1000, 1500, 2000, 0.90,
0.8, 800, 1200, 1600, 0.90,
0.3, 100, 1200, 1500, 0.70)
# population growth rate
eli_pop_growth <- c(1 , 0.95, 0.98, 1.00, 0.95,
0.2, 0.97, 1.00, 1.01, 0.90,
0.5, 0.92, 0.96, 0.99, 0.90,
0.3, 0.90, 0.95, 0.98, 0.70)
## Other pre-fill data
# fatalities for several wind farms (cumulated impacts)
init_cumul <- c(10, 5, 8,
0.05, 0.05, 0.05,
2010, 2015, 2018)
init_cumul_add <- c(3, 0.05, 2020)
}
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
titlePanel("eolpop : Impact demographique des oliennes"),
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
# Head Panel 1 : type of analysis and species
{wellPanel(
{fluidRow(
# Select type of analysis : cumulated impacted or not
{column(width = 4,
radioButtons(inputId = "analysis_choice",
h4(strong("Slectionner un type d'analyse")),
choices = c("Impacts non cumuls" = "scenario", "Impacts cumuls" = "cumulated")),
selectInput(inputId = "species_choice",
selected = 1, width = '80%',
label = h4(strong("Slectionner une espce")),
choices = species_list),
)}, # close column
# Show vital rate values
{column(width = 4,
fluidRow(
h4(strong("Paramtres dmographiques")),
tableOutput(outputId = "vital_rates_info"),
),
)}, # close column
## Modify vital rates (if needed)
{column(width = 4,
tags$style(HTML('#button_vital_rates{background-color:#C2C8D3}')),
actionButton(inputId = "button_vital_rates",
label = tags$span("Modifier les paramtres dmographiques",
style = "font-weight: bold; font-size: 18px;")
),
br(),
matrixInput(inputId = "mat_fill_vr",
label = "",
value = matrix(data = NA, 3, 2,
dimnames = list(c("Juv 1", "Juv 2", "Adulte"), c("Survie", "Fcondit"))),
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE)
)
)}, # close column
)}, # End fluidRow
)}, # End wellPanel
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
# Head Panel 2 : Model parameters
{wellPanel(
#h2("Saisie des paramtres"),
p("Saisie des paramtres", style="font-size:28px"),
{fluidRow(
##~~~~~~~~~~~~~~~~~~~~~~~~~
## 1. Fatalities
##~~~~~~~~~~~~~~~~~~~~~~~~~
{column(width = 3,
tags$style(HTML('#button_fatalities{background-color:#C2C8D3}')),
actionButton(inputId = "button_fatalities", width = '100%',
label = tags$span("Mortalits annuelles", style = "font-weight: bold; font-size: 18px;")
),
### Part for non-cumulated impacts
# Input type
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
{conditionalPanel("output.hide_fatalities",
br(),
{wellPanel(style = "background:#F0F8FF",
radioButtons(inputId = "fatalities_input_type",
label = "Type de saisie",
choices = c("Valeurs" = "val", "Elicitation d'expert" = "eli_exp")),
# Values
numericInput(inputId = "fatalities_mean",
label = "Moyenne des mortalits annuelles",
value = 5,
min = 0, max = Inf, step = 0.5),
numericInput(inputId = "fatalities_se",
label = "Erreur-type des mortalits annuelles",
value = 0.05,
min = 0, max = Inf, step = 0.1),
# Matrix for expert elicitation
matrixInput(inputId = "fatalities_mat_expert",
value = matrix(data = eli_fatalities, nrow = 4, ncol = 5,
dimnames = list(c("#1", "#2", "#3", "#4"),
c("Poids", "Min", "Best", "Max", "% IC" )),
byrow = TRUE),
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE)),
actionButton(inputId = "fatalities_run_expert", label = "Utiliser valeurs experts"),
### Part for cumulated impacts
numericInput(inputId = "farm_number_cumulated",
label = "Nombre de parcs oliens",
value = 3, min = 2, max = Inf, step = 1),
matrixInput(inputId = "fatalities_mat_cumulated",
value = matrix(init_cumul, 3, 3,
dimnames = list(c(paste0("Parc n", c(1:3))),
c("Moyenne",
"Erreur-type",
"Anne de mise en service du parc"))),
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE)),
)}, # close wellPanel
)}, # close conditional panel
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
##~~~~~~~~~~~~~~~~~~~~~~~~~
## 2. Population Size
##~~~~~~~~~~~~~~~~~~~~~~~~~
{column(width = 3,
tags$style(HTML('#button_pop_size{background-color:#C2C8D3}')),
actionButton(inputId = "button_pop_size", width = '100%',
label = tags$span("Taille de la population", style = "font-weight: bold; font-size: 18px;")
),
{conditionalPanel("output.hide_pop_size",
br(),
{wellPanel(style = "background:#FFF8DC",
radioButtons(inputId = "pop_size_unit", inline = TRUE,
label = "Unit",
choices = c("Nombre de couple" = "Npair", "Effectif total" = "Ntotal"),
selected = "Ntotal"),
)}, # close wellPanel 1
{wellPanel(style = "background:#F0F8FF",
radioButtons(inputId = "pop_size_input_type",
label = "Type de saisie",
choices = c("Valeurs" = "val", "Elicitation d'expert" = "eli_exp")),
numericInput(inputId = "pop_size_mean",
label = "Moyenne de la taille de la population",
value = 200,
min = 0, max = Inf, step = 50),
numericInput(inputId = "pop_size_se",
label = "Erreur-type de la taille de la population",
value = 25,
min = 0, max = Inf, step = 1),
matrixInput(inputId = "pop_size_mat_expert",
value = matrix(data = eli_pop_size, nrow = 4, ncol = 5,
dimnames = list(c("#1", "#2", "#3", "#4"),
c("Poids", "Min", "Best", "Max", "% IC" )),
byrow = TRUE),
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE)),
actionButton(inputId = "pop_size_run_expert", label = "Utiliser valeurs experts"),
)}, # close wellPanel 2
)}, # close conditional panel
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
##~~~~~~~~~~~~~~~~~~~~~~~~~
## 3. Population Growth
##~~~~~~~~~~~~~~~~~~~~~~~~~
{column(width = 3,
tags$style(HTML('#button_pop_growth{background-color:#C2C8D3}')),
actionButton(inputId = "button_pop_growth", width = '100%',
label = tags$span("Tendance de la population", style = "font-weight: bold; font-size: 18px;")
),
{conditionalPanel("output.hide_pop_growth",
br(),
{wellPanel(style = "background:#F0F8FF",
radioButtons(inputId = "pop_growth_input_type",
label = "Type de saisie",
choices = c("Taux de croissance" = "val",
"Elicitation d'expert" = "eli_exp",
"Tendance locale ou rgionale" = "trend")),
numericInput(inputId = "pop_growth_mean",
label = "Moyenne de la croissance de la population",
value = 1.1,
min = 0, max = Inf, step = 0.01),
numericInput(inputId = "pop_growth_se",
label = "Erreur-type de la croissance de la population",
value = 0.01,
min = 0, max = Inf, step = 0.01),
matrixInput(inputId = "pop_growth_mat_expert",
value = matrix(data = eli_pop_growth, nrow = 4, ncol = 5,
dimnames = list(c("#1", "#2", "#3", "#4"),
c("Poids", "Min", "Best", "Max", "% IC" )),
byrow = TRUE),
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE)),
actionButton(inputId = "pop_growth_run_expert", label = "Utiliser valeurs experts"),
## Input trend: radio buttons
{fluidRow(
# Trend
column(6,
radioButtons(inputId = "pop_trend",
label = "Tendance",
choices = c("Croissance", "Stable", "Dclin")),
),
# Strength of trend
column(6,
radioButtons(inputId = "pop_trend_strength",
label = "Force",
choices = c("Faible", "Moyen", "Fort")),
),
)}, # close fluidRow
)}, # close wellPanel
)}, # close conditional panel
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
##~~~~~~~~~~~~~~~~~~~~~~~~~
## 4. Carrying capacity
##~~~~~~~~~~~~~~~~~~~~~~~~~
{column(width = 3,
tags$style(HTML('#button_carrying_cap{background-color:#C2C8D3}')),
actionButton(inputId = "button_carrying_cap", width = '100%',
label = tags$span("Capacit de charge", style = "font-weight: bold; font-size: 18px;")
),
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
{conditionalPanel("output.hide_carrying_cap",
br(),
{wellPanel(style = "background:#FFF8DC",
span(textOutput(outputId = "carrying_cap_unit_info"), style="font-size:16px"),
)}, # close wellPanel 1
{wellPanel(style = "background:#F0F8FF",
radioButtons(inputId = "carrying_cap_input_type",
label = "Type de saisie",
choices = c("Valeurs" = "val", "Elicitation d'expert" = "eli_exp")),
numericInput(inputId = "carrying_capacity",
label = "Capacit de charge",
value = 500,
min = 0, max = Inf, step = 100),
matrixInput(inputId = "carrying_cap_mat_expert",
value = matrix(data = eli_carrying_cap, nrow = 4, ncol = 5,
dimnames = list(c("#1", "#2", "#3", "#4"),
c("Poids", "Min", "Best", "Max", "% IC" )),
byrow = TRUE),
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE)),
actionButton(inputId = "carrying_cap_run_expert", label = "Utiliser valeurs experts"),
)}, # close wellPanel 2
)}, # close conditional panel
)}, # end column "mortalit"
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
)}, # # End wellPanel
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
## Side Panel : Parameter information
{sidebarLayout(
{sidebarPanel(

thierrychambert
committed
p("Valeurs utilises", style="font-size:28px"),
# Mortalits annuelles
{wellPanel(style = "background:#DCDCDC",
p("Mortalits annuelles", style="font-size:20px; font-weight: bold"),
span(textOutput(outputId = "fatalities_mean_info"), style="font-size:16px"),
span(textOutput(outputId = "fatalities_se_info"), style="font-size:16px"),
)},
# Taille de population
{wellPanel(style = "background:#DCDCDC",
p("Taille de la population", style="font-size:20px; font-weight: bold"),
shiny::tags$u(textOutput(outputId = "pop_size_unit_info"), style="font-size:16px"),
p(""),
span(textOutput(outputId = "pop_size_mean_info"), style="font-size:16px"),
span(textOutput(outputId = "pop_size_se_info"), style="font-size:16px"),
# Tendance de la population
{wellPanel(style = "background:#DCDCDC",
p("Tendance de la population", style="font-size:20px; font-weight: bold"),
span(textOutput(outputId = "pop_growth_mean_info"), style="font-size:16px"),
span(textOutput(outputId = "pop_growth_se_info"), style="font-size:16px"),
)},
# Capacit de charge
{wellPanel(style = "background:#DCDCDC",
p("Capacit de charge", style="font-size:20px; font-weight: bold"),
span(textOutput(outputId = "carrying_capacity_info"), style="font-size:16px"),
)},
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tabPanel(title = "Distribution paramtres",
br(),
hr(),
#h3("Mortalits annuelles", align = "center"),
span(textOutput(outputId = "title_distri_plot"), style="font-size:24px; font-weight:bold"),
plotOutput(outputId = "distri_plot"),
numericInput(inputId = "nsim", label = "Nombre de simulations",

thierrychambert
committed
value = 10, min = 0, max = Inf, step = 10),
###### A DEPLACER #############
radioButtons(inputId = "fatal_constant",
label = h4("Modlisation"),
choices = c("Taux de mortalits (h) constant" = "h",
"Nombre de mortalits (M) constant" = "M")),
###############################
br(),
strong(span(textOutput("message"), style="color:blue; font-size:24px", align = "center")),
actionButton(inputId = "run", label = "Lancer l'analyse"),
hr(),
h4("Graphique : Impact relatif de chaque scnario", align = "center"),
plotOutput("graph_impact", width = "100%", height = "550px"),
hr(),
h4("Graphique : Trajectoire dmographique", align = "center"),
plotOutput("graph_traj", width = "100%", height = "550px")
), # End tabPanel
tabPanel(title = "Rapport",
br(),
radioButtons(inputId = "lifestyle",
h4("Mode de vie de l'espce"),
choices = c("Sdentaire", "Non-sdentaire nicheur", "Non-sdentaire hivernant", "Migrateur de passage")),
value = 5, min = 0, max = Inf, step = 1),
numericInput(inputId = "farm_number",
h4("Nombre de parcs"),
value = 1, min = 0, max = Inf, step = 1),
numericInput(inputId = "wind_turbines_2",
)} # End mainPanel
)} # sidebarLayout
)} # FluidPage
# End UI #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###