Skip to content
Snippets Groups Projects
mode_elec_tendencies.f90 149 KiB
Newer Older
!MNH_LIC Copyright 2022-2023 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
!     ###########################
      MODULE MODI_ELEC_TENDENCIES
!     ###########################
!
INTERFACE
      SUBROUTINE ELEC_TENDENCIES (D, KRR, KMICRO, PTSTEP, ODMICRO,                            &
                                  PRHODREF, PRHODJ, PZT, PCIT,                                &
                                  PRVT, PRCT, PRRT, PRIT, PRST, PRGT,                         &
                                  PQPIT, PQCT, PQRT, PQIT, PQST, PQGT, PQNIT,                 &
                                  PQPIS, PQCS, PQRS, PQIS, PQSS, PQGS, PQNIS,                 &
                                  PRVHENI, PRRHONG, PRIMLTC,                                  &
                                  PRCHONI, PRVDEPS, PRIAGGS, PRIAUTS, PRVDEPG,                &
                                  PRCAUTR, PRCACCR, PRREVAV,                                  &
                                  PRCRIMSS, PRCRIMSG, PRSRIMCG, PRRACCSS, PRRACCSG, PRSACCRG, &
                                  PRSMLTG, PRICFRRG, PRRCFRIG,                                &
                                  PRCWETG, PRIWETG, PRRWETG, PRSWETG,                         &
                                  PRCDRYG, PRIDRYG, PRRDRYG, PRSDRYG,                         &
                                  PRGMLTR, PRCBERI,                                           & 
                                  PRCMLTSR, PRICFRR,                                          & !- opt. param. for ICE3 
                                  PCCT, PCRT, PCST, PCGT,                                     & !-- optional
                                  PRVHENC, PRCHINC, PRVHONH,                                  & !| parameters 
                                  PRRCVRC, PRICNVI, PRVDEPI, PRSHMSI, PRGHMGI,                & !|    for
                                  PRICIBU, PRIRDSF,                                           & !|    LIMA
                                  PRCCORR2, PRRCORR2, PRICORR2,                               & !--
                                  PRWETGH, PRCWETH, PRIWETH, PRSWETH, PRGWETH, PRRWETH,       & !--  optional
                                  PRCDRYH, PRIDRYH, PRSDRYH, PRRDRYH, PRGDRYH,                & !|  parameters
                                  PRHMLTR, PRDRYHG,                                           & !|     for
                                  PRHT, PRHS, PCHT, PQHT, PQHS)                                 !--    hail                          
!
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
!
TYPE(DIMPHYEX_t),                     INTENT(IN)    :: D
!
INTEGER,                              INTENT(IN)    :: KMICRO
REAL,                                 INTENT(IN)    :: PTSTEP  ! Double Time step
                                                               ! (single if cold start)
INTEGER,                              INTENT(IN)    :: KRR     ! Number of moist variable
!
LOGICAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   :: ODMICRO ! mask to limit computation
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRHODREF! Reference density
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRHODJ  ! Dry density * Jacobian
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PZT     ! Temperature (K)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PCIT    ! Pristine ice n.c. at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRVT    ! Water vapor m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRCT    ! Cloud water m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRRT    ! Rain water m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRIT    ! Pristine ice m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRST    ! Snow/aggregate m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRGT    ! Graupel/hail m.r. at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQPIT   ! Positive ion (Nb/kg) at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQNIT   ! Negative ion (Nb/kg) at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQCT    ! Cloud water charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQRT    ! Raindrops charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQIT    ! Pristine ice charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQST    ! Snow/aggregates charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQGT    ! Graupel charge at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQPIS   ! Positive ion (Nb/kg) source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQNIS   ! Negative ion (Nb/kg) source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQCS    ! Cloud water charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQRS    ! Raindrops charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQIS    ! Pristine ice charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQSS    ! Snow/aggregates charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQGS    ! Graupel charge source
!
! microphysics rates common to ICE3 and LIMA
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRVHENI, &  ! heterogeneous nucleation mixing ratio change (HIND for LIMA)
                                                       PRCHONI, &  ! Homogeneous nucleation
                                                       PRRHONG, &  ! Spontaneous freezing mixing ratio change
                                                       PRVDEPS, &  ! Deposition on r_s,
                                                       PRIAGGS, &  ! Aggregation on r_s
                                                       PRIAUTS, &  ! Autoconversion of r_i for r_s production (CNVS for LIMA)
                                                       PRVDEPG, &  ! Deposition on r_g
                                                       PRCAUTR, &  ! Autoconversion of r_c for r_r production
                                                       PRCACCR, &  ! Accretion of r_c for r_r production
                                                       PRREVAV, &  ! Evaporation of r_r
                                                       PRIMLTC, &  ! Cloud ice melting mixing ratio change
                                                       PRCBERI, &  ! Bergeron-Findeisen effect
                                                       PRSMLTG, &  ! Conversion-Melting of the aggregates
                                                       PRRACCSS, PRRACCSG, PRSACCRG, & ! Rain accretion onto the aggregates
                                                       PRCRIMSS, PRCRIMSG, PRSRIMCG, & ! Cloud droplet riming of the aggregates
                                                       PRICFRRG, PRRCFRIG,           & ! Rain contact freezing
                                                       PRCWETG, PRIWETG, PRRWETG, PRSWETG, &  ! Graupel wet growth
                                                       PRCDRYG, PRIDRYG, PRRDRYG, PRSDRYG, &  ! Graupel dry growth
                                                       PRGMLTR     ! Melting of the graupel
! microphysics rates specific to ICE3 (knmoments==1)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PRCMLTSR,&  ! Cld droplet collection onto aggregates by pos. temp.
                                                               PRICFRR     ! Rain contact freezing (part of ice crystals converted to rain)
! microphysics rates specific to LIMA (knmoments==2)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PRVHENC, &  ! Cld droplet formation
                                                               PRCHINC, &  ! Heterogeneous nucleation of coated IFN
                                                               PRVHONH, &  ! Nucleation of haze
                                                               PRRCVRC, &  ! Conversion of small drops into droplets
                                                               PRICNVI, &  ! Conversion snow --> ice
                                                               PRVDEPI, &  ! Deposition on r_i
                                                               PRSHMSI, PRGHMGI, & ! Hallett Mossop for snow and graupel
                                                               PRICIBU, &  ! Collisional ice breakup
                                                               PRIRDSF, &  ! Raindrop shattering by freezing
                                                               PRCCORR2, PRRCORR2, PRICORR2 ! Correction inside LIMA splitting
! microphysics rates related to hail (krr == 7, lhail = .t.)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PRWETGH, &  ! Conversion of graupel into hail
                                                               PRCWETH, PRIWETH, PRSWETH, PRGWETH, PRRWETH, & ! Dry growth of hail
                                                               PRCDRYH, PRIDRYH, PRSDRYH, PRRDRYH, PRGDRYH, & ! Wet growth of hail
                                                               PRHMLTR, &                                     ! Melting of hail  
                                                               PRDRYHG     ! Conversion of hail into graupel
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PCCT   ! Cloud droplets conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PCRT   ! Raindrops conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PCST   ! Snow conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PCGT   ! Graupel conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PCHT   ! Hail conc. at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PRHT   ! Hail m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(INOUT) :: PRHS   ! Hail m.r. source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PQHT   ! Hail charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(INOUT) :: PQHS   ! Hail charge source
!
END SUBROUTINE ELEC_TENDENCIES
END INTERFACE
END MODULE MODI_ELEC_TENDENCIES
!
!
!     #########################################################################################
      SUBROUTINE ELEC_TENDENCIES (D, KRR, KMICRO, PTSTEP, ODMICRO,                            &
                                  PRHODREF, PRHODJ, PZT, PCIT,                                &
                                  PRVT, PRCT, PRRT, PRIT, PRST, PRGT,                         &
                                  PQPIT, PQCT, PQRT, PQIT, PQST, PQGT, PQNIT,                 &
                                  PQPIS, PQCS, PQRS, PQIS, PQSS, PQGS, PQNIS,                 &
                                  PRVHENI, PRRHONG, PRIMLTC,                                  &
                                  PRCHONI, PRVDEPS, PRIAGGS, PRIAUTS, PRVDEPG,                &
                                  PRCAUTR, PRCACCR, PRREVAV,                                  &
                                  PRCRIMSS, PRCRIMSG, PRSRIMCG, PRRACCSS, PRRACCSG, PRSACCRG, &
                                  PRSMLTG, PRICFRRG, PRRCFRIG,                                &
                                  PRCWETG, PRIWETG, PRRWETG, PRSWETG,                         &
                                  PRCDRYG, PRIDRYG, PRRDRYG, PRSDRYG,                         &
                                  PRGMLTR, PRCBERI,                                           & 
                                  PRCMLTSR, PRICFRR,                                          & !- opt. param. for ICE3 
                                  PCCT, PCRT, PCST, PCGT,                                     & !-- optional
                                  PRVHENC, PRCHINC, PRVHONH,                                  & !| parameters 
                                  PRRCVRC, PRICNVI, PRVDEPI, PRSHMSI, PRGHMGI,                & !|    for
                                  PRICIBU, PRIRDSF,                                           & !|    LIMA
                                  PRCCORR2, PRRCORR2, PRICORR2,                               & !--
                                  PRWETGH, PRCWETH, PRIWETH, PRSWETH, PRGWETH, PRRWETH,       & !--  optional
                                  PRCDRYH, PRIDRYH, PRSDRYH, PRRDRYH, PRGDRYH,                & !|  parameters
                                  PRHMLTR, PRDRYHG,                                           & !|     for
                                  PRHT, PRHS, PCHT, PQHT, PQHS)                                 !--    hail
!     ##########################################################################################
!
!!****  * - compute the explicit cloud electrification sources
!!
!!    This routine is adapted from rain_ice_elec.f90.
!!    To avoid duplicated routines, the cloud electrification routine is now called 
!!    at the end of the microphysics scheme but needs the microphysical tendencies as arguments.
!!    The sedimentation source for electric charges is treated separately.
!!
!!    AUTHOR
!!    ------
!!      C. Barthe    * LAERO *
!!
!!    MODIFICATIONS
!!    -------------
!!      Original    February 2022
!!
!!      Modifications
!! C. Barthe   12/04/2022   include electrification from LIMA
!! C. Barthe   22/03/2023   5-6: take into account news from LIMA (Ns, Ng, Nh, CIBU and RDSF) and PHYEX
!! C. Barthe   13/07/2023   5-6: Ns, Ng and Nh can be pronostic variables (LIMA2)
!! C. Barthe   22/11/2023   initialize Nx to 0 when 1-moment
!!
!------------------------------------------------------------------
!
!*      0.    DECLARATIONS
!             ------------
!
use modd_budget,          only: lbu_enable,                                                 &
                                lbudget_th, lbudget_rv, lbudget_rc, lbudget_rr, lbudget_ri, &
                                lbudget_rs, lbudget_rg, lbudget_rh, lbudget_sv,             &
                                NBUDGET_TH, NBUDGET_RV, NBUDGET_RC, NBUDGET_RR, NBUDGET_RI, &
                                NBUDGET_RS, NBUDGET_RG, NBUDGET_RH, NBUDGET_SV1,            &
                                tbudgets
!
USE MODD_CONF
USE MODD_CST
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
USE MODD_ELEC_DESCR
USE MODD_ELEC_n
USE MODD_ELEC_PARAM
USE MODD_LES
USE MODE_ll
USE MODD_NSV,              ONLY: NSV_ELECBEG, NSV_ELECEND ! Scalar variables for budgets
USE MODD_PARAMETERS
USE MODD_PARAM_LIMA,       ONLY: XALPHAI_L=>XALPHAI, XNUI_L=>XNUI,   &
                                 XCEXVT_L=>XCEXVT, XRTMIN_L=>XRTMIN, &
                                 LCIBU, LRDSF,                       &
                                 NMOM_C, NMOM_R, NMOM_I, NMOM_S, NMOM_G, NMOM_H
USE MODD_PARAM_LIMA_COLD,  ONLY: XAI_L=>XAI, XBI_L=>XBI,   &
                                 XDS_L=>XDS, XCXS_L=>XCXS, &
                                 XCOLEXIS_L=>XCOLEXIS
USE MODD_PARAM_LIMA_MIXED, ONLY: XDG_L=>XDG, XCXG_L=>XCXG,                           &
                                 XCOLIG_L=>XCOLIG, XCOLEXIG_L=>XCOLEXIG,             &
                                 XCOLSG_L=>XCOLSG, XCOLEXSG_L=>XCOLEXSG,             &
                                 NGAMINC_L=>NGAMINC,                                 &
                                 NACCLBDAR_L=>NACCLBDAR, NACCLBDAS_L=>NACCLBDAS,     &
                                 XACCINTP1S_L=>XACCINTP1S, XACCINTP2S_L=>XACCINTP2S, &
                                 XACCINTP1R_L=>XACCINTP1R, XACCINTP2R_L=>XACCINTP2R, &
                                 NDRYLBDAR_L=>NDRYLBDAR, NDRYLBDAS_L=>NDRYLBDAS,     &
                                 NDRYLBDAG_L=>NDRYLBDAG,                             &
                                 XDRYINTP1R_L=>XDRYINTP1R, XDRYINTP2R_L=>XDRYINTP2R, &
                                 XDRYINTP1S_L=>XDRYINTP1S, XDRYINTP2S_L=>XDRYINTP2S, &
                                 XDRYINTP1G_L=>XDRYINTP1G, XDRYINTP2G_L=>XDRYINTP2G, &
                                 XRIMINTP1_L=>XRIMINTP1,   XRIMINTP2_L=>XRIMINTP2

USE MODD_PARAM_n,         ONLY: CCLOUD
USE MODD_RAIN_ICE_DESCR_n,ONLY: XCEXVT_I=>XCEXVT, XRTMIN_I=>XRTMIN,                       &
                                XALPHAI_I=>XALPHAI, XNUI_I=>XNUI, XAI_I=>XAI, XBI_I=>XBI, &
                                XDS_I=>XDS, XDG_I=>XDG,                                   &
                                XCXS_I=>XCXS, XCXG_I=>XCXG
USE MODD_RAIN_ICE_PARAM_n,ONLY: XCOLIS_I=>XCOLIS, XCOLEXIS_I=>XCOLEXIS,             &
                                XCOLIG_I=>XCOLIG, XCOLEXIG_I=>XCOLEXIG,             &
                                XCOLSG_I=>XCOLSG, XCOLEXSG_I=>XCOLEXSG,             &
                                NGAMINC_I=>NGAMINC,                                 &                                
                                NACCLBDAR_I=>NACCLBDAR, NACCLBDAS_I=>NACCLBDAS,     &
                                XACCINTP1S_I=>XACCINTP1S, XACCINTP2S_I=>XACCINTP2S, &
                                XACCINTP1R_I=>XACCINTP1R, XACCINTP2R_I=>XACCINTP2R, &
                                NDRYLBDAR_I=>NDRYLBDAR, NDRYLBDAS_I=>NDRYLBDAS,     &
                                NDRYLBDAG_I=>NDRYLBDAG,                             &
                                XDRYINTP1R_I=>XDRYINTP1R, XDRYINTP2R_I=>XDRYINTP2R, &
                                XDRYINTP1S_I=>XDRYINTP1S, XDRYINTP2S_I=>XDRYINTP2S, &
                                XDRYINTP1G_I=>XDRYINTP1G, XDRYINTP2G_I=>XDRYINTP2G, &
                                XRIMINTP1_I=>XRIMINTP1,   XRIMINTP2_I=>XRIMINTP2
USE MODD_REF,             ONLY: XTHVREFZ
!
#ifdef MNH_PGI
USE MODE_PACK_PGI
#endif
use mode_tools,           only: Countjv
use mode_budget,          only: Budget_store_add, Budget_store_init, Budget_store_end
!
USE MODI_COMPUTE_LAMBDA
USE MODI_ELEC_COMPUTE_EX
USE MODI_MOMG
!
IMPLICIT NONE
!
!
!*      0.1   Declaration of dummy arguments
!
TYPE(DIMPHYEX_t),                     INTENT(IN)    :: D
!
INTEGER,                              INTENT(IN)    :: KMICRO
REAL,                                 INTENT(IN)    :: PTSTEP  ! Double Time step
                                                               ! (single if cold start)
INTEGER,                              INTENT(IN)    :: KRR     ! Number of moist variable
!
LOGICAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN)   :: ODMICRO ! mask to limit computation
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRHODREF! Reference density
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRHODJ  ! Dry density * Jacobian
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PZT     ! Temperature (K)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PCIT    ! Pristine ice n.c. at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRVT    ! Water vapor m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRCT    ! Cloud water m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRRT    ! Rain water m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRIT    ! Pristine ice m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRST    ! Snow/aggregate m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRGT    ! Graupel/hail m.r. at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQPIT   ! Positive ion (Nb/kg) at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQNIT   ! Negative ion (Nb/kg) at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQCT    ! Cloud water charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQRT    ! Raindrops charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQIT    ! Pristine ice charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQST    ! Snow/aggregates charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PQGT    ! Graupel charge at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQPIS   ! Positive ion (Nb/kg) source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQNIS   ! Negative ion (Nb/kg) source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQCS    ! Cloud water charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQRS    ! Raindrops charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQIS    ! Pristine ice charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQSS    ! Snow/aggregates charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(INOUT) :: PQGS    ! Graupel charge source
!
! microphysics rates common to ICE3 and LIMA
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),   INTENT(IN)    :: PRVHENI, &  ! heterogeneous nucleation mixing ratio change (HIND for LIMA)
                                                       PRCHONI, &  ! Homogeneous nucleation
                                                       PRRHONG, &  ! Spontaneous freezing mixing ratio change
                                                       PRVDEPS, &  ! Deposition on r_s,
                                                       PRIAGGS, &  ! Aggregation on r_s
                                                       PRIAUTS, &  ! Autoconversion of r_i for r_s production (CNVS for LIMA)
                                                       PRVDEPG, &  ! Deposition on r_g
                                                       PRCAUTR, &  ! Autoconversion of r_c for r_r production
                                                       PRCACCR, &  ! Accretion of r_c for r_r production
                                                       PRREVAV, &  ! Evaporation of r_r
                                                       PRIMLTC, &  ! Cloud ice melting mixing ratio change
                                                       PRCBERI, &  ! Bergeron-Findeisen effect
                                                       PRSMLTG, &  ! Conversion-Melting of the aggregates
                                                       PRRACCSS, PRRACCSG, PRSACCRG, & ! Rain accretion onto the aggregates
                                                       PRCRIMSS, PRCRIMSG, PRSRIMCG, & ! Cloud droplet riming of the aggregates
                                                       PRICFRRG, PRRCFRIG,           & ! Rain contact freezing
                                                       PRCWETG, PRIWETG, PRRWETG, PRSWETG, &  ! Graupel wet growth
                                                       PRCDRYG, PRIDRYG, PRRDRYG, PRSDRYG, &  ! Graupel dry growth
                                                       PRGMLTR     ! Melting of the graupel
! microphysics rates specific to ICE3 (knmoments==1)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PRCMLTSR,&  ! Cld droplet collection onto aggregates by pos. temp.
                                                               PRICFRR     ! Rain contact freezing (part of ice crystals converted to rain)
! microphysics rates specific to LIMA (knmoments==2)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PRVHENC, &  ! Cld droplet formation
                                                               PRCHINC, &  ! Heterogeneous nucleation of coated IFN
                                                               PRVHONH, &  ! Nucleation of haze
                                                               PRRCVRC, &  ! Conversion of small drops into droplets
                                                               PRICNVI, &  ! Conversion snow --> ice
                                                               PRVDEPI, &  ! Deposition on r_i
                                                               PRSHMSI, PRGHMGI, & ! Hallett Mossop for snow and graupel
                                                               PRICIBU, &  ! Collisional ice breakup
                                                               PRIRDSF, &  ! Raindrop shattering by freezing
                                                               PRCCORR2, PRRCORR2, PRICORR2 ! Correction inside LIMA splitting
! microphysics rates related to hail (krr == 7, lhail = .t.)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PRWETGH, &  ! Conversion of graupel into hail
                                                               PRCWETH, PRIWETH, PRSWETH, PRGWETH, PRRWETH, & ! Dry growth of hail
                                                               PRCDRYH, PRIDRYH, PRSDRYH, PRRDRYH, PRGDRYH, & ! Wet growth of hail
                                                               PRHMLTR, &                                     ! Melting of hail  
                                                               PRDRYHG     ! Conversion of hail into graupel
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PCCT   ! Cloud droplets conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PCRT   ! Raindrops conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PCST   ! Snow conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PCGT   ! Graupel conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PCHT   ! Hail conc. at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PRHT   ! Hail m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(INOUT) :: PRHS   ! Hail m.r. source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN)    :: PQHT   ! Hail charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(INOUT) :: PQHS   ! Hail charge source
!
!
!*      0.2   Declaration of local variables    
!
INTEGER :: II, JJ, JL     ! Loop indexes
INTEGER :: IIB, IIE, &    ! Define the domain
           IJB, IJE, &    ! where the microphysical sources
           IKB, IKE       ! must be computed
INTEGER                    :: IMICRO   ! nb of pts where r_x > 0
INTEGER, DIMENSION(KMICRO) :: I1
INTEGER, DIMENSION(KMICRO) :: II1, II2, II3
!
LOGICAL, DIMENSION(KMICRO) :: GMASK    !          Mask 
!REAL,    DIMENSION(KMICRO) :: ZMASK    !       to reduce
INTEGER                    :: IGMASK   ! the computation domain
!
REAL, DIMENSION(KMICRO) :: ZRHODREF  ! Reference density
REAL, DIMENSION(KMICRO) :: ZRHODJ    ! RHO times Jacobian
REAL, DIMENSION(KMICRO) :: ZZT     ! Temperature
!
REAL, DIMENSION(KMICRO) :: ZRVT    ! Water vapor m.r. at t 
REAL, DIMENSION(KMICRO) :: ZRCT    ! Cloud water m.r. at t 
REAL, DIMENSION(KMICRO) :: ZRRT    ! Rain water m.r. at t 
REAL, DIMENSION(KMICRO) :: ZRIT    ! Pristine ice m.r. at t
REAL, DIMENSION(KMICRO) :: ZRST    ! Snow/aggregate m.r. at t
REAL, DIMENSION(KMICRO) :: ZRGT    ! Graupel m.r. at t
REAL, DIMENSION(KMICRO) :: ZRHT    ! Hail m.r. at t
REAL, DIMENSION(KMICRO) :: ZCCT    ! Cloud water conc. at t
REAL, DIMENSION(KMICRO) :: ZCRT    ! Raindrops conc. at t
REAL, DIMENSION(KMICRO) :: ZCIT    ! Pristine ice conc. at t
REAL, DIMENSION(KMICRO) :: ZCST    ! Snow/aggregate conc. at t
REAL, DIMENSION(KMICRO) :: ZCGT    ! Graupel conc. at t
REAL, DIMENSION(KMICRO) :: ZCHT    ! Hail conc. at t
!
REAL, DIMENSION(KMICRO) :: ZQPIT   ! Positive ion (/kg) at t
REAL, DIMENSION(KMICRO) :: ZQNIT   ! Negative ion (/kg) at t
REAL, DIMENSION(KMICRO) :: ZQCT    ! Cloud water charge at t
REAL, DIMENSION(KMICRO) :: ZQRT    ! Raindrops charge at t
REAL, DIMENSION(KMICRO) :: ZQIT    ! Pristine ice charge at t
REAL, DIMENSION(KMICRO) :: ZQST    ! Snow/aggregate charge at t
REAL, DIMENSION(KMICRO) :: ZQGT    ! Graupel charge at t
REAL, DIMENSION(KMICRO) :: ZQHT    ! Hail charge at t
!
REAL, DIMENSION(KMICRO) :: ZQPIS   ! Positive ion (/kg) source
REAL, DIMENSION(KMICRO) :: ZQNIS   ! Negative ion (/kg) source
REAL, DIMENSION(KMICRO) :: ZQCS    ! Cloud water charge source
REAL, DIMENSION(KMICRO) :: ZQRS    ! Raindrops charge source
REAL, DIMENSION(KMICRO) :: ZQIS    ! Pristine ice charge source
REAL, DIMENSION(KMICRO) :: ZQSS    ! Snow/aggregate charge source
REAL, DIMENSION(KMICRO) :: ZQGS    ! Graupel charge source
REAL, DIMENSION(KMICRO) :: ZQHS    ! Hail charge source
!
REAL, DIMENSION(KMICRO) :: ZLBDAC  ! Slope parameter of the droplets distribution
REAL, DIMENSION(KMICRO) :: ZLBDAR  ! Slope parameter of the raindrop distribution
REAL, DIMENSION(KMICRO) :: ZLBDAI  ! Slope parameter of the pristine ice distribution
REAL, DIMENSION(KMICRO) :: ZLBDAS  ! Slope parameter of the aggregate distribution
REAL, DIMENSION(KMICRO) :: ZLBDAG  ! Slope parameter of the graupel distribution
REAL, DIMENSION(KMICRO) :: ZLBDAH  ! Slope parameter of the hail distribution
!
REAL, DIMENSION(KMICRO) :: ZECT    !
REAL, DIMENSION(KMICRO) :: ZERT    !     e_x coef
REAL, DIMENSION(KMICRO) :: ZEIT    !      in the 
REAL, DIMENSION(KMICRO) :: ZEST    ! q_x - D_x relation
REAL, DIMENSION(KMICRO) :: ZEGT    !
REAL, DIMENSION(KMICRO) :: ZEHT    !
!
LOGICAL, DIMENSION(KMICRO,4) :: GELEC  ! Mask for non-inductive charging
!
REAL, DIMENSION(:), ALLOCATABLE :: ZDQ, ZDQ_IS, ZDQ_IG, ZDQ_SG
!
! Non-inductive charging process following Gardiner et al. (1995)
REAL, DIMENSION(:), ALLOCATABLE :: ZDELTALWC ! Gap between LWC and a critical LWC
REAL, DIMENSION(:), ALLOCATABLE :: ZFT       ! Fct depending on temperature
!
! Non-inductive charging process following Saunders et al. (1991) / EW
REAL, DIMENSION(:), ALLOCATABLE :: ZEW      ! Effective liquid water content
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNSK  ! constant B 
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNIM  !  d_i exponent
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNIN  !  v_g/s-v_i
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNSM  !  d_s exponent
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNSN  !  v_g-v_s
REAL, DIMENSION(:), ALLOCATABLE :: ZFQIAGGS, ZFQIDRYGBS
REAL, DIMENSION(:), ALLOCATABLE :: ZLBQSDRYGB1S, ZLBQSDRYGB2S, ZLBQSDRYGB3S
!
! Non-inductive charging process following Saunders and Peck (1998) / RAR
REAL, DIMENSION(:), ALLOCATABLE :: ZRAR        ! Rime accretion rate
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNIM_IS  !  d_i exponent
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNIN_IS  !  v_g/s-v_i
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNIM_IG  !  d_i exponent
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNIN_IG  !  v_g/s-v_i
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNSK_SG  ! constant B 
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNSM_SG  !  d_s exponent
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNSN_SG  !  v_g-v_s
!
! Inductive charging process (Ziegler et al., 1991)
REAL, DIMENSION(:), ALLOCATABLE :: ZEFIELDW  ! Vertical component of the electric field
!
REAL, DIMENSION(KMICRO) :: ZLIMIT   ! Used to limit the charge separated during NI process 
REAL, DIMENSION(KMICRO) :: ZQCOLIS  ! Collection efficiency between ice and snow
REAL, DIMENSION(KMICRO) :: ZQCOLIG  ! Collection efficiency between ice and graupeln
REAL, DIMENSION(KMICRO) :: ZQCOLSG  ! Collection efficiency between snow and graupeln
!
REAL                    :: ZRHO00, ZCOR00   ! Surface reference air density
REAL, DIMENSION(KMICRO) :: ZRHOCOR  ! Density correction for fallspeed
!
INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC1, IVEC2                   ! Vectors of indices for interpolation
REAL,    DIMENSION(:), ALLOCATABLE :: ZVEC1, ZVEC2, ZVEC3            ! Work vectors for interpolation
REAL,    DIMENSION(:), ALLOCATABLE :: ZVECQ1, ZVECQ2, ZVECQ3, ZVECQ4 ! Work vectors for interpolation
!
REAL,    DIMENSION(KMICRO)   :: ZWQ, ZWQ_NI                    !  Work arrays
REAL,    DIMENSION(KMICRO)   :: ZWQ1, ZWQ2, ZWQ3, ZWQ4         !      for 
REAL,    DIMENSION(KMICRO,9) :: ZWQ5                           ! charge transfer
!
! variables used to select between common parameters between ICEx and LIMA
INTEGER :: IMOM_C, IMOM_R, IMOM_I, IMOM_S, IMOM_G, IMOM_H ! number of moments for each hydrometeor
INTEGER :: IGAMINC,              &
           IACCLBDAR, IACCLBDAS, &
           IDRYLBDAR, IDRYLBDAS, IDRYLBDAG
!
REAL    :: ZCEXVT,                                               &
           ZALPHAI, ZNUI, ZAI, ZBI, ZDS, ZDG, ZCXS, ZCXG,        &
           ZCOLIS, ZCOLEXIS, ZCOLIG, ZCOLEXIG, ZCOLSG, ZCOLEXSG, &
           ZACCINTP1S, ZACCINTP2S, ZACCINTP1R, ZACCINTP2R,       &
           ZDRYINTP1R, ZDRYINTP2R, ZDRYINTP1S, ZDRYINTP2S,       &
           ZDRYINTP1G, ZDRYINTP2G,                               &
           ZRIMINTP1,  ZRIMINTP2
REAL, DIMENSION(:), ALLOCATABLE :: ZRTMIN
!
! microphysical tendencies have to be transformed in 1D arrays
REAL, DIMENSION(KMICRO) :: ZRVHENI, ZRCHONI, ZRRHONG, ZRVDEPS, ZRIAGGS,      &
                           ZRIAUTS, ZRVDEPG, ZRCAUTR, ZRCACCR, ZRREVAV,      &
                           ZRIMLTC, ZRCBERI, ZRSMLTG, ZRRACCSS, ZRRACCSG,    &
                           ZRSACCRG, ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRICFRRG, &
                           ZRRCFRIG, ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG,     &
                           ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, ZRGMLTR
! optional microphysical tendencies
REAL, DIMENSION(:), ALLOCATABLE :: ZRCMLTSR, ZRICFRR, ZRVHENC, ZRCHINC, ZRVHONH,     &
                                   ZRRCVRC, ZRICNVI, ZRVDEPI, ZRSHMSI, ZRGHMGI,      &
                                   ZRICIBU, ZRIRDSF, ZRCCORR2, ZRRCORR2, ZRICORR2,   &
                                   ZRWETGH, ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH,      &
                                   ZRRWETH, ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH,      &
                                   ZRGDRYH, ZRHMLTR, ZRDRYHG 
!
!------------------------------------------------------------------
!
!*      1.    INITIALIZATIONS
!             ---------------
!
!*      1.1   compute the loop bounds
!
IIB = D%NIB
IIE = D%NIE
IJB = D%NJB
IJE = D%NJE
IKB = D%NKB
IKE = D%NKE
!
!
!*      1.2   select parameters between ICEx and LIMA
!
IF (CCLOUD(1:3) == 'ICE') THEN
  ZCEXVT = XCEXVT_I
  IMOM_C = 1
  IMOM_R = 1
  IMOM_I = 2 ! Ni is diagnostic and always available
  IMOM_S = 1
  IMOM_G = 1
  IF (KRR == 7) THEN
    IMOM_H = 1
  ELSE
    IMOM_H = 0
  END IF
ELSE IF (CCLOUD == 'LIMA') THEN
  ZCEXVT = XCEXVT_L
  IMOM_C = NMOM_C
  IMOM_R = NMOM_R
  IMOM_I = 2 ! Ni is diagnostic and always available
  IMOM_S = NMOM_S
  IMOM_G = NMOM_G
  IMOM_H = NMOM_H
END IF
!
ZRHO00 = XP00 / (XRD * XTHVREFZ(IKB))
ZCOR00 = ZRHO00**ZCEXVT
!
IF (LINDUCTIVE) ALLOCATE (ZEFIELDW(KMICRO))
!
!
!*      1.3   packing
!
!  optimization by looking for locations where
!  the microphysical fields are larger than a minimal value only !!!
!
IF (KMICRO >= 0) THEN
  IMICRO = COUNTJV(ODMICRO(:,:,:), II1(:), II2(:), II3(:))
  !
  ! some microphysical tendencies are optional: the corresponding 1D arrays must be allocated
  IF (CCLOUD(1:3) == 'ICE') THEN  ! ICE3 scheme
    ALLOCATE(ZRCMLTSR(IMICRO))
    ALLOCATE(ZRICFRR(IMICRO))
  END IF
  IF (CCLOUD == 'LIMA') THEN  ! LIMA scheme
    ALLOCATE(ZRVHENC(IMICRO))
    ALLOCATE(ZRCHINC(IMICRO))
    ALLOCATE(ZRVHONH(IMICRO))
    ALLOCATE(ZRRCVRC(IMICRO))
    ALLOCATE(ZRICNVI(IMICRO))
    ALLOCATE(ZRVDEPI(IMICRO))
    ALLOCATE(ZRSHMSI(IMICRO))
    ALLOCATE(ZRGHMGI(IMICRO))
    ALLOCATE(ZRICIBU(IMICRO))
    ALLOCATE(ZRIRDSF(IMICRO))
    ALLOCATE(ZRCCORR2(IMICRO))
    ALLOCATE(ZRRCORR2(IMICRO))
    ALLOCATE(ZRICORR2(IMICRO))
  END IF
  IF (KRR == 7) THEN ! hail activated
    ALLOCATE(ZRWETGH(IMICRO))
    ALLOCATE(ZRCWETH(IMICRO))
    ALLOCATE(ZRIWETH(IMICRO))
    ALLOCATE(ZRSWETH(IMICRO))
    ALLOCATE(ZRGWETH(IMICRO))
    ALLOCATE(ZRRWETH(IMICRO))
    ALLOCATE(ZRCDRYH(IMICRO))
    ALLOCATE(ZRRDRYH(IMICRO))
    ALLOCATE(ZRIDRYH(IMICRO))
    ALLOCATE(ZRSDRYH(IMICRO))
    ALLOCATE(ZRGDRYH(IMICRO))
    ALLOCATE(ZRHMLTR(IMICRO))
    ALLOCATE(ZRDRYHG(IMICRO))
  END IF
  !
  DO JL = 1, IMICRO
    ZZT(JL)      = PZT(II1(JL),II2(JL),II3(JL))
    ZRHODREF(JL) = PRHODREF(II1(JL),II2(JL),II3(JL))
    ZRHOCOR(JL)  = (ZRHO00 / ZRHODREF(JL))**ZCEXVT
    ZRHODJ(JL)   = PRHODJ(II1(JL),II2(JL),II3(JL))
    !
    ZCIT(JL)     = PCIT(II1(JL),II2(JL),II3(JL))
    IF (IMOM_C == 2) ZCCT(JL) = PCCT(II1(JL),II2(JL),II3(JL))
    IF (IMOM_R == 2) ZCRT(JL) = PCRT(II1(JL),II2(JL),II3(JL))
    IF (IMOM_S == 2) ZCST(JL) = PCST(II1(JL),II2(JL),II3(JL))
    IF (IMOM_G == 2) ZCGT(JL) = PCGT(II1(JL),II2(JL),II3(JL))
    IF (IMOM_H == 2) ZCHT(JL) = PCHT(II1(JL),II2(JL),II3(JL))
    IF (IMOM_C == 1) ZCCT(JL) = 0.
    IF (IMOM_R == 1) ZCRT(JL) = 0.
    IF (IMOM_S == 1) ZCST(JL) = 0.
    IF (IMOM_G == 1) ZCGT(JL) = 0.
    IF (IMOM_H == 1) ZCHT(JL) = 0.
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
    !
    ZRVT(JL)  = PRVT(II1(JL),II2(JL),II3(JL))
    ZRCT(JL)  = PRCT(II1(JL),II2(JL),II3(JL))
    ZRRT(JL)  = PRRT(II1(JL),II2(JL),II3(JL))
    ZRIT(JL)  = PRIT(II1(JL),II2(JL),II3(JL))
    ZRST(JL)  = PRST(II1(JL),II2(JL),II3(JL))
    ZRGT(JL)  = PRGT(II1(JL),II2(JL),II3(JL))
    IF (KRR == 7) ZRHT(JL) = PRHT(II1(JL),II2(JL),II3(JL))
    !
    ZQPIT(JL) = PQPIT(II1(JL),II2(JL),II3(JL))
    ZQNIT(JL) = PQNIT(II1(JL),II2(JL),II3(JL))
    ZQCT(JL)  = PQCT(II1(JL),II2(JL),II3(JL))
    ZQRT(JL)  = PQRT(II1(JL),II2(JL),II3(JL))
    ZQIT(JL)  = PQIT(II1(JL),II2(JL),II3(JL))
    ZQST(JL)  = PQST(II1(JL),II2(JL),II3(JL))
    ZQGT(JL)  = PQGT(II1(JL),II2(JL),II3(JL))
    IF (KRR == 7) ZQHT(JL) = PQHT(II1(JL),II2(JL),II3(JL))
    !
    ZQPIS(JL) = PQPIS(II1(JL), II2(JL), II3(JL))
    ZQNIS(JL) = PQNIS(II1(JL), II2(JL), II3(JL))
    ZQCS(JL)  = PQCS(II1(JL), II2(JL), II3(JL))
    ZQRS(JL)  = PQRS(II1(JL), II2(JL), II3(JL))
    ZQIS(JL)  = PQIS(II1(JL), II2(JL), II3(JL))
    ZQSS(JL)  = PQSS(II1(JL), II2(JL), II3(JL))
    ZQGS(JL)  = PQGS(II1(JL), II2(JL), II3(JL))
    IF (KRR == 7) ZQHS(JL) = PQHS(II1(JL), II2(JL), II3(JL))
    !
    IF (LINDUCTIVE) ZEFIELDW(JL) = XEFIELDW(II1(JL), II2(JL), II3(JL))
    !
    ! microphysical tendencies
    ZRVHENI(JL) = PRVHENI(II1(JL), II2(JL), II3(JL))
    ZRRHONG(JL) = PRRHONG(II1(JL), II2(JL), II3(JL))
    ZRIMLTC(JL) = PRIMLTC(II1(JL), II2(JL), II3(JL))
    ZRCHONI(JL) = PRCHONI(II1(JL), II2(JL), II3(JL))
    ZRVDEPS(JL) = PRVDEPS(II1(JL), II2(JL), II3(JL))
    ZRIAGGS(JL) = PRIAGGS(II1(JL), II2(JL), II3(JL))
    ZRIAUTS(JL) = PRIAUTS(II1(JL), II2(JL), II3(JL))
    ZRVDEPG(JL) = PRVDEPG(II1(JL), II2(JL), II3(JL))
    ZRCAUTR(JL) = PRCAUTR(II1(JL), II2(JL), II3(JL))
    ZRCACCR(JL) = PRCACCR(II1(JL), II2(JL), II3(JL))
    ZRREVAV(JL) = PRREVAV(II1(JL), II2(JL), II3(JL))
    ZRCRIMSS(JL) = PRCRIMSS(II1(JL), II2(JL), II3(JL))
    ZRCRIMSG(JL) = PRCRIMSG(II1(JL), II2(JL), II3(JL))
    ZRSRIMCG(JL) = PRSRIMCG(II1(JL), II2(JL), II3(JL))
    ZRRACCSS(JL) = PRRACCSS(II1(JL), II2(JL), II3(JL))
    ZRRACCSG(JL) = PRRACCSG(II1(JL), II2(JL), II3(JL))
    ZRSACCRG(JL) = PRSACCRG(II1(JL), II2(JL), II3(JL))
    ZRSMLTG(JL) = PRSMLTG(II1(JL), II2(JL), II3(JL))
    ZRICFRRG(JL) = PRICFRRG(II1(JL), II2(JL), II3(JL))
    ZRRCFRIG(JL) = PRRCFRIG(II1(JL), II2(JL), II3(JL))
    ZRCWETG(JL) = PRCWETG(II1(JL), II2(JL), II3(JL))
    ZRIWETG(JL) = PRIWETG(II1(JL), II2(JL), II3(JL))
    ZRRWETG(JL) = PRRWETG(II1(JL), II2(JL), II3(JL))
    ZRSWETG(JL) = PRSWETG(II1(JL), II2(JL), II3(JL))
    ZRCDRYG(JL) = PRCDRYG(II1(JL), II2(JL), II3(JL))
    ZRIDRYG(JL) = PRIDRYG(II1(JL), II2(JL), II3(JL))
    ZRRDRYG(JL) = PRRDRYG(II1(JL), II2(JL), II3(JL))
    ZRSDRYG(JL) = PRSDRYG(II1(JL), II2(JL), II3(JL))
    ZRGMLTR(JL) = PRGMLTR(II1(JL), II2(JL), II3(JL))
    ZRCBERI(JL) = PRCBERI(II1(JL), II2(JL), II3(JL))
    IF (CCLOUD(1:3) == 'ICE') THEN
      ZRCMLTSR(JL) = PRCMLTSR(II1(JL), II2(JL), II3(JL))
      ZRICFRR(JL)  = PRICFRR(II1(JL), II2(JL), II3(JL))
    END IF
    IF (CCLOUD == 'LIMA') THEN
      ZCST(JL)    = PCST(II1(JL), II2(JL), II3(JL))
      ZCGT(JL)    = PCGT(II1(JL), II2(JL), II3(JL))
      ZRVHENC(JL) = PRVHENC(II1(JL), II2(JL), II3(JL))
      ZRCHINC(JL) = PRCHINC(II1(JL), II2(JL), II3(JL))
      ZRVHONH(JL) = PRVHONH(II1(JL), II2(JL), II3(JL))
      ZRRCVRC(JL) = PRRCVRC(II1(JL), II2(JL), II3(JL))
      ZRICNVI(JL) = PRICNVI(II1(JL), II2(JL), II3(JL))
      ZRVDEPI(JL) = PRVDEPI(II1(JL), II2(JL), II3(JL))
      ZRSHMSI(JL) = PRSHMSI(II1(JL), II2(JL), II3(JL))
      ZRGHMGI(JL) = PRGHMGI(II1(JL), II2(JL), II3(JL))
      ZRICIBU(JL) = PRICIBU(II1(JL), II2(JL), II3(JL))
      ZRIRDSF(JL) = PRIRDSF(II1(JL), II2(JL), II3(JL))
      ZRCCORR2(JL) = PRCCORR2(II1(JL), II2(JL), II3(JL))
      ZRRCORR2(JL) = PRRCORR2(II1(JL), II2(JL), II3(JL))
      ZRICORR2(JL) = PRICORR2(II1(JL), II2(JL), II3(JL))
    END IF
    IF (KRR == 7) THEN
      ZCHT(JL)    = PCHT(II1(JL), II2(JL), II3(JL))
      ZRWETGH(JL) = PRWETGH(II1(JL), II2(JL), II3(JL))
      ZRCWETH(JL) = PRCWETH(II1(JL), II2(JL), II3(JL))
      ZRIWETH(JL) = PRIWETH(II1(JL), II2(JL), II3(JL))
      ZRSWETH(JL) = PRSWETH(II1(JL), II2(JL), II3(JL))
      ZRGWETH(JL) = PRGWETH(II1(JL), II2(JL), II3(JL))
      ZRRWETH(JL) = PRRWETH(II1(JL), II2(JL), II3(JL))
      ZRCDRYH(JL) = PRCDRYH(II1(JL), II2(JL), II3(JL))
      ZRRDRYH(JL) = PRRDRYH(II1(JL), II2(JL), II3(JL))
      ZRIDRYH(JL) = PRIDRYH(II1(JL), II2(JL), II3(JL))
      ZRSDRYH(JL) = PRSDRYH(II1(JL), II2(JL), II3(JL))
      ZRGDRYH(JL) = PRGDRYH(II1(JL), II2(JL), II3(JL))
      ZRHMLTR(JL) = PRHMLTR(II1(JL), II2(JL), II3(JL))
      ZRDRYHG(JL) = PRDRYHG(II1(JL), II2(JL), II3(JL))
    END IF
  END DO
  !
  ZRHOCOR(:) = (ZRHO00 / ZRHODREF(:))**ZCEXVT
!
!
!*      1.4   allocations for the non-inductive parameterizations
!
  IF (CNI_CHARGING == 'GARDI') THEN
    ALLOCATE( ZDELTALWC(KMICRO) )
    ALLOCATE( ZFT(KMICRO) )
  END IF
!
  IF (CNI_CHARGING == 'SAUN1' .OR. CNI_CHARGING == 'SAUN2' .OR. &
      CNI_CHARGING == 'TAKAH' .OR.                              &
      CNI_CHARGING == 'BSMP1' .OR. CNI_CHARGING == 'BSMP2' .OR. &
      CNI_CHARGING == 'TEEWC' .OR. CNI_CHARGING == 'TERAR') THEN
    ALLOCATE( ZEW(KMICRO) )
  END IF
!
  IF (CNI_CHARGING == 'SAUN1' .OR. CNI_CHARGING == 'SAUN2' .OR. &
      CNI_CHARGING == 'TAKAH' .OR. CNI_CHARGING == 'TEEWC') THEN
    ALLOCATE( ZDQ(KMICRO) )
  END IF
!
  IF (CNI_CHARGING == 'SAUN1' .OR. CNI_CHARGING == 'SAUN2' .OR. &
      CNI_CHARGING == 'TEEWC' )  THEN
    ALLOCATE( ZSAUNSK(KMICRO) )
    ALLOCATE( ZSAUNIM(KMICRO) )
    ALLOCATE( ZSAUNIN(KMICRO) )
    ALLOCATE( ZSAUNSM(KMICRO) )
    ALLOCATE( ZSAUNSN(KMICRO) )
  END IF
!
  IF (CNI_CHARGING == 'SAUN1' .OR. CNI_CHARGING == 'SAUN2' .OR. &
      CNI_CHARGING == 'SAP98' .OR.                              &
      CNI_CHARGING == 'BSMP1' .OR. CNI_CHARGING == 'BSMP2' .OR. &
      CNI_CHARGING == 'TEEWC' .OR. CNI_CHARGING == 'TERAR') THEN
    ALLOCATE( ZFQIAGGS(KMICRO) )
    ALLOCATE( ZFQIDRYGBS(KMICRO) )
    ALLOCATE( ZLBQSDRYGB1S(KMICRO) )
    ALLOCATE( ZLBQSDRYGB2S(KMICRO) )
    ALLOCATE( ZLBQSDRYGB3S(KMICRO) )
  END IF
!
  IF (CNI_CHARGING == 'SAP98' .OR. CNI_CHARGING == 'TERAR' .OR. &
      CNI_CHARGING == 'BSMP1' .OR. CNI_CHARGING == 'BSMP2') THEN
    ALLOCATE( ZRAR(KMICRO) )
    ALLOCATE( ZDQ_IS(KMICRO) )
    ALLOCATE( ZDQ_IG(KMICRO) )
    ALLOCATE( ZDQ_SG(KMICRO) )
    ALLOCATE( ZSAUNIM_IS(KMICRO) )
    ALLOCATE( ZSAUNIN_IS(KMICRO) )
    ALLOCATE( ZSAUNIM_IG(KMICRO) )
    ALLOCATE( ZSAUNIN_IG(KMICRO) )
    ALLOCATE( ZSAUNSK_SG(KMICRO) )
    ALLOCATE( ZSAUNSM_SG(KMICRO) )
    ALLOCATE( ZSAUNSN_SG(KMICRO) )
  END IF
!
!
!*      1.5   select parameters between ICEx and LIMA
!
  ALLOCATE(ZRTMIN(KRR))
  IF (CCLOUD(1:3) == 'ICE') THEN
! in ini_rain_ice, xrtmin is initialized with dimension 6 (hail not activated) or 7 (hail activated)
    ZRTMIN(1:KRR) = XRTMIN_I(1:KRR)
    !
    ZALPHAI = XALPHAI_I
    ZNUI = XNUI_I
    ZAI = XAI_I
    ZBI = XBI_I
    ZDS = XDS_I
    ZDG = XDG_I
    ZCXS = XCXS_I
    ZCXG = XCXG_I
    !
    ZCOLIS   = XCOLIS_I
    ZCOLEXIS = XCOLEXIS_I
    ZCOLIG   = XCOLIG_I
    ZCOLEXIG = XCOLEXIG_I
    ZCOLSG   = XCOLSG_I
    ZCOLEXSG = XCOLEXSG_I
    !
    IGAMINC = NGAMINC_I
    !
    IACCLBDAR = NACCLBDAR_I
    IACCLBDAS = NACCLBDAS_I
    ZACCINTP1S = XACCINTP1S_I
    ZACCINTP2S = XACCINTP2S_I
    ZACCINTP1R = XACCINTP1R_I
    ZACCINTP2R = XACCINTP2R_I
    ! 
    IDRYLBDAR = NDRYLBDAR_I
    IDRYLBDAS = NDRYLBDAS_I
    IDRYLBDAG = NDRYLBDAG_I
    ZDRYINTP1R = XDRYINTP1R_I
    ZDRYINTP2R = XDRYINTP2R_I
    ZDRYINTP1S = XDRYINTP1S_I
    ZDRYINTP2S = XDRYINTP2S_I
    ZDRYINTP1G = XDRYINTP1G_I
    ZDRYINTP2G = XDRYINTP2G_I
    !
    ZRIMINTP1 = XRIMINTP1_I
    ZRIMINTP2 = XRIMINTP2_I
    !
  ELSE IF (CCLOUD == 'LIMA') THEN
! in ini_lima, xrtmin is initialized with dimension 7
    ZRTMIN(1:KRR) = XRTMIN_L(1:KRR)
    !
    ZALPHAI = XALPHAI_L
    ZNUI = XNUI_L
    ZAI = XAI_L
    ZBI = XBI_L
    ZDS = XDS_L
    ZDG = XDG_L
    ZCXS = XCXS_L
    ZCXG = XCXG_L
    !
    ZCOLIS   = 0.25  ! variable not defined in LIMA, the value of ICEx is used 
    ZCOLEXIS = XCOLEXIS_L
    ZCOLIG   = XCOLIG_L
    ZCOLEXIG = XCOLEXIG_L
    ZCOLSG   = XCOLSG_L
    ZCOLEXSG = XCOLEXSG_L
    !
    IGAMINC = NGAMINC_L
    !
    IACCLBDAR = NACCLBDAR_L
    IACCLBDAS = NACCLBDAS_L
    ZACCINTP1S = XACCINTP1S_L
    ZACCINTP2S = XACCINTP2S_L
    ZACCINTP1R = XACCINTP1R_L
    ZACCINTP2R = XACCINTP2R_L
    ! 
    IDRYLBDAR = NDRYLBDAR_L
    IDRYLBDAS = NDRYLBDAS_L
    IDRYLBDAG = NDRYLBDAG_L
    ZDRYINTP1R = XDRYINTP1R_L
    ZDRYINTP2R = XDRYINTP2R_L
    ZDRYINTP1S = XDRYINTP1S_L
    ZDRYINTP2S = XDRYINTP2S_L
    ZDRYINTP1G = XDRYINTP1G_L
    ZDRYINTP2G = XDRYINTP2G_L
    !
    ZRIMINTP1 = XRIMINTP1_L
    ZRIMINTP2 = XRIMINTP2_L
  END IF
!
!
!*      1.6   update the slope parameter of the distribution
!*            and compute N_x if necessary
!
  IF (CCLOUD(1:3) == 'ICE') ZCCT(:) = 0.
  CALL COMPUTE_LAMBDA(2, IMOM_C, KMICRO, ZRHODREF, ZRTMIN(2), ZRCT, ZCCT, ZLBDAC)
  CALL COMPUTE_LAMBDA(3, IMOM_R, KMICRO, ZRHODREF, ZRTMIN(3), ZRRT, ZCRT, ZLBDAR)
  CALL COMPUTE_LAMBDA(4, IMOM_I, KMICRO, ZRHODREF, ZRTMIN(4), ZRIT, ZCIT, ZLBDAI)
  CALL COMPUTE_LAMBDA(5, IMOM_S, KMICRO, ZRHODREF, ZRTMIN(5), ZRST, ZCST, ZLBDAS)
  CALL COMPUTE_LAMBDA(6, IMOM_G, KMICRO, ZRHODREF, ZRTMIN(6), ZRGT, ZCGT, ZLBDAG)
  IF (KRR == 7) CALL COMPUTE_LAMBDA(7, IMOM_H, KMICRO, ZRHODREF, ZRTMIN(7), ZRHT, ZCHT, ZLBDAH)
!
!
!*      1.7   update the parameter e in the charge-diameter relationship
!
! Compute e_x at time t
  IF (CCLOUD == 'LIMA') THEN
    CALL ELEC_COMPUTE_EX(2, IMOM_C, KMICRO, 1., ZRHODREF, ZRTMIN(2), ZRCT, ZQCT, ZECT, PLBDX=ZLBDAC, PCX=ZCCT)
    CALL ELEC_COMPUTE_EX(3, IMOM_R, KMICRO, 1., ZRHODREF, ZRTMIN(3), ZRRT, ZQRT, ZERT, PLBDX=ZLBDAR, PCX=ZCRT)
    CALL ELEC_COMPUTE_EX(4, IMOM_I, KMICRO, 1., ZRHODREF, ZRTMIN(4), ZRIT, ZQIT, ZEIT, PLBDX=ZLBDAI, PCX=ZCIT)
    CALL ELEC_COMPUTE_EX(5, IMOM_S, KMICRO, 1., ZRHODREF, ZRTMIN(5), ZRST, ZQST, ZEST, PLBDX=ZLBDAS, PCX=ZCST)
    CALL ELEC_COMPUTE_EX(6, IMOM_G, KMICRO, 1., ZRHODREF, ZRTMIN(6), ZRGT, ZQGT, ZEGT, PLBDX=ZLBDAG, PCX=ZCGT)
    IF (KRR == 7) CALL ELEC_COMPUTE_EX(7, IMOM_H, KMICRO, 1., ZRHODREF, ZRTMIN(7), ZRHT, ZQHT, ZEHT, PLBDX=ZLBDAH, PCX=ZCHT)
  ELSE IF (CCLOUD(1:3) == 'ICE') THEN
    CALL ELEC_COMPUTE_EX(2, 1, KMICRO, 1., ZRHODREF, ZRTMIN(2), ZRCT, ZQCT, ZECT)
    CALL ELEC_COMPUTE_EX(3, 1, KMICRO, 1., ZRHODREF, ZRTMIN(3), ZRRT, ZQRT, ZERT, PLBDX=ZLBDAR)
    CALL ELEC_COMPUTE_EX(4, 1, KMICRO, 1., ZRHODREF, ZRTMIN(4), ZRIT, ZQIT, ZEIT, PCX=ZCIT)
    CALL ELEC_COMPUTE_EX(5, 1, KMICRO, 1., ZRHODREF, ZRTMIN(5), ZRST, ZQST, ZEST, PLBDX=ZLBDAS)
    CALL ELEC_COMPUTE_EX(6, 1, KMICRO, 1., ZRHODREF, ZRTMIN(6), ZRGT, ZQGT, ZEGT, PLBDX=ZLBDAG)
    IF (KRR == 7) CALL ELEC_COMPUTE_EX(7, 1, KMICRO, 1., ZRHODREF, ZRTMIN(7), ZRHT, ZQHT, ZEHT, PLBDX=ZLBDAH)
  END IF
!
!
!*      1.8   initialization for the non-inductive charging process
!
  SELECT CASE (CNI_CHARGING)
    ! Initialization for the parameterization of Gardiner et al. (1995)
    CASE ('GARDI')
      CALL ELEC_INIT_NOIND_GARDI()
      ! Save the effective water content
      DO JL = 1, KMICRO
        XEW(II1(JL),II2(JL),II3(JL)) = ZDELTALWC(JL) ! 
      END DO      
    !
    ! Initialization for the parameterizations of Saunders et al. (1991)
    ! with and without anomalies, and Tsenova and Mitzeva (2009)
    CASE ('SAUN1', 'SAUN2', 'TEEWC')
      CALL ELEC_INIT_NOIND_EWC()
      ! Save the effective water content
      DO JL = 1, KMICRO
        XEW(II1(JL),II2(JL),II3(JL)) = ZEW(JL) ! g/m3
      END DO
    !
    ! Initialization for the parameterizations of Saunders and Peck (1998), 
    ! Brooks et al. (1997) and Tsenova and Mitzeva (2011)
    CASE ('SAP98', 'BSMP1', 'BSMP2', 'TERAR')
      CALL ELEC_INIT_NOIND_RAR()
      ! Save the rime accretion rate (not recorded properly: 3 different RAR are computed !!!)
      DO JL = 1, KMICRO
        XEW(II1(JL),II2(JL),II3(JL)) = ZRAR(JL) ! g/m3
      END DO
    !
    ! Initialization for the parameterization of Takahashi (1978)
    CASE ('TAKAH')
      CALL ELEC_INIT_NOIND_TAKAH()
      ! Save the effective water content
      DO JL = 1, KMICRO
        XEW(II1(JL),II2(JL),II3(JL)) = ZEW(JL) ! g/m3
      END DO
  END SELECT
!
!
!------------------------------------------------------------------
!
!*      2.    COMPUTE THE SLOW COLD PROCESS SOURCES
!             -------------------------------------
!
!*      2.1   heterogeneous nucleation
!
! --> rien n'est fait pour l'elec pour le moment
! ICE3/4 : rvheni/rvhind
! LIMA : rvhenc, rchinc, rvhonh
!
!
!*      2.2   spontaneous freezing (rhong)
!
  if ( lbudget_sv ) then
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'SFR', &
                            Unpack( zqrs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'SFR', &
                            Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!  
  ZWQ(:) = 0.
  WHERE (ZRRHONG(:) > 0. .AND. &
         ZRRT(:) > XRTMIN_ELEC(3) .AND. ABS(ZQRT(:)) > XQTMIN(3))
    ZWQ(:) = ZQRS(:)
    !
    ZQGS(:) = ZQGS(:) + ZQRS(:)
    ZQRS(:) = 0.
  END WHERE
!
  if ( lbudget_sv ) then
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'SFR', &
                           Unpack( zqrs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'SFR', &
                           Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!
!*      2.3   cloud ice melting (rimltc)
!
  if ( lbudget_sv ) then
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'IMLT', &
                            Unpack( zqcs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'IMLT', &
                            Unpack( zqis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
  WHERE (ZRIMLTC(:) > 0.)
    ZQCS(:) = ZQCS(:) + ZQIS(:)
    ZQIS(:) = 0.
  END WHERE
!
  if ( lbudget_sv ) then
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'IMLT', &
                           Unpack( zqcs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'IMLT', &
                           Unpack( zqis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!
!*      2.4   riming-conversion of the large sized aggregates into graupel ???
! ancienne param => on calcule plutot cette tendance un peu plus loin ?
!
!
!*      2.5   homogeneous nucleation (rchoni)
!
! CB : traitement different entre ice3 et lima --> a modifier eventuellement
!
  ZWQ(:) = 0.
  WHERE (ZRCHONI(:) > 0. .AND.           &
         ZRCT(:) > XRTMIN_ELEC(2) .AND.  &
         ABS(ZQCT(:)) > XQTMIN(2) .AND. ABS(ZECT(:)) > XECMIN)
    ZWQ(:) = XQHON * ZECT(:) * ZRCHONI(:)
    ZWQ(:) = SIGN( MIN( ABS(ZQCT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQCS(:) )
    !
    ZQIS(:) = ZQIS(:) + ZWQ(:)
    ZQCS(:) = ZQCS(:) - ZWQ(:)
  END WHERE
!
  if ( lbudget_sv ) then
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'HON', &
                           Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'HON', &
                           Unpack(  zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!
!*      2.6   deposition on snow/aggregates (rvdeps)
!
  if ( lbudget_sv ) then
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'DEPS', &
                            Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field =  0. ) )
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'DEPS', &
                            Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field =  0. ) )
  end if
!
  ZWQ(:) = 0.
  !
  ! Only the sublimation of snow/aggregates is considered (negative part of PRVDEPS)
  WHERE (ZRVDEPS(:) < 0. .AND. & 
         ZRST(:) > XRTMIN_ELEC(5) .AND. ABS(ZQST(:)) > XQTMIN(5))
    ZWQ(:) = XCOEF_RQ_S * ZQST(:) * ZRVDEPS(:) / ZRST(:)
    ZWQ(:) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ(:)) ),ZQSS(:) )
    !
    ZQSS(:)  = ZQSS(:)  - ZWQ(:)
    ZQPIS(:) = ZQPIS(:) + MAX( 0.0,ZWQ(:)/XECHARGE )
    ZQNIS(:) = ZQNIS(:) - MIN( 0.0,ZWQ(:)/XECHARGE )
  END WHERE
!
  if ( lbudget_sv ) then
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'DEPS', &
                           Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field =  0. ) )
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'DEPS', &
                           Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field =  0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'DEPS', &
                           Unpack( -zwq(:) * zrhodj(:),  mask = odmicro(:, :, :), field =  0. ) )
  end if
!
!
!*      2.7   aggregation on snow/aggregates (riaggs)
!
  CALL COMPUTE_CHARGE_TRANSFER (ZRIAGGS, ZRIT, ZQIT, PTSTEP, &
                                XRTMIN_ELEC(4), XQTMIN(4), XCOEF_RQ_I, &
                                ZWQ, ZQIS, ZQSS)
!
  if ( lbudget_sv ) then
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'AGGS', &
                           Unpack( -zwq(:), mask = odmicro(:, :, :), field =  0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'AGGS', &
                           Unpack(  zwq(:), mask = odmicro(:, :, :), field =  0. ) )
  end if
!
!
!*      2.8   non-inductive charging during ice - snow collisions
!
  CALL ELEC_IAGGS_B()
!
  if ( lbudget_sv ) then
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'NIIS', &
                           Unpack( -zwq_ni(:), mask = odmicro(:, :, :), field =  0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'NIIS', &
                           Unpack(  zwq_ni(:), mask = odmicro(:, :, :), field =  0. ) )
  end if
!
! Save the NI charging rate
  DO JL = 1, KMICRO
    XNI_IAGGS(II1(JL),II2(JL),II3(JL)) = ZWQ_NI(JL) * ZRHODREF(JL) ! C/m3/s
  END DO
!
!
!*      2.9   autoconversion of r_i for r_s production (riauts/ricnvs)
!
  CALL COMPUTE_CHARGE_TRANSFER (ZRIAUTS, ZRIT, ZQIT, PTSTEP, &
                                XRTMIN_ELEC(4), XQTMIN(4), XCOEF_RQ_I, &
                                ZWQ, ZQIS, ZQSS)
!
  if ( lbudget_sv ) then
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'AUTS', &
                           Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'AUTS', &
                           Unpack(  zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!
!*      2.10  snow --> ice conversion (rscnvi)
!
  IF (CCLOUD == 'LIMA') THEN
    CALL COMPUTE_CHARGE_TRANSFER (ZRICNVI, ZRST, ZQST, PTSTEP, &
                                  XRTMIN_ELEC(5), XQTMIN(5), XCOEF_RQ_S, &
                                  ZWQ, ZQSS, ZQIS)          
!
    if ( lbudget_sv ) then
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'CNVI', &
                             Unpack(  zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'CNVI', &
                             Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    end if
!
!*      2.11  water vapor deposition on ice crystals (rvdepi)
!
    if ( lbudget_sv ) then
      call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'SUBI', &
                              Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'SUBI', &
                              Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    end if
    !
    ZWQ(:) = 0.
    !
    ! Only the sublimation of ice crystals is considered (negative part of PRVDEPI)
    WHERE (ZRVDEPI(:) < 0. .AND. &
           ZRIT(:) > XRTMIN_ELEC(4) .AND. ABS(ZQIT(:)) > XQTMIN(4))
      ZWQ(:) = XCOEF_RQ_I * ZQIT(:) * ZRVDEPI(:) / ZRIT(:)
      ZWQ(:) = SIGN( MIN( ABS(ZQIT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQIS(:) )
      !
      ZQIS(:)  = ZQIS(:)  - ZWQ(:)
      ZQPIS(:) = ZQPIS(:) + MAX( 0.0,ZWQ(:)/XECHARGE )
      ZQNIS(:) = ZQNIS(:) - MIN( 0.0,ZWQ(:)/XECHARGE )
    END WHERE
!
    if ( lbudget_sv ) then
      call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'SUBI', &
                             Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'SUBI', &
                             Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )           
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'SUBI', &
                             Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    end if    
  END IF
!
!
!*      2.12  water vapor deposition on graupel (rvdepg)
!
  if ( lbudget_sv ) then
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'DEPG', &
                            Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'DEPG', &
                            Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
  ZWQ(:) = 0.
  !
  ! Only the sublimation of graupel is considered (negative part of PRVDEPG)
  WHERE (ZRVDEPG(:) < 0. .AND. &
         ZRGT(:) > XRTMIN_ELEC(6) .AND. ABS(ZQGT(:)) > XQTMIN(6))
    ZWQ(:) = XCOEF_RQ_G * ZQGT(:) * ZRVDEPG(:) / ZRGT(:)
    ZWQ(:) = SIGN( MIN( ABS(ZQGT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQGS(:) )
    !
    ZQGS(:)  = ZQGS(:)  - ZWQ(:) 
    ZQPIS(:) = ZQPIS(:) + MAX( 0.0,ZWQ(:)/XECHARGE )
    ZQNIS(:) = ZQNIS(:) - MIN( 0.0,ZWQ(:)/XECHARGE )
  END WHERE
!
  if ( lbudget_sv ) then
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'DEPG', &
                           Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'DEPG', &
                           Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'DEPG', &
                           Unpack( -zwq(:) * zrhodj(:),  mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!
!------------------------------------------------------------------
!
!*      3.    COMPUTE THE WARM PROCESS SOURCES
!             --------------------------------
!
!*      3.1   autoconversion of r_c for r_r production (rcautr)
!
  CALL COMPUTE_CHARGE_TRANSFER (ZRCAUTR, ZRCT, ZQCT, PTSTEP,           &
                                XRTMIN_ELEC(2), XQTMIN(2), XCOEF_RQ_C, &
                                ZWQ, ZQCS, ZQRS)
!
  if ( lbudget_sv ) then
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'AUTO', &
                           Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'AUTO', &
                           Unpack(  zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!
!*      3.2   accretion of r_c for r_r production (rcaccr)
!
  CALL COMPUTE_CHARGE_TRANSFER (ZRCACCR, ZRCT, ZQCT, PTSTEP,           &
                                XRTMIN_ELEC(2), XQTMIN(2), XCOEF_RQ_C, &
                                ZWQ, ZQCS, ZQRS)
!
  if ( lbudget_sv ) then
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'ACCR', &
                           Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'ACCR', &
                           Unpack(  zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!
!*      3.3   evaporation of raindrops (rrevav)
!
  if ( lbudget_sv ) then
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'REVA', &
                            Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'REVA', &
                            Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
  ZWQ(:) = 0.
  WHERE (ZRREVAV(:) > 0. .AND. &
         ZRRT(:) > XRTMIN_ELEC(3) .AND. ABS(ZQRT(:)) > XQTMIN(3))
    ZWQ(:) = XCOEF_RQ_R * ZQRT(:) * ZRREVAV(:) / ZRRT(:)
    ZWQ(:) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQRS(:) )
    !
    ZQRS(:)  = ZQRS(:)  - ZWQ(:)
    ZQPIS(:) = ZQPIS(:) + MAX( 0.0,ZWQ(:)/XECHARGE )
    ZQNIS(:) = ZQNIS(:) - MIN( 0.0,ZWQ(:)/XECHARGE )
  END WHERE
!
  if ( lbudget_sv ) then
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'REVA', &
                           Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'REVA', &
                           Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'REVA', &
                           Unpack( -zwq(:) * zrhodj(:),  mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!
!*      3.4   conversion of drops to droplets (rrcvrc)
!
  IF (CCLOUD == 'LIMA') THEN
    if ( lbudget_sv ) then
      call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'R2C1', &
                              Unpack( zqcs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'R2C1', &
                              Unpack( zqrs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    end if
!
    CALL COMPUTE_CHARGE_TRANSFER (ZRRCVRC, ZRRT, ZQRT, PTSTEP,           &
                                  XRTMIN_ELEC(3), XQTMIN(3), XCOEF_RQ_R, &
                                  ZWQ, ZQRS, ZQCS)
!
    if ( lbudget_sv ) then
      call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'R2C1', &
                             Unpack( zqcs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'R2C1', &
                             Unpack( zqrs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    end if
  END IF
!
!------------------------------------------------------------------
!
!*      4.    COMPUTE THE FAST COLD PROCESS SOURCES FOR r_s
!             ---------------------------------------------
!
!*      4.1   cloud droplet riming of the aggregates
!
  if ( lbudget_sv ) then
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'RIM', &
                           Unpack( zqcs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'RIM', &
                           Unpack( zqss(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'RIM', &
                           Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!*      4.1.1 riming of the small sized aggregates (rcrimss)
!
  CALL COMPUTE_CHARGE_TRANSFER (ZRCRIMSS, ZRCT, ZQCT, PTSTEP,          &
                                XRTMIN_ELEC(2), XQTMIN(2), XCOEF_RQ_C, &
                                ZWQ, ZQCS, ZQSS)
!
!
!*      4.1.2 riming conversion of the large sized aggregates into graupel (rcrimsg)
!
  ZWQ(:) = 0.
  WHERE (ZRCRIMSG(:) > 0. .AND.                                        &
         ZRCT(:) > XRTMIN_ELEC(2) .AND. ZRST(:) > XRTMIN_ELEC(5) .AND. &
         ABS(ZQCT(:)) > XQTMIN(2))
    ZWQ(:) = XCOEF_RQ_C * ZQCT(:) * ZRCRIMSG(:) / ZRCT(:)      ! QCRIMSG
    ZWQ(:) = SIGN( MIN( ABS(ZQCT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQCS(:) )
    !
    ZQGS(:) = ZQGS(:) + ZWQ(:)
    ZQCS(:) = ZQCS(:) - ZWQ(:)
  END WHERE
!
!
!*      4.1.3 riming conversion of the large sized aggregates into graupel (rsrimcg)
!
  GMASK(:) = .FALSE.
  IGMASK = 0
  DO JJ = 1, SIZE(GMASK)
    IF (ZRSRIMCG(JJ) > 0. .AND. ZZT(JJ) < XTT .AND. &
        ZRCT(JJ) > XRTMIN_ELEC(2) .AND. ZRST(JJ) > XRTMIN_ELEC(5) .AND. &
        ZLBDAS(JJ) > 0.) THEN  !++cb-- 12/07/23 condition ajoutee pour eviter log(0)
      IGMASK = IGMASK + 1
      I1(IGMASK) = JJ
      GMASK(JJ) = .TRUE.
    ELSE
      GMASK(JJ) = .FALSE.
    END IF
  END DO
  !
  ALLOCATE(ZVEC1(IGMASK))
  ALLOCATE(ZVEC2(IGMASK))
  ALLOCATE(IVEC2(IGMASK))
  !
  ! select the ZLBDAS
  DO JJ = 1, IGMASK
    ZVEC1(JJ) = ZLBDAS(I1(JJ))
  END DO
  ! find the next lower indice for the ZLBDAS in the geometrical set of Lbda_s 
  ! used to tabulate some moments of the incomplete gamma function
  ZVEC2(1:IGMASK) = MAX( 1.00001, MIN( REAL(IGAMINC)-0.00001,           &
                        ZRIMINTP1 * LOG( ZVEC1(1:IGMASK) ) + ZRIMINTP2 ) )
  IVEC2(1:IGMASK) = INT( ZVEC2(1:IGMASK) )
  ZVEC2(1:IGMASK) = ZVEC2(1:IGMASK) - REAL( IVEC2(1:IGMASK) )
  !
  ! perform the linear interpolation of the normalized "XFS"-moment of
  ! the incomplete gamma function
  ZVEC1(1:IGMASK) =  XGAMINC_RIM3( IVEC2(1:IGMASK)+1 ) *  ZVEC2(1:IGMASK)      &
                   - XGAMINC_RIM3( IVEC2(1:IGMASK)   ) * (ZVEC2(1:IGMASK) - 1.0)
  !
  ZWQ(:) = 0.
  DO JJ = 1, IGMASK
    ZWQ(I1(JJ)) = ZVEC1(JJ)
  END DO
  !
  DEALLOCATE(ZVEC1)
  DEALLOCATE(ZVEC2)
  DEALLOCATE(IVEC2)
  !
  ! riming-conversion of the large sized aggregates into graupeln (rsrimcg)
  WHERE (ZRSRIMCG(:) > 0. .AND.                                        &
         ZRCT(:) > XRTMIN_ELEC(2) .AND. ZRST(:) > XRTMIN_ELEC(5) .AND. &
         ABS(ZQCT(:)) > XQTMIN(2) .AND. ABS(ZEST(:)) > XESMIN)
    ZWQ(:) = XQSRIMCG * ZEST(:) * ZCST(:) *          &    ! QSRIMCG
             ZLBDAS(:)**XEXQSRIMCG * (1. - ZWQ(:)) / &
             (PTSTEP * ZRHODREF(:))
    ZWQ(:) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ(:)) ),ZQSS(:) )
    !
    ZQGS(:) = ZQGS(:) + ZWQ(:)
    ZQSS(:) = ZQSS(:) - ZWQ(:)
  END WHERE
!
  if ( lbudget_sv ) then
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'RIM', &
                           Unpack( zqcs(:) * zrhodj(:),  mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'RIM', &
                           Unpack( zqss(:) * zrhodj(:),  mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'RIM', &
                           Unpack( zqgs(:) * zrhodj(:),  mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!
!*      4.2   Hallett-Mossop ice multiplication process due to snow riming (rhmsi)
!
  IF (CCLOUD == 'LIMA') THEN
    CALL COMPUTE_CHARGE_TRANSFER (ZRSHMSI, ZRST, ZQST, PTSTEP,          &
                                  XRTMIN_ELEC(4), XQTMIN(4), XCOEF_RQ_S, &
                                  ZWQ, ZQSS, ZQIS)       
!
    if ( lbudget_sv ) then
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'HMS', &
                             Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'HMS', &
                             Unpack(  zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    end if
  END IF
!
!
!*      4.3   Raindrop accretion onto the aggregates
!
  IGMASK = 0
  DO JJ = 1, SIZE(GMASK)
    IF (ZRRT(JJ) > ZRTMIN(3) .AND. ZLBDAR(JJ) > 0. .AND. &
        ZRST(JJ) > ZRTMIN(5) .AND. ZLBDAS(JJ) > 0.) THEN
      IGMASK = IGMASK + 1
      I1(IGMASK) = JJ
      GMASK(JJ) = .TRUE.
    ELSE
      GMASK(JJ) = .FALSE.
    END IF
  END DO
  !
  IF (IGMASK > 0) THEN
    ALLOCATE(ZVEC1(IGMASK))
    ALLOCATE(ZVEC2(IGMASK))
    ALLOCATE(IVEC1(IGMASK))
    ALLOCATE(IVEC2(IGMASK))
    ALLOCATE(ZVECQ1(IGMASK))
    ALLOCATE(ZVECQ2(IGMASK))
    ALLOCATE(ZVECQ3(IGMASK))
    !
    ! select the (ZLBDAS,ZLBDAR) couplet
    DO JJ = 1, IGMASK
      ZVEC1(JJ) = ZLBDAS(I1(JJ))
      ZVEC2(JJ) = ZLBDAR(I1(JJ))
    END DO
    !
    ! find the next lower indice for the ZLBDAS and for the ZLBDAR in the geometrical 
    ! set of (Lbda_s,Lbda_r) couplet use to tabulate the kernels
    ZVEC1(1:IGMASK) = MAX( 1.00001, MIN( REAL(IACCLBDAS)-0.00001,           &
                          ZACCINTP1S * LOG( ZVEC1(1:IGMASK) ) + ZACCINTP2S ) )
    IVEC1(1:IGMASK) = INT( ZVEC1(1:IGMASK) )
    ZVEC1(1:IGMASK) = ZVEC1(1:IGMASK) - REAL( IVEC1(1:IGMASK) )
    !
    ZVEC2(1:IGMASK) = MAX( 1.00001, MIN( REAL(IACCLBDAR)-0.00001,           &
                          ZACCINTP1R * LOG( ZVEC2(1:IGMASK) ) + ZACCINTP2R ) )
    IVEC2(1:IGMASK) = INT( ZVEC2(1:IGMASK) )
    ZVEC2(1:IGMASK) = ZVEC2(1:IGMASK) - REAL( IVEC2(1:IGMASK) )
    !
    ! perform the bilinear interpolation of the normalized kernels
    ZVECQ1(:) = BI_LIN_INTP_V(XKER_Q_RACCSS, IVEC1, IVEC2, ZVEC1, ZVEC2, IGMASK)
    ZVECQ2(:) = BI_LIN_INTP_V(XKER_Q_RACCS,  IVEC1, IVEC2, ZVEC1, ZVEC2, IGMASK)
    ZVECQ3(:) = BI_LIN_INTP_V(XKER_Q_SACCRG, IVEC1, IVEC2, ZVEC1, ZVEC2, IGMASK)
    ZWQ1(:) = 0.
    ZWQ2(:) = 0.
    ZWQ3(:) = 0.
    DO JJ = 1, IGMASK
      ZWQ1(I1(JJ)) = ZVECQ1(JJ)
      ZWQ2(I1(JJ)) = ZVECQ2(JJ)
      ZWQ3(I1(JJ)) = ZVECQ3(JJ)
    END DO
!
    DEALLOCATE(ZVEC1)
    DEALLOCATE(ZVEC2)
    DEALLOCATE(IVEC1)
    DEALLOCATE(IVEC2)
    DEALLOCATE(ZVECQ1)
    DEALLOCATE(ZVECQ2)
    DEALLOCATE(ZVECQ3)
!
!
!*      4.3.1 raindrop accretion onto the small sized aggregates (rraccss)
!
    ZWQ4(:)   = 0.
    ZWQ5(:,:) = 0.
    WHERE (ZRRACCSS(:) > 0. .AND. &
           ZRRT(:) > XRTMIN_ELEC(3) .AND. ZRST(:) > XRTMIN_ELEC(5) .AND. &
           ZCRT(:) > 0.             .AND. ZCST(:) > 0.             .AND. &
           ZLBDAR(:) > 0.           .AND. ZLBDAS(:) > 0.           .AND. &
           ABS(ZERT(:)) > XERMIN)  ! and zzt(:) < xtt ?
      ZWQ4(:) = XFQRACCS * ZERT(:) * ZRHOCOR(:) / (ZCOR00 * ZRHODREF(:)) * &
                ZCRT(:) * ZCST(:)                                        * &
               (XLBQRACCS1 * ZLBDAR(:)**(-2.0 - XFR)                     + &
                XLBQRACCS2 * ZLBDAR(:)**(-1.0 - XFR) * ZLBDAS(:)**(-1.0) + &
                XLBQRACCS3 * ZLBDAR(:)**(-XFR)       * ZLBDAS(:)**(-2.0))
      ZWQ5(:,1) = ZWQ4(:) * ZWQ1(:)                       ! QRACCSS
      ZWQ5(:,1) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ5(:,1)) ),ZQRS(:) )
      !
      ZQRS(:) = ZQRS(:) - ZWQ5(:,1)
      ZQSS(:) = ZQSS(:) + ZWQ5(:,1)
    END WHERE
!
!
!*      4.3.2 raindrop accretion-conversion of the large sized aggregates into graupel 
!*            (rsaccrg & rraccsg)
!
    ZWQ5(:,2) = ZWQ2(:) * ZWQ4(:) ! QRACCS
    WHERE (ZRRACCSG(:) > 0. .AND. &
           ZRRT(:) > XRTMIN_ELEC(3) .AND. ZRST(:) > XRTMIN_ELEC(5) .AND. &
           ZLBDAR(:) > 0.           .AND. ZLBDAS(:) > 0.)
      ZWQ5(:,3) = ZWQ5(:,2) - ZWQ5(:,1)         ! QRACCSG
      ZWQ5(:,3) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ5(:,3)) ),ZQRS(:) )
      !
      ZQRS(:) = ZQRS(:) - ZWQ5(:,3)
      ZQGS(:) = ZQGS(:) + ZWQ5(:,3)
    END WHERE
!
    WHERE (ZRSACCRG(:) > 0. .AND.                                        &
           ZRRT(:) > XRTMIN_ELEC(3) .AND. ZRST(:) > XRTMIN_ELEC(5) .AND. &
           ZCRT(:) > 0.             .AND. ZCST(:) > 0.             .AND. &
           ZLBDAR(:) > 0.           .AND. ZLBDAS(:) > 0.           .AND. &
           ABS(ZEST) > XESMIN) 
      ZWQ5(:,4) = ZWQ3(:) * XFQRACCS * ZEST(:) *                               &
                  ZRHOCOR(:) / (ZCOR00 * ZRHODREF(:)) *                        &
                  ZCRT(:) * ZCST(:) *                                          &
                 (XLBQSACCRG1 * ZLBDAS(:)**(-2.0 - XFS) +                      &
                  XLBQSACCRG2 * ZLBDAS(:)**(-1.0 - XFS) * ZLBDAR(:)**(-1.0) +  &
                  XLBQSACCRG3 * ZLBDAS(:)**(-XFS)       * ZLBDAR(:)**(-2.0)) ! QSACCR
      ZWQ5(:,4) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ5(:,4)) ),ZQSS(:) )
      !
      ZQSS(:) = ZQSS(:) - ZWQ5(:,4)
      ZQGS(:) = ZQGS(:) + ZWQ5(:,4)
    END WHERE
    !
    if ( lbudget_sv ) then
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'ACC', &
                             Unpack( (-zwq5(:,1) - zwq5(:,3)) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'ACC', &
                             Unpack( ( zwq5(:,1) - zwq5(:,4)) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'ACC', &
                             Unpack( ( zwq5(:,3) + zwq5(:,4)) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    end if    
    !
  END IF  ! end if igmask>0
!
!
!*      4.4   conversion-melting of the aggregates (rsmltg)
!
  CALL COMPUTE_CHARGE_TRANSFER (ZRSMLTG, ZRST, ZQST, PTSTEP,           &
                                XRTMIN_ELEC(5), XQTMIN(5), XCOEF_RQ_S, &
                                ZWQ, ZQSS, ZQGS)
!
  if ( lbudget_sv ) then
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'CMEL', &
                           Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'CMEL', &
                           Unpack(  zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!
!*      4.5   cloud droplet collection onto aggregates by positive temperature (rcmltsr)
!
  IF (CCLOUD(1:3) == 'ICE') THEN
    CALL COMPUTE_CHARGE_TRANSFER (ZRCMLTSR, ZRCT, ZQCT, PTSTEP,           &
                                  XRTMIN_ELEC(2), XQTMIN(2), XCOEF_RQ_C, &
                                  ZWQ, ZQCS, ZQRS)
!
    if ( lbudget_sv ) then
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'CMEL', &
                             Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'CMEL', &
                             Unpack(  zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    end if
  END IF
!
!
!------------------------------------------------------------------
!
!*      5.    COMPUTE THE FAST COLD PROCESS SOURCES FOR r_g
!             ---------------------------------------------
!
!*      5.1   rain contact freezing (ricfrrg, rrcfrig, ricfrr)
!
  if ( lbudget_sv ) then
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'CFRZ', &
                           Unpack( zqrs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'CFRZ', &
                           Unpack( zqis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'CFRZ', &
                           Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
  !
  ZWQ(:) = 0.
  WHERE (ZRRCFRIG(:) > 0. .AND.                                        &
         ZRIT(:) > XRTMIN_ELEC(4) .AND. ZRRT(:) > XRTMIN_ELEC(3) .AND. &
         ZCRT(:) > 0.             .AND.                                &
         ABS(ZERT(:)) > XERMIN    .AND. ABS(ZQRT(:)) > XQTMIN(3))
    ZWQ(:) = XQRCFRIG * ZLBDAR(:)**XEXQRCFRIG * ZCIT(:) * ZCRT(:) * &
             ZERT(:) * ZRHOCOR(:) / (ZCOR00 * ZRHODREF(:))  ! QRCFRIG
    ZWQ(:) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQRS(:) )
    !
    ZQGS(:) = ZQGS(:) + ZWQ(:)
    ZQRS(:) = ZQRS(:) - ZWQ(:)
  END WHERE
  !
  ZWQ(:) = 0.
  WHERE (ZRICFRRG(:) > 0. .AND.                                        &
         ZRIT(:) > XRTMIN_ELEC(4) .AND. ZRRT(:) > XRTMIN_ELEC(3) .AND. &
         ABS(ZQIT(:)) > XQTMIN(4))
    ZWQ(:) = XCOEF_RQ_I * ZQIT(:) * ZRICFRRG(:) / ZRIT(:)     ! QICFRRG
    ZWQ(:) = SIGN( MIN( ABS(ZQIT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQIS(:) )
    !
    ZQGS(:) = ZQGS(:) + ZWQ(:)
    ZQIS(:) = ZQIS(:) - ZWQ(:)
  ENDWHERE
!
!++CB-- 16/06/2022 il manque le traitement de qricfrr
!
  if ( lbudget_sv ) then
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'CFRZ', &
                           Unpack( zqrs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'CFRZ', &
                           Unpack( zqis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'CFRZ', &
                           Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!
!*      5.2   graupel dry growth (qcdryg, qrdryg, qidryg & qsdryg)
!
  ZWQ5(:,:) = 0.
!
!*      5.2.1 compute qcdryg
!
  WHERE (ZRCDRYG(:) > 0. .AND.                                         &
         ZRCT(:) > XRTMIN_ELEC(2) .AND. ZRGT(:) > XRTMIN_ELEC(6) .AND. &
         ABS(ZQCT(:)) > XQTMIN(2)) 
    ZWQ5(:,1) = XCOEF_RQ_C * ZQCT(:) * ZRCDRYG(:) / ZRCT(:)
    ZWQ5(:,1) = SIGN( MIN( ABS(ZQCT(:)/PTSTEP),ABS(ZWQ5(:,1)) ),ZQCS(:) )
    !
    ZQCS(:) = ZQCS(:) - ZWQ5(:,1)
    ZQGS(:) = ZQGS(:) + ZWQ5(:,1)
  ENDWHERE
!
!
!*      5.2.2 compute qidryg = qidryg_coal + qidryg_boun
!
  WHERE (ZRIDRYG(:) > 0. .AND.                                         &
         ZRIT(:) > XRTMIN_ELEC(4) .AND. ZRGT(:) > XRTMIN_ELEC(6) .AND. &
         ABS(ZQIT(:)) > XQTMIN(4))
    ZWQ5(:,2) = XCOEF_RQ_I * ZQIT(:) * ZRIDRYG(:) / ZRIT(:)         ! QIDRYG_coal
    ZWQ5(:,2) = SIGN( MIN( ABS(ZQIT(:)/PTSTEP),ABS(ZWQ5(:,2)) ),ZQIS(:) )
    !
    ZQIS(:) = ZQIS(:) - ZWQ5(:,2)
    ZQGS(:) = ZQGS(:) + ZWQ5(:,2)
  END WHERE
!
!
!*      5.2.3 compute non-inductive charging durig ice - graupel collisions
!
  ! charge separation during collision between ice and graupel
  CALL ELEC_IDRYG_B()  ! QIDRYG_boun
  !
  if ( lbudget_sv ) then
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'NIIG', &
                            Unpack( -zwq_ni(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'NIIG', &
                            Unpack(  zwq_ni(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
  !
  ! Save the NI charging rate
  DO JL = 1, KMICRO
    XNI_IDRYG(II1(JL),II2(JL),II3(JL)) = ZWQ_NI(JL) * ZRHODREF(JL) ! C/m3/s
  END DO
!
!
!*      5.2.4 compute qsdryg
!
  IGMASK = 0
  DO JJ = 1, SIZE(GMASK)
    IF (ZRST(JJ) > ZRTMIN(5) .AND. ZLBDAS(JJ) > 0. .AND. &
        ZRGT(JJ) > ZRTMIN(6) .AND. ZLBDAG(JJ) > 0.) THEN
      IGMASK = IGMASK + 1
      I1(IGMASK) = JJ
      GMASK(JJ) = .TRUE.
    ELSE
      GMASK(JJ) = .FALSE.
    END IF
  END DO
  !
  IF (IGMASK > 0) THEN
  !
    ALLOCATE(ZVEC1(IGMASK))
    ALLOCATE(ZVEC2(IGMASK))
    ALLOCATE(IVEC1(IGMASK))
    ALLOCATE(IVEC2(IGMASK))
    ALLOCATE(ZVECQ1(IGMASK))
    ALLOCATE(ZVECQ2(IGMASK))
    ALLOCATE(ZVECQ3(IGMASK))
    ALLOCATE(ZVECQ4(IGMASK))
  !
  ! select the (ZLBDAG,ZLBDAS) couplet
    DO JJ = 1, IGMASK
      ZVEC1(JJ) = ZLBDAG(I1(JJ))
      ZVEC2(JJ) = ZLBDAS(I1(JJ))
    END DO
  !
  ! find the next lower indice for the ZLBDAG and for the ZLBDAS in the geometrical set 
  ! of (Lbda_g,Lbda_s) couplet use to tabulate the SDRYG-kernel
    ZVEC1(1:IGMASK) = MAX(1.00001, MIN(REAL(IDRYLBDAG)-0.00001,  &
                          ZDRYINTP1G*LOG(ZVEC1(1:IGMASK))+ZDRYINTP2G))
    IVEC1(1:IGMASK) = INT(ZVEC1(1:IGMASK) )
    ZVEC1(1:IGMASK) = ZVEC1(1:IGMASK) - REAL(IVEC1(1:IGMASK))
    !
    ZVEC2(1:IGMASK) = MAX(1.00001, MIN( REAL(IDRYLBDAS)-0.00001, &
                          ZDRYINTP1S*LOG(ZVEC2(1:IGMASK))+ZDRYINTP2S))
    IVEC2(1:IGMASK) = INT(ZVEC2(1:IGMASK))
    ZVEC2(1:IGMASK) = ZVEC2(1:IGMASK) - REAL(IVEC2(1:IGMASK))
    !
    ! perform the bilinear interpolation of the normalized QSDRYG-kernels
    ! normalized Q-SDRYG-kernel 
    ZVECQ1(:) = BI_LIN_INTP_V(XKER_Q_SDRYG, IVEC1, IVEC2, ZVEC1, ZVEC2, IGMASK)
    ZWQ5(:,3) = 0.  ! normalement pas utile
    DO JJ = 1, IGMASK
      ZWQ5(I1(JJ),3) = ZVECQ1(JJ)
    END DO    
    !
    ! normalized Q-???-kernel
    IF (CNI_CHARGING == 'TAKAH' .OR. CNI_CHARGING == 'SAUN1' .OR. &
        CNI_CHARGING == 'SAUN2' .OR. CNI_CHARGING == 'SAP98' .OR. &
        CNI_CHARGING == 'GARDI' .OR.                              &
        CNI_CHARGING == 'BSMP1' .OR. CNI_CHARGING == 'BSMP2' .OR. &
        CNI_CHARGING == 'TEEWC' .OR. CNI_CHARGING == 'TERAR') THEN
      ZVECQ2(:)  = BI_LIN_INTP_V(XKER_Q_LIMSG, IVEC1, IVEC2, ZVEC1, ZVEC2, IGMASK) 
      ZWQ5(:,4) = 0.  ! normalement pas utile
      DO JJ = 1, IGMASK
        ZWQ5(I1(JJ),4) = ZVECQ2(JJ)
      END DO
    END IF
    !
    ! normalized Q-SDRYG-bouncing kernel
    IF (CNI_CHARGING == 'TAKAH' .OR. CNI_CHARGING == 'HELFA' .OR. &
        CNI_CHARGING == 'GARDI') THEN
      ZVECQ3(:)  = BI_LIN_INTP_V(XKER_Q_SDRYGB,IVEC1,IVEC2,ZVEC1,ZVEC2,IGMASK)
      ZWQ5(:,5) = 0.  ! normalement pas utile
      DO JJ = 1, IGMASK
        ZWQ5(I1(JJ),5) = ZVECQ3(JJ)
      END DO
    ELSE
      ZVECQ3(:) = BI_LIN_INTP_V(XKER_Q_SDRYGB1,IVEC1,IVEC2,ZVEC1,ZVEC2,IGMASK)
      ZVECQ4(:) = BI_LIN_INTP_V(XKER_Q_SDRYGB2,IVEC1,IVEC2,ZVEC1,ZVEC2,IGMASK)
      ZWQ5(:,6:7) = 0.  ! normalement pas utile
      DO JJ = 1, IGMASK
        ZWQ5(I1(JJ),6) = ZVECQ3(JJ) ! Dvqsgmn if charge>0
        ZWQ5(I1(JJ),7) = ZVECQ4(JJ) ! Dvqsgmn if charge<0
      END DO
    ENDIF
    !
    DEALLOCATE(ZVEC1)
    DEALLOCATE(ZVEC2)
    DEALLOCATE(IVEC1)
    DEALLOCATE(IVEC2)
    DEALLOCATE(ZVECQ1)
    DEALLOCATE(ZVECQ2)
    DEALLOCATE(ZVECQ3)
    DEALLOCATE(ZVECQ4)
!
!++CB-- CALCULER E_SG ICI POUR EVITER DES CALCULS REDONDANTS
    !
    ! compute QSDRYG_coal
    WHERE (ZRSDRYG(:) > 0 .AND.                                & !GDRY(:) .AND. &
           ZRST(:) > XRTMIN_ELEC(5) .AND.                      &
           ZLBDAS(:) > 0.           .AND. ZLBDAG(:) > 0. .AND. &
           ABS(ZQST(:)) > XQTMIN(5) .AND. ABS(ZEST(:)) > XESMIN)
      ZWQ5(:,3) = ZWQ5(:,3) * XFQSDRYG *                                   &
                  ZCOLSG * EXP(ZCOLEXSG * (ZZT(:) - XTT)) *                &
                  ZEST(:) * ZRHOCOR(:) / (ZCOR00 * ZRHODREF(:)) *          & 
                  ZCGT(:) * ZCST(:) *                                      &
                 (XLBQSDRYG1 * ZLBDAS(:)**(-2.0-XFS) +                     &
                  XLBQSDRYG2 * ZLBDAS(:)**(-1.0-XFS) * ZLBDAG(:)**(-1.0) + &
                  XLBQSDRYG3 * ZLBDAS(:)**(-XFS)     * ZLBDAG(:)**(-2.0)) ! QSDRYG_coal
      ZWQ5(:,3) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ5(:,3)) ),ZQSS(:) )
      !
      ZQSS(:) = ZQSS(:) - ZWQ5(:,3)
      ZQGS(:) = ZQGS(:) + ZWQ5(:,3)
    ELSEWHERE
      ZWQ5(:,3) = 0.
    END WHERE
!
!
!*      5.2.5 compute non-inductive charging during snow - graupel collisions
!
    ! compute QSDRYG_boun
    CALL ELEC_SDRYG_B()
    !
    if ( lbudget_sv ) then
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'NISG', &
                              Unpack( -zwq_ni(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'NISG', &
                              Unpack(  zwq_ni(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    end if
    !
    ! Save the NI charging rate
    DO JL = 1, KMICRO
      XNI_SDRYG(II1(JL),II2(JL),II3(JL)) = ZWQ_NI(JL) * ZRHODREF(JL) ! C/m3/s
    END DO
  END IF  ! end if igmask>0
!
!
!*      5.2.6 compute qrdryg
!
  IGMASK = 0
  GMASK(:) = .FALSE.
  DO JJ = 1, SIZE(GMASK)
    IF (ZRRT(JJ) > ZRTMIN(3) .AND. ZLBDAR(JJ) > 0. .AND. &
        ZRGT(JJ) > ZRTMIN(6) .AND. ZLBDAG(JJ) > 0.) THEN
      IGMASK = IGMASK + 1
      I1(IGMASK) = JJ
      GMASK(JJ) = .TRUE.
    ELSE
      GMASK(JJ) = .FALSE.
    END IF
  END DO
  !
  IF (IGMASK > 0) THEN
    !
    ALLOCATE(ZVEC1(IGMASK))
    ALLOCATE(ZVEC2(IGMASK))
    ALLOCATE(IVEC1(IGMASK))
    ALLOCATE(IVEC2(IGMASK))
    ALLOCATE(ZVECQ1(IGMASK))
    !
    ! select the (ZLBDAG,ZLBDAR) couplet
    DO JJ = 1, IGMASK
      ZVEC1(JJ) = ZLBDAG(I1(JJ))
      ZVEC2(JJ) = ZLBDAR(I1(JJ))
    END DO
    !
    ! find the next lower indice for the ZLBDAG and for the ZLBDAR in the geometrical set 
    ! of (Lbda_g,Lbda_r) couplet use to tabulate the QDRYG-kernel
    ZVEC1(1:IGMASK) = MAX(1.00001, MIN( REAL(IDRYLBDAG)-0.00001,           &
                         ZDRYINTP1G*LOG(ZVEC1(1:IGMASK))+ZDRYINTP2G))
    IVEC1(1:IGMASK) = INT(ZVEC1(1:IGMASK))
    ZVEC1(1:IGMASK) = ZVEC1(1:IGMASK) - REAL(IVEC1(1:IGMASK))
    !
    ZVEC2(1:IGMASK) = MAX(1.00001, MIN( REAL(IDRYLBDAR)-0.00001,           &
                          ZDRYINTP1R*LOG(ZVEC2(1:IGMASK))+ZDRYINTP2R))
    IVEC2(1:IGMASK) = INT(ZVEC2(1:IGMASK))
    ZVEC2(1:IGMASK) = ZVEC2(1:IGMASK) - REAL(IVEC2(1:IGMASK))
    !
    ! perform the bilinear interpolation of the normalized RDRYG-kernel
    ZVECQ1(:) = BI_LIN_INTP_V(XKER_Q_RDRYG, IVEC1, IVEC2, ZVEC1, ZVEC2, IGMASK)
    ZWQ5(:,4) = 0.
    DO JJ = 1, IGMASK
      ZWQ5(I1(JJ),4) = ZVECQ1(JJ)
    END DO
    !
    DEALLOCATE(ZVEC1)
    DEALLOCATE(ZVEC2)
    DEALLOCATE(IVEC1)
    DEALLOCATE(IVEC2)
    DEALLOCATE(ZVECQ1)  
    !
    ! compute QRDRYG
    WHERE (ZRRDRYG(:) > 0. .AND.                                         &
           ZRRT(:) > XRTMIN_ELEC(3) .AND. ZRGT(:) > XRTMIN_ELEC(6) .AND. & 
           ZCRT(:) > 0.             .AND. ZCGT(:) > 0.             .AND. & 
           ZLBDAR(:) > 0.           .AND. ZLBDAG(:) > 0.           .AND. &
           ABS(ZERT(:)) > XERMIN .AND. ABS(ZQRT(:)) > XQTMIN(3))
      ZWQ5(:,4) = ZWQ5(:,4) * XFQRDRYG *                                       &
                  ZRHODREF(:)**(-ZCEXVT) *                                     &
                  ZERT(:) * ZCGT(:) * ZCRT(:) *                                &
                 (XLBQRDRYG1 * ZLBDAR(:)**(-2.0 - XFR) +                       &
                  XLBQRDRYG2 * ZLBDAR(:)**(-1.0 - XFR) * ZLBDAG(:)**(-1.0) +   &
                  XLBQRDRYG3 * ZLBDAR(:)**(-XFR)       * ZLBDAG(:)**(-2.0))
      ZWQ5(:,4) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ5(:,4)) ),ZQRS(:) )
      !
      ZQRS(:) = ZQRS(:) - ZWQ5(:,4)
      ZQGS(:) = ZQGS(:) + ZWQ5(:,4)
    ELSEWHERE
      ZWQ5(:,4) = 0.
    ENDWHERE
!    ZRDRYG(:) = ZWQ5(:,1) + ZWQ5(:,2) + ZWQ5(:,3) + ZWQ5(:,4)
!
    if ( lbudget_sv ) then
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'DRYG', &
                              Unpack( -zwq5(:,1) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'DRYG', &
                              Unpack( -zwq5(:,4) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'DRYG', &
                              Unpack( -zwq5(:,2) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'DRYG', &
                              Unpack( -zwq5(:,3) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'DRYG', &
                              Unpack( (zwq5(:,1) + zwq5(:,2) + zwq5(:,3) + zwq5(:,4)) * zrhodj(:), &
                              mask = odmicro(:, :, :), field = 0. ) )
    end if
!
  END IF  ! end if igmask>0
!
!
!*      5.3   Hallett-Mossop ice multiplication process due to graupel riming (rhmgi)
!
  IF (CCLOUD == 'LIMA') THEN
    CALL COMPUTE_CHARGE_TRANSFER (ZRGHMGI, ZRGT, ZQGT, PTSTEP,          &
                                  XRTMIN_ELEC(6), XQTMIN(6), XCOEF_RQ_G, &
                                  ZWQ, ZQGS, ZQIS)          
!
    if ( lbudget_sv ) then
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'HMG', &
                             Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'HMG', &
                             Unpack(  zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    end if
  END IF
!
!
!*      5.4   graupel wet growth (rcwetg, rrwetg, riwetg & rswetg)
!
!*      5.4.1 compute qcwetg
!
  ZWQ5(:,5) = 0.
  WHERE (ZRCWETG(:) > 0. .AND. ZRCT(:) > XRTMIN_ELEC(2) .AND. ABS(ZQCT(:)) > XQTMIN(2) .AND. &
         ZRGT(:) > XRTMIN_ELEC(6))
    ZWQ5(:,5) = XCOEF_RQ_C * ZRCWETG(:) * ZQCT(:) / ZRCT(:)
    ZWQ5(:,5) = SIGN( MIN( ABS(ZQCT(:)/PTSTEP),ABS(ZWQ5(:,5)) ),ZQCS(:) )
  END WHERE
!
!
!*      5.4.1 compute qiwetg
!
  ZWQ5(:,6) = 0.
  WHERE (ZRIWETG(:) > 0. .AND. ZRIT(:) > XRTMIN_ELEC(4) .AND. ABS(ZQIT(:)) > XQTMIN(4) .AND. &
         ZRGT(:) > XRTMIN_ELEC(6))
    ZWQ5(:,6) = XCOEF_RQ_I * ZRIWETG(:) * ZQIT(:) / ZRIT(:)
    ZWQ5(:,6) = SIGN( MIN( ABS(ZQIT(:)/PTSTEP),ABS(ZWQ5(:,6)) ),ZQIS(:) )
  END WHERE
!
!
!*      5.4.2 compute qswetg
!
  ZWQ5(:,7) = 0.
  WHERE (ZRSWETG(:) > 0. .AND. ZRST(:) > XRTMIN_ELEC(5) .AND. ABS(ZQST(:)) > XQTMIN(5) .AND. &
         ZRGT(:) > XRTMIN_ELEC(6))
    ZWQ5(:,7) = XCOEF_RQ_S * ZRSWETG(:) * ZQST(:) / ZRST(:)
    ZWQ5(:,7) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ5(:,7)) ),ZQSS(:) )
  END WHERE
!
!
!*      5.4.3 compute qrwetg
!
  ZWQ5(:,8) = 0.
  WHERE (ZRRWETG(:) > 0. .AND. ZRRT(:) > XRTMIN_ELEC(3) .AND. ABS(ZQRT(:)) > XQTMIN(3) .AND. &
         ZRGT(:) > XRTMIN_ELEC(6))
    ZWQ5(:,8) = XCOEF_RQ_R * ZQRT(:) * ZRRWETG(:) / ZRRT(:)
    ZWQ5(:,8) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ5(:,8)) ),ZQRS(:) )
  ENDWHERE
!
!
!*      5.4.4 conversion of graupel into hail (rwetgh)
!
  if ( lbudget_sv ) then
    call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'WETG', &
                            Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
  IF (KRR == 7) THEN
    ZWQ5(:,9) = 0.
    WHERE (ZRWETGH(:) > 0. .AND. ZRGT(:) > XRTMIN_ELEC(6) .AND. ABS(ZQGT(:)) > XQTMIN(6))
      ZWQ5(:,9) = XCOEF_RQ_G * ZQGT(:) * ZRWETGH(:) / ZRGT(:)
      ZWQ5(:,9) = SIGN( MIN( ABS(ZQGT(:)/PTSTEP),ABS(ZWQ5(:,9)) ),ZQGS(:) )
    END WHERE
    !
    WHERE (ZRCWETG(:) > 0. .OR. ZRRWETG(:) > 0. .OR. ZRIWETG(:) > 0. .OR. &
           ZRSWETG(:) > 0. .OR. ZRWETGH(:) > 0.)
      ZQCS(:) = ZQCS(:) - ZWQ5(:,5)
      ZQRS(:) = ZQRS(:) - ZWQ5(:,8)
      ZQIS(:) = ZQIS(:) - ZWQ5(:,6)
      ZQSS(:) = ZQSS(:) - ZWQ5(:,7)
      ZQGS(:) = ZQGS(:) + ZWQ5(:,5) + ZWQ5(:,8) + ZWQ5(:,6) + ZWQ5(:,7) - ZWQ5(:,9)
      ZQHS(:) = ZQHS(:) + ZWQ5(:,9)
    END WHERE
  ELSE IF (KRR == 6) THEN
    WHERE (ZRCWETG(:) > 0. .OR. ZRRWETG(:) > 0. .OR. ZRIWETG(:) > 0. .OR. &
           ZRSWETG(:) > 0.)
      ZQCS(:) = ZQCS(:) - ZWQ5(:,5)
      ZQRS(:) = ZQRS(:) - ZWQ5(:,8)
      ZQIS(:) = ZQIS(:) - ZWQ5(:,6)
      ZQSS(:) = ZQSS(:) - ZWQ5(:,7)
      ZQGS(:) = ZQGS(:) + ZWQ5(:,5) + ZWQ5(:,8) + ZWQ5(:,6) + ZWQ5(:,7)
    END WHERE
  END IF
!
  if ( lbudget_sv ) then
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'WETG', &
                           Unpack( -zwq5(:,5) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'WETG', &
                           Unpack( -zwq5(:,8) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'WETG', &
                           Unpack( -zwq5(:,6) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'WETG', &
                           Unpack( -zwq5(:,7) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'WETG', &
                           Unpack(  zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    if ( krr == 7 ) &
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 6 ), 'WETG', &
                           Unpack( zwq5(:,9) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!
!*      5.5   compute charge separation by the inductive mechanism
!
! Computation of the charge transfer rate during inductive mechanism
! Only the bouncing droplet-graupel collision when the graupel is in the dry 
! growth mode is considered
! The electric field is limited to 100 kV/m
!
  IF (LINDUCTIVE) THEN
    ZWQ(:) = 0.
    GMASK(:) = ZRCDRYG(:) > 0. 
    IGMASK   = COUNT(GMASK(:))
    !
    IF (IGMASK > 0) THEN
      ZWQ(:) = 0.
      !
      WHERE (GMASK(:) .AND.                                      &
             ZEFIELDW(:) /= 0. .AND. ABS(ZEGT(:)) > XEGMIN .AND. &
             ZLBDAG(:) > 0. .AND. ZCGT(:) > 0. .AND.             &
             ZRGT(:) > XRTMIN_ELEC(6) .AND. ZRCT(:) > XRTMIN_ELEC(2))
        ZWQ(:) = XIND1 * ZCGT(:) * ZRHOCOR(:) *                             &
                (XIND2 * SIGN(MIN(100.E3, ABS(ZEFIELDW(:))), ZEFIELDW(:)) * &
                 ZLBDAG(:) **(-2.-ZDG) -                                    &
                 XIND3 * ZEGT(:) * ZLBDAG(:)**(-XFG-ZDG))
        ZWQ(:) = ZWQ(:) / ZRHODREF(:)
        !
        ZQGS(:) = ZQGS(:) + ZWQ(:)
        ZQCS(:) = ZQCS(:) - ZWQ(:)
      END WHERE
    !
      if ( lbudget_sv ) then
        call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'INCG', &
                               Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
        call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'INCG', &
                               Unpack(  zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      end if    
      !
      ! Save the inductive charging rate
      DO JL = 1, KMICRO
        XIND_RATE(II1(JL),II2(JL),II3(JL)) = ZWQ(JL) * ZRHODREF(JL) ! C/m3/s
      END DO
    END IF
    !
    ! Save the inductive charging rate
    DO JL = 1, KMICRO
      XIND_RATE(II1(JL),II2(JL),II3(JL)) = ZWQ(JL) * ZRHODREF(JL) ! C/m3/s
    END DO
  END IF
!
!
!*      5.6   melting of the graupel (rgmltr)
!
  CALL COMPUTE_CHARGE_TRANSFER (ZRGMLTR, ZRGT, ZQGT, PTSTEP, &
                                XRTMIN_ELEC(6), XQTMIN(6), XCOEF_RQ_G, &
                                ZWQ, ZQGS, ZQRS)
!
  if ( lbudget_sv ) then
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'GMLT', &
                           Unpack(  zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'GMLT', &
                           Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
  end if
!
!
!------------------------------------------------------------------
!
!*      6.    COMPUTE THE OPTIONAL SECONDARY ICE PRODUCTION
!             ---------------------------------------------
!
! dans un premier temps, on considere que la charge echangee est proportionnelle
! a la masse echangee
!
!*      6.1   collisional ice breakup (cibu)
!
  IF (CCLOUD == 'LIMA' .AND. LCIBU) &
    CALL COMPUTE_CHARGE_TRANSFER (ZRICIBU, ZRST, ZQST, PTSTEP,           &
                                  XRTMIN_ELEC(5), XQTMIN(5), XCOEF_RQ_S, &
                                  ZWQ, ZQSS, ZQIS)
!
!*      6.2   raindrop shattering freezing (rdsf)
!
  IF (CCLOUD == 'LIMA' .AND. LRDSF) &
    CALL COMPUTE_CHARGE_TRANSFER (ZRIRDSF, ZRRT, ZQRT, PTSTEP,           &
                                  XRTMIN_ELEC(3), XQTMIN(3), XCOEF_RQ_R, &
                                  ZWQ, ZQRS, ZQIS)
!
!
!------------------------------------------------------------------
!
!*      7.    COMPUTE THE FAST COLD PROCESS SOURCES FOR r_h
!             ---------------------------------------------
!
  IF (KRR == 7) THEN
!
!*      7.1   wet growth of hail (qcweth, qrweth, qiweth, qsweth, qgweth)
!
    ZWQ5(:,:) = 0.
    !
    WHERE (ZRCWETH(:) > 0. .AND. ZRCT(:) > XRTMIN_ELEC(2))
      ZWQ5(:,1) = XCOEF_RQ_C * ZQCT(:) * ZRCWETH(:) / ZRCT(:)        ! QCWETH
      ZWQ5(:,1) = SIGN( MIN( ABS(ZQCT(:)/PTSTEP),ABS(ZWQ5(:,1)) ),ZQCS(:) )
      !
      ZQCS(:) = ZQCS(:) - ZWQ5(:,1)
      ZQHS(:) = ZQHS(:) + ZWQ5(:,1)
    END WHERE
    !
    WHERE (ZRIWETH(:) > 0. .AND. ZRIT(:) > XRTMIN_ELEC(4))
      ZWQ5(:,2) = XCOEF_RQ_I * ZQIT(:) * ZRIWETH(:) / ZRIT(:)        ! QIWETH
      ZWQ5(:,2) = SIGN( MIN( ABS(ZQIT(:)/PTSTEP),ABS(ZWQ5(:,2)) ),ZQIS(:) )
      !
      ZQIS(:) = ZQIS(:) - ZWQ5(:,2)
      ZQHS(:) = ZQHS(:) + ZWQ5(:,2)
    END WHERE
    !
    WHERE (ZRSWETH(:) > 0. .AND. ZRST(:) > XRTMIN_ELEC(5))
      ZWQ5(:,3) = XCOEF_RQ_S * ZQST(:) * ZRSWETH(:) / ZRST(:)        ! QSWETH
      ZWQ5(:,3) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ5(:,3)) ),ZQSS(:) )
      !
      ZQSS(:) = ZQSS(:) - ZWQ5(:,3)
      ZQHS(:) = ZQHS(:) + ZWQ5(:,3)
    END WHERE
    !
    WHERE (ZRGWETH(:) > 0. .AND. ZRGT(:) > XRTMIN_ELEC(6))
      ZWQ5(:,5) = XCOEF_RQ_G * ZQGT(:) * ZRGWETH(:) / ZRGT(:)        ! QGWETH
      ZWQ5(:,5) = SIGN( MIN( ABS(ZQGT(:)/PTSTEP),ABS(ZWQ5(:,5)) ),ZQGS(:) )
      !
      ZQGS(:) = ZQGS(:) - ZWQ5(:,5)
      ZQHS(:) = ZQHS(:) + ZWQ5(:,5)
    END WHERE
    !
    WHERE (ZRRWETH(:) > 0. .AND. ZRRT(:) > XRTMIN_ELEC(3))
      ZWQ5(:,4) = XCOEF_RQ_R * ZQRT(:) * ZRRWETH(:) / ZRRT(:)        ! QRWETH
      ZWQ5(:,4) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ5(:,4)) ),ZQRS(:) )
      !
      ZQRS(:) = ZQRS(:) - ZWQ5(:,4)
      ZQHS(:) = ZQHS(:) + ZWQ5(:,4)
    END WHERE
!
    if ( lbudget_sv ) then
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'WETH', &
                             Unpack( -zwq5(:, 1) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'WETH', &
                             Unpack( -zwq5(:, 4) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'WETH', &
                             Unpack( -zwq5(:, 2) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'WETH', &
                             Unpack( -zwq5(:, 3) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'WETH', &
                             Unpack( -zwq5(:, 5) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 6 ), 'WETH',                      &
                             Unpack( ( zwq5(:, 1) + zwq5(:, 2) + zwq5(:, 3) + zwq5(:, 4) + zwq5(:, 5) ) &
                                       * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    end if
!
!
!*      7.2   dry growth of hail (qcdryh, qrdryh, qidryh, qsdryh, qgdryh)
!
    ZWQ5(:,:) = 0.
    !
    WHERE (ZRCDRYH(:) > 0. .AND. ZRCT(:) > XRTMIN_ELEC(2))
      ZWQ5(:,1) = XCOEF_RQ_C * ZQCT(:) * ZRCDRYH(:) / ZRCT(:)        ! QCDRYH
      ZWQ5(:,1) = SIGN( MIN( ABS(ZQCT(:)/PTSTEP),ABS(ZWQ5(:,1)) ),ZQCS(:) )
      !
      ZQCS(:) = ZQCS(:) - ZWQ5(:,1)
      ZQHS(:) = ZQHS(:) + ZWQ5(:,1)
    END WHERE
    !
    WHERE (ZRIDRYH(:) > 0. .AND. ZRIT(:) > XRTMIN_ELEC(4))
      ZWQ5(:,2) = XCOEF_RQ_I * ZQIT(:) * ZRIDRYH(:) / ZRIT(:)        ! QIDRYH
      ZWQ5(:,2) = SIGN( MIN( ABS(ZQIT(:)/PTSTEP),ABS(ZWQ5(:,2)) ),ZQIS(:) )
      !
      ZQIS(:) = ZQIS(:) - ZWQ5(:,2)
      ZQHS(:) = ZQHS(:) + ZWQ5(:,2)
    END WHERE
    !
    WHERE (ZRSDRYH(:) > 0. .AND. ZRST(:) > XRTMIN_ELEC(5))
      ZWQ5(:,3) = XCOEF_RQ_S * ZQST(:) * ZRSDRYH(:) / ZRST(:)        ! QSDRYH
      ZWQ5(:,3) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ5(:,3)) ),ZQSS(:) )
      !
      ZQSS(:) = ZQSS(:) - ZWQ5(:,3)
      ZQHS(:) = ZQHS(:) + ZWQ5(:,3)
    END WHERE
    !
    WHERE (ZRGDRYH(:) > 0. .AND. ZRGT(:) > XRTMIN_ELEC(6))
      ZWQ5(:,5) = XCOEF_RQ_G * ZQGT(:) * ZRGDRYH(:) / ZRGT(:)        ! QGDRYH
      ZWQ5(:,5) = SIGN( MIN( ABS(ZQGT(:)/PTSTEP),ABS(ZWQ5(:,5)) ),ZQGS(:) )
      !
      ZQGS(:) = ZQGS(:) - ZWQ5(:,5)
      ZQHS(:) = ZQHS(:) + ZWQ5(:,5)
    END WHERE
    !
    WHERE (ZRRDRYH(:) > 0. .AND. ZRRT(:) > XRTMIN_ELEC(3))
      ZWQ5(:,4) = XCOEF_RQ_R * ZQRT(:) * ZRRDRYH(:) / ZRRT(:)        ! QRDRYH
      ZWQ5(:,4) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ5(:,4)) ),ZQRS(:) )
      !
      ZQRS(:) = ZQRS(:) - ZWQ5(:,4)
      ZQHS(:) = ZQHS(:) + ZWQ5(:,4)
    END WHERE
!
!
!*      7.3   conversion of hail into graupel (qdryhg)
!
    CALL COMPUTE_CHARGE_TRANSFER (ZRDRYHG, ZRHT, ZQHT, PTSTEP, &
                                  XRTMIN_ELEC(7), XQTMIN(7), XCOEF_RQ_H, &
                                  ZWQ, ZQHS, ZQGS)
!
    if ( lbudget_sv ) then
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'DRYH', &
                             Unpack( -zwq5(:, 1) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'DRYH', &
                             Unpack( -zwq5(:, 4) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'DRYH', &
                             Unpack( -zwq5(:, 2) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'DRYH', &
                             Unpack( -zwq5(:, 3) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'DRYH', &
                             Unpack( (-zwq5(:, 5) - zwq(:)) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 6 ), 'DRYH',                      &
                             Unpack( ( zwq5(:, 1) + zwq5(:, 2) + zwq5(:, 3) + zwq5(:, 4) + zwq5(:, 5) + zwq(:) ) &
                                       * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    end if
!
!
!*      7.4   melting of hail (qhmltr)
!
    CALL COMPUTE_CHARGE_TRANSFER (ZRHMLTR, ZRHT, ZQHT, PTSTEP, &
                                  XRTMIN_ELEC(7), XQTMIN(7), XCOEF_RQ_H, &
                                  ZWQ, ZQHS, ZQRS)
!
    if ( lbudget_sv ) then
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'HMLT', &
                             Unpack(  zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
      call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 6 ), 'HMLT', &
                             Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
    end if
!
  END IF  ! end if krr==7
!
!
!------------------------------------------------------------------
!
!*      8.    COMPUTE THE FAST COLD PROCESS SOURCES FOR r_i
!             ---------------------------------------------
!
!*      8.1   Bergeron-Findeisen effect (qcberi)
!
  CALL COMPUTE_CHARGE_TRANSFER (ZRCBERI, ZRCT, ZQCT, PTSTEP, &
                                XRTMIN_ELEC(2), XQTMIN(2), XCOEF_RQ_C, &
                                ZWQ, ZQCS, ZQIS)
!
Loading
Loading full blame...