Newer
Older
!MNH_LIC Copyright 2022-2023 CNRS, Meteo-France and Universite Paul Sabatier
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! ###########################
MODULE MODI_ELEC_TENDENCIES
! ###########################
!
INTERFACE
SUBROUTINE ELEC_TENDENCIES (D, KRR, KMICRO, PTSTEP, ODMICRO, &
PRHODREF, PRHODJ, PZT, PCIT, &
PRVT, PRCT, PRRT, PRIT, PRST, PRGT, &
PQPIT, PQCT, PQRT, PQIT, PQST, PQGT, PQNIT, &
PQPIS, PQCS, PQRS, PQIS, PQSS, PQGS, PQNIS, &
PRVHENI, PRRHONG, PRIMLTC, &
PRCHONI, PRVDEPS, PRIAGGS, PRIAUTS, PRVDEPG, &
PRCAUTR, PRCACCR, PRREVAV, &
PRCRIMSS, PRCRIMSG, PRSRIMCG, PRRACCSS, PRRACCSG, PRSACCRG, &
PRSMLTG, PRICFRRG, PRRCFRIG, &
PRCWETG, PRIWETG, PRRWETG, PRSWETG, &
PRCDRYG, PRIDRYG, PRRDRYG, PRSDRYG, &
PRGMLTR, PRCBERI, &
PRCMLTSR, PRICFRR, & !- opt. param. for ICE3
PCCT, PCRT, PCST, PCGT, & !-- optional
PRVHENC, PRCHINC, PRVHONH, & !| parameters
PRRCVRC, PRICNVI, PRVDEPI, PRSHMSI, PRGHMGI, & !| for
PRICIBU, PRIRDSF, & !| LIMA
PRCCORR2, PRRCORR2, PRICORR2, & !--
PRWETGH, PRCWETH, PRIWETH, PRSWETH, PRGWETH, PRRWETH, & !-- optional
PRCDRYH, PRIDRYH, PRSDRYH, PRRDRYH, PRGDRYH, & !| parameters
PRHMLTR, PRDRYHG, & !| for
PRHT, PRHS, PCHT, PQHT, PQHS) !-- hail
!
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
!
TYPE(DIMPHYEX_t), INTENT(IN) :: D
!
INTEGER, INTENT(IN) :: KMICRO
REAL, INTENT(IN) :: PTSTEP ! Double Time step
! (single if cold start)
INTEGER, INTENT(IN) :: KRR ! Number of moist variable
!
LOGICAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: ODMICRO ! mask to limit computation
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PZT ! Temperature (K)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PCIT ! Pristine ice n.c. at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRIT ! Pristine ice m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRGT ! Graupel/hail m.r. at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQPIT ! Positive ion (Nb/kg) at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQNIT ! Negative ion (Nb/kg) at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQCT ! Cloud water charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQRT ! Raindrops charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQIT ! Pristine ice charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQST ! Snow/aggregates charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQGT ! Graupel charge at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQPIS ! Positive ion (Nb/kg) source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQNIS ! Negative ion (Nb/kg) source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQCS ! Cloud water charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQRS ! Raindrops charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQIS ! Pristine ice charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQSS ! Snow/aggregates charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQGS ! Graupel charge source
!
! microphysics rates common to ICE3 and LIMA
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRVHENI, & ! heterogeneous nucleation mixing ratio change (HIND for LIMA)
PRCHONI, & ! Homogeneous nucleation
PRRHONG, & ! Spontaneous freezing mixing ratio change
PRVDEPS, & ! Deposition on r_s,
PRIAGGS, & ! Aggregation on r_s
PRIAUTS, & ! Autoconversion of r_i for r_s production (CNVS for LIMA)
PRVDEPG, & ! Deposition on r_g
PRCAUTR, & ! Autoconversion of r_c for r_r production
PRCACCR, & ! Accretion of r_c for r_r production
PRREVAV, & ! Evaporation of r_r
PRIMLTC, & ! Cloud ice melting mixing ratio change
PRCBERI, & ! Bergeron-Findeisen effect
PRSMLTG, & ! Conversion-Melting of the aggregates
PRRACCSS, PRRACCSG, PRSACCRG, & ! Rain accretion onto the aggregates
PRCRIMSS, PRCRIMSG, PRSRIMCG, & ! Cloud droplet riming of the aggregates
PRICFRRG, PRRCFRIG, & ! Rain contact freezing
PRCWETG, PRIWETG, PRRWETG, PRSWETG, & ! Graupel wet growth
PRCDRYG, PRIDRYG, PRRDRYG, PRSDRYG, & ! Graupel dry growth
PRGMLTR ! Melting of the graupel
! microphysics rates specific to ICE3 (knmoments==1)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PRCMLTSR,& ! Cld droplet collection onto aggregates by pos. temp.
PRICFRR ! Rain contact freezing (part of ice crystals converted to rain)
! microphysics rates specific to LIMA (knmoments==2)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PRVHENC, & ! Cld droplet formation
PRCHINC, & ! Heterogeneous nucleation of coated IFN
PRVHONH, & ! Nucleation of haze
PRRCVRC, & ! Conversion of small drops into droplets
PRICNVI, & ! Conversion snow --> ice
PRVDEPI, & ! Deposition on r_i
PRSHMSI, PRGHMGI, & ! Hallett Mossop for snow and graupel
PRICIBU, & ! Collisional ice breakup
PRIRDSF, & ! Raindrop shattering by freezing
PRCCORR2, PRRCORR2, PRICORR2 ! Correction inside LIMA splitting
! microphysics rates related to hail (krr == 7, lhail = .t.)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PRWETGH, & ! Conversion of graupel into hail
PRCWETH, PRIWETH, PRSWETH, PRGWETH, PRRWETH, & ! Dry growth of hail
PRCDRYH, PRIDRYH, PRSDRYH, PRRDRYH, PRGDRYH, & ! Wet growth of hail
PRHMLTR, & ! Melting of hail
PRDRYHG ! Conversion of hail into graupel
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PCCT ! Cloud droplets conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PCRT ! Raindrops conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PCST ! Snow conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PCGT ! Graupel conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PCHT ! Hail conc. at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PRHT ! Hail m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(INOUT) :: PRHS ! Hail m.r. source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PQHT ! Hail charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(INOUT) :: PQHS ! Hail charge source
!
END SUBROUTINE ELEC_TENDENCIES
END INTERFACE
END MODULE MODI_ELEC_TENDENCIES
!
!
! #########################################################################################
SUBROUTINE ELEC_TENDENCIES (D, KRR, KMICRO, PTSTEP, ODMICRO, &
PRHODREF, PRHODJ, PZT, PCIT, &
PRVT, PRCT, PRRT, PRIT, PRST, PRGT, &
PQPIT, PQCT, PQRT, PQIT, PQST, PQGT, PQNIT, &
PQPIS, PQCS, PQRS, PQIS, PQSS, PQGS, PQNIS, &
PRVHENI, PRRHONG, PRIMLTC, &
PRCHONI, PRVDEPS, PRIAGGS, PRIAUTS, PRVDEPG, &
PRCAUTR, PRCACCR, PRREVAV, &
PRCRIMSS, PRCRIMSG, PRSRIMCG, PRRACCSS, PRRACCSG, PRSACCRG, &
PRSMLTG, PRICFRRG, PRRCFRIG, &
PRCWETG, PRIWETG, PRRWETG, PRSWETG, &
PRCDRYG, PRIDRYG, PRRDRYG, PRSDRYG, &
PRGMLTR, PRCBERI, &
PRCMLTSR, PRICFRR, & !- opt. param. for ICE3
PCCT, PCRT, PCST, PCGT, & !-- optional
PRVHENC, PRCHINC, PRVHONH, & !| parameters
PRRCVRC, PRICNVI, PRVDEPI, PRSHMSI, PRGHMGI, & !| for
PRICIBU, PRIRDSF, & !| LIMA
PRCCORR2, PRRCORR2, PRICORR2, & !--
PRWETGH, PRCWETH, PRIWETH, PRSWETH, PRGWETH, PRRWETH, & !-- optional
PRCDRYH, PRIDRYH, PRSDRYH, PRRDRYH, PRGDRYH, & !| parameters
PRHMLTR, PRDRYHG, & !| for
PRHT, PRHS, PCHT, PQHT, PQHS) !-- hail
! ##########################################################################################
!
!!**** * - compute the explicit cloud electrification sources
!!
!! This routine is adapted from rain_ice_elec.f90.
!! To avoid duplicated routines, the cloud electrification routine is now called
!! at the end of the microphysics scheme but needs the microphysical tendencies as arguments.
!! The sedimentation source for electric charges is treated separately.
!!
!! AUTHOR
!! ------
!! C. Barthe * LAERO *
!!
!! MODIFICATIONS
!! -------------
!! Original February 2022
!!
!! Modifications
!! C. Barthe 12/04/2022 include electrification from LIMA
!! C. Barthe 22/03/2023 5-6: take into account news from LIMA (Ns, Ng, Nh, CIBU and RDSF) and PHYEX
!! C. Barthe 13/07/2023 5-6: Ns, Ng and Nh can be pronostic variables (LIMA2)
!! C. Barthe 22/11/2023 initialize Nx to 0 when 1-moment
!!
!------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
use modd_budget, only: lbu_enable, &
lbudget_th, lbudget_rv, lbudget_rc, lbudget_rr, lbudget_ri, &
lbudget_rs, lbudget_rg, lbudget_rh, lbudget_sv, &
NBUDGET_TH, NBUDGET_RV, NBUDGET_RC, NBUDGET_RR, NBUDGET_RI, &
NBUDGET_RS, NBUDGET_RG, NBUDGET_RH, NBUDGET_SV1, &
tbudgets
!
USE MODD_CONF
USE MODD_CST
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
USE MODD_ELEC_DESCR
USE MODD_ELEC_n
USE MODD_ELEC_PARAM
USE MODD_LES
USE MODE_ll
USE MODD_NSV, ONLY: NSV_ELECBEG, NSV_ELECEND ! Scalar variables for budgets
USE MODD_PARAMETERS

RODIER Quentin
committed
USE MODD_PARAM_ICE_n
USE MODD_PARAM_LIMA, ONLY: XALPHAI_L=>XALPHAI, XNUI_L=>XNUI, &
XCEXVT_L=>XCEXVT, XRTMIN_L=>XRTMIN, &
LCIBU, LRDSF, &
NMOM_C, NMOM_R, NMOM_I, NMOM_S, NMOM_G, NMOM_H
USE MODD_PARAM_LIMA_COLD, ONLY: XAI_L=>XAI, XBI_L=>XBI, &
XDS_L=>XDS, XCXS_L=>XCXS, &
XCOLEXIS_L=>XCOLEXIS
USE MODD_PARAM_LIMA_MIXED, ONLY: XDG_L=>XDG, XCXG_L=>XCXG, &
XCOLIG_L=>XCOLIG, XCOLEXIG_L=>XCOLEXIG, &
XCOLSG_L=>XCOLSG, XCOLEXSG_L=>XCOLEXSG, &
NGAMINC_L=>NGAMINC, &
NACCLBDAR_L=>NACCLBDAR, NACCLBDAS_L=>NACCLBDAS, &
XACCINTP1S_L=>XACCINTP1S, XACCINTP2S_L=>XACCINTP2S, &
XACCINTP1R_L=>XACCINTP1R, XACCINTP2R_L=>XACCINTP2R, &
NDRYLBDAR_L=>NDRYLBDAR, NDRYLBDAS_L=>NDRYLBDAS, &
NDRYLBDAG_L=>NDRYLBDAG, &
XDRYINTP1R_L=>XDRYINTP1R, XDRYINTP2R_L=>XDRYINTP2R, &
XDRYINTP1S_L=>XDRYINTP1S, XDRYINTP2S_L=>XDRYINTP2S, &
XDRYINTP1G_L=>XDRYINTP1G, XDRYINTP2G_L=>XDRYINTP2G, &
XRIMINTP1_L=>XRIMINTP1, XRIMINTP2_L=>XRIMINTP2
USE MODD_PARAM_n, ONLY: CCLOUD

RODIER Quentin
committed
USE MODD_RAIN_ICE_DESCR_n,ONLY: XCEXVT_I=>XCEXVT, XRTMIN_I=>XRTMIN, &
XALPHAI_I=>XALPHAI, XNUI_I=>XNUI, XAI_I=>XAI, XBI_I=>XBI, &
XDS_I=>XDS, XDG_I=>XDG, &
XCXS_I=>XCXS, XCXG_I=>XCXG

RODIER Quentin
committed
USE MODD_RAIN_ICE_PARAM_n,ONLY: XCOLIS_I=>XCOLIS, XCOLEXIS_I=>XCOLEXIS, &
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
XCOLIG_I=>XCOLIG, XCOLEXIG_I=>XCOLEXIG, &
XCOLSG_I=>XCOLSG, XCOLEXSG_I=>XCOLEXSG, &
NGAMINC_I=>NGAMINC, &
NACCLBDAR_I=>NACCLBDAR, NACCLBDAS_I=>NACCLBDAS, &
XACCINTP1S_I=>XACCINTP1S, XACCINTP2S_I=>XACCINTP2S, &
XACCINTP1R_I=>XACCINTP1R, XACCINTP2R_I=>XACCINTP2R, &
NDRYLBDAR_I=>NDRYLBDAR, NDRYLBDAS_I=>NDRYLBDAS, &
NDRYLBDAG_I=>NDRYLBDAG, &
XDRYINTP1R_I=>XDRYINTP1R, XDRYINTP2R_I=>XDRYINTP2R, &
XDRYINTP1S_I=>XDRYINTP1S, XDRYINTP2S_I=>XDRYINTP2S, &
XDRYINTP1G_I=>XDRYINTP1G, XDRYINTP2G_I=>XDRYINTP2G, &
XRIMINTP1_I=>XRIMINTP1, XRIMINTP2_I=>XRIMINTP2
USE MODD_REF, ONLY: XTHVREFZ
!
#ifdef MNH_PGI
USE MODE_PACK_PGI
#endif
use mode_tools, only: Countjv
use mode_budget, only: Budget_store_add, Budget_store_init, Budget_store_end
!
USE MODI_COMPUTE_LAMBDA
USE MODI_ELEC_COMPUTE_EX
USE MODI_MOMG
!
IMPLICIT NONE
!
!
!* 0.1 Declaration of dummy arguments
!
TYPE(DIMPHYEX_t), INTENT(IN) :: D
!
INTEGER, INTENT(IN) :: KMICRO
REAL, INTENT(IN) :: PTSTEP ! Double Time step
! (single if cold start)
INTEGER, INTENT(IN) :: KRR ! Number of moist variable
!
LOGICAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: ODMICRO ! mask to limit computation
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PZT ! Temperature (K)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PCIT ! Pristine ice n.c. at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRIT ! Pristine ice m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRGT ! Graupel/hail m.r. at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQPIT ! Positive ion (Nb/kg) at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQNIT ! Negative ion (Nb/kg) at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQCT ! Cloud water charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQRT ! Raindrops charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQIT ! Pristine ice charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQST ! Snow/aggregates charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PQGT ! Graupel charge at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQPIS ! Positive ion (Nb/kg) source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQNIS ! Negative ion (Nb/kg) source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQCS ! Cloud water charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQRS ! Raindrops charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQIS ! Pristine ice charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQSS ! Snow/aggregates charge source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PQGS ! Graupel charge source
!
! microphysics rates common to ICE3 and LIMA
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRVHENI, & ! heterogeneous nucleation mixing ratio change (HIND for LIMA)
PRCHONI, & ! Homogeneous nucleation
PRRHONG, & ! Spontaneous freezing mixing ratio change
PRVDEPS, & ! Deposition on r_s,
PRIAGGS, & ! Aggregation on r_s
PRIAUTS, & ! Autoconversion of r_i for r_s production (CNVS for LIMA)
PRVDEPG, & ! Deposition on r_g
PRCAUTR, & ! Autoconversion of r_c for r_r production
PRCACCR, & ! Accretion of r_c for r_r production
PRREVAV, & ! Evaporation of r_r
PRIMLTC, & ! Cloud ice melting mixing ratio change
PRCBERI, & ! Bergeron-Findeisen effect
PRSMLTG, & ! Conversion-Melting of the aggregates
PRRACCSS, PRRACCSG, PRSACCRG, & ! Rain accretion onto the aggregates
PRCRIMSS, PRCRIMSG, PRSRIMCG, & ! Cloud droplet riming of the aggregates
PRICFRRG, PRRCFRIG, & ! Rain contact freezing
PRCWETG, PRIWETG, PRRWETG, PRSWETG, & ! Graupel wet growth
PRCDRYG, PRIDRYG, PRRDRYG, PRSDRYG, & ! Graupel dry growth
PRGMLTR ! Melting of the graupel
! microphysics rates specific to ICE3 (knmoments==1)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PRCMLTSR,& ! Cld droplet collection onto aggregates by pos. temp.
PRICFRR ! Rain contact freezing (part of ice crystals converted to rain)
! microphysics rates specific to LIMA (knmoments==2)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PRVHENC, & ! Cld droplet formation
PRCHINC, & ! Heterogeneous nucleation of coated IFN
PRVHONH, & ! Nucleation of haze
PRRCVRC, & ! Conversion of small drops into droplets
PRICNVI, & ! Conversion snow --> ice
PRVDEPI, & ! Deposition on r_i
PRSHMSI, PRGHMGI, & ! Hallett Mossop for snow and graupel
PRICIBU, & ! Collisional ice breakup
PRIRDSF, & ! Raindrop shattering by freezing
PRCCORR2, PRRCORR2, PRICORR2 ! Correction inside LIMA splitting
! microphysics rates related to hail (krr == 7, lhail = .t.)
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PRWETGH, & ! Conversion of graupel into hail
PRCWETH, PRIWETH, PRSWETH, PRGWETH, PRRWETH, & ! Dry growth of hail
PRCDRYH, PRIDRYH, PRSDRYH, PRRDRYH, PRGDRYH, & ! Wet growth of hail
PRHMLTR, & ! Melting of hail
PRDRYHG ! Conversion of hail into graupel
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PCCT ! Cloud droplets conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PCRT ! Raindrops conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PCST ! Snow conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PCGT ! Graupel conc. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PCHT ! Hail conc. at t
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PRHT ! Hail m.r. at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(INOUT) :: PRHS ! Hail m.r. source
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(IN) :: PQHT ! Hail charge at t
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), OPTIONAL, INTENT(INOUT) :: PQHS ! Hail charge source
!
!
!* 0.2 Declaration of local variables
!
INTEGER :: II, JJ, JL ! Loop indexes
INTEGER :: IIB, IIE, & ! Define the domain
IJB, IJE, & ! where the microphysical sources
IKB, IKE ! must be computed
INTEGER :: IMICRO ! nb of pts where r_x > 0
INTEGER, DIMENSION(KMICRO) :: I1
INTEGER, DIMENSION(KMICRO) :: II1, II2, II3
!
LOGICAL, DIMENSION(KMICRO) :: GMASK ! Mask
!REAL, DIMENSION(KMICRO) :: ZMASK ! to reduce
INTEGER :: IGMASK ! the computation domain
!
REAL, DIMENSION(KMICRO) :: ZRHODREF ! Reference density
REAL, DIMENSION(KMICRO) :: ZRHODJ ! RHO times Jacobian
REAL, DIMENSION(KMICRO) :: ZZT ! Temperature
!
REAL, DIMENSION(KMICRO) :: ZRVT ! Water vapor m.r. at t
REAL, DIMENSION(KMICRO) :: ZRCT ! Cloud water m.r. at t
REAL, DIMENSION(KMICRO) :: ZRRT ! Rain water m.r. at t
REAL, DIMENSION(KMICRO) :: ZRIT ! Pristine ice m.r. at t
REAL, DIMENSION(KMICRO) :: ZRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(KMICRO) :: ZRGT ! Graupel m.r. at t
REAL, DIMENSION(KMICRO) :: ZRHT ! Hail m.r. at t
REAL, DIMENSION(KMICRO) :: ZCCT ! Cloud water conc. at t
REAL, DIMENSION(KMICRO) :: ZCRT ! Raindrops conc. at t
REAL, DIMENSION(KMICRO) :: ZCIT ! Pristine ice conc. at t
REAL, DIMENSION(KMICRO) :: ZCST ! Snow/aggregate conc. at t
REAL, DIMENSION(KMICRO) :: ZCGT ! Graupel conc. at t
REAL, DIMENSION(KMICRO) :: ZCHT ! Hail conc. at t
!
REAL, DIMENSION(KMICRO) :: ZQPIT ! Positive ion (/kg) at t
REAL, DIMENSION(KMICRO) :: ZQNIT ! Negative ion (/kg) at t
REAL, DIMENSION(KMICRO) :: ZQCT ! Cloud water charge at t
REAL, DIMENSION(KMICRO) :: ZQRT ! Raindrops charge at t
REAL, DIMENSION(KMICRO) :: ZQIT ! Pristine ice charge at t
REAL, DIMENSION(KMICRO) :: ZQST ! Snow/aggregate charge at t
REAL, DIMENSION(KMICRO) :: ZQGT ! Graupel charge at t
REAL, DIMENSION(KMICRO) :: ZQHT ! Hail charge at t
!
REAL, DIMENSION(KMICRO) :: ZQPIS ! Positive ion (/kg) source
REAL, DIMENSION(KMICRO) :: ZQNIS ! Negative ion (/kg) source
REAL, DIMENSION(KMICRO) :: ZQCS ! Cloud water charge source
REAL, DIMENSION(KMICRO) :: ZQRS ! Raindrops charge source
REAL, DIMENSION(KMICRO) :: ZQIS ! Pristine ice charge source
REAL, DIMENSION(KMICRO) :: ZQSS ! Snow/aggregate charge source
REAL, DIMENSION(KMICRO) :: ZQGS ! Graupel charge source
REAL, DIMENSION(KMICRO) :: ZQHS ! Hail charge source
!
REAL, DIMENSION(KMICRO) :: ZLBDAC ! Slope parameter of the droplets distribution
REAL, DIMENSION(KMICRO) :: ZLBDAR ! Slope parameter of the raindrop distribution
REAL, DIMENSION(KMICRO) :: ZLBDAI ! Slope parameter of the pristine ice distribution
REAL, DIMENSION(KMICRO) :: ZLBDAS ! Slope parameter of the aggregate distribution
REAL, DIMENSION(KMICRO) :: ZLBDAG ! Slope parameter of the graupel distribution
REAL, DIMENSION(KMICRO) :: ZLBDAH ! Slope parameter of the hail distribution
!
REAL, DIMENSION(KMICRO) :: ZECT !
REAL, DIMENSION(KMICRO) :: ZERT ! e_x coef
REAL, DIMENSION(KMICRO) :: ZEIT ! in the
REAL, DIMENSION(KMICRO) :: ZEST ! q_x - D_x relation
REAL, DIMENSION(KMICRO) :: ZEGT !
REAL, DIMENSION(KMICRO) :: ZEHT !
!
LOGICAL, DIMENSION(KMICRO,4) :: GELEC ! Mask for non-inductive charging
!
REAL, DIMENSION(:), ALLOCATABLE :: ZDQ, ZDQ_IS, ZDQ_IG, ZDQ_SG
!
! Non-inductive charging process following Gardiner et al. (1995)
REAL, DIMENSION(:), ALLOCATABLE :: ZDELTALWC ! Gap between LWC and a critical LWC
REAL, DIMENSION(:), ALLOCATABLE :: ZFT ! Fct depending on temperature
!
! Non-inductive charging process following Saunders et al. (1991) / EW
REAL, DIMENSION(:), ALLOCATABLE :: ZEW ! Effective liquid water content
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNSK ! constant B
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNIM ! d_i exponent
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNIN ! v_g/s-v_i
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNSM ! d_s exponent
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNSN ! v_g-v_s
REAL, DIMENSION(:), ALLOCATABLE :: ZFQIAGGS, ZFQIDRYGBS
REAL, DIMENSION(:), ALLOCATABLE :: ZLBQSDRYGB1S, ZLBQSDRYGB2S, ZLBQSDRYGB3S
!
! Non-inductive charging process following Saunders and Peck (1998) / RAR
REAL, DIMENSION(:), ALLOCATABLE :: ZRAR ! Rime accretion rate
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNIM_IS ! d_i exponent
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNIN_IS ! v_g/s-v_i
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNIM_IG ! d_i exponent
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNIN_IG ! v_g/s-v_i
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNSK_SG ! constant B
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNSM_SG ! d_s exponent
REAL, DIMENSION(:), ALLOCATABLE :: ZSAUNSN_SG ! v_g-v_s
!
! Inductive charging process (Ziegler et al., 1991)
REAL, DIMENSION(:), ALLOCATABLE :: ZEFIELDW ! Vertical component of the electric field
!
REAL, DIMENSION(KMICRO) :: ZLIMIT ! Used to limit the charge separated during NI process
REAL, DIMENSION(KMICRO) :: ZQCOLIS ! Collection efficiency between ice and snow
REAL, DIMENSION(KMICRO) :: ZQCOLIG ! Collection efficiency between ice and graupeln
REAL, DIMENSION(KMICRO) :: ZQCOLSG ! Collection efficiency between snow and graupeln
!
REAL :: ZRHO00, ZCOR00 ! Surface reference air density
REAL, DIMENSION(KMICRO) :: ZRHOCOR ! Density correction for fallspeed
!
INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC1, IVEC2 ! Vectors of indices for interpolation
REAL, DIMENSION(:), ALLOCATABLE :: ZVEC1, ZVEC2, ZVEC3 ! Work vectors for interpolation
REAL, DIMENSION(:), ALLOCATABLE :: ZVECQ1, ZVECQ2, ZVECQ3, ZVECQ4 ! Work vectors for interpolation
!
REAL, DIMENSION(KMICRO) :: ZWQ, ZWQ_NI ! Work arrays
REAL, DIMENSION(KMICRO) :: ZWQ1, ZWQ2, ZWQ3, ZWQ4 ! for
REAL, DIMENSION(KMICRO,9) :: ZWQ5 ! charge transfer
!
! variables used to select between common parameters between ICEx and LIMA
INTEGER :: IMOM_C, IMOM_R, IMOM_I, IMOM_S, IMOM_G, IMOM_H ! number of moments for each hydrometeor
INTEGER :: IGAMINC, &
IACCLBDAR, IACCLBDAS, &
IDRYLBDAR, IDRYLBDAS, IDRYLBDAG
!
REAL :: ZCEXVT, &
ZALPHAI, ZNUI, ZAI, ZBI, ZDS, ZDG, ZCXS, ZCXG, &
ZCOLIS, ZCOLEXIS, ZCOLIG, ZCOLEXIG, ZCOLSG, ZCOLEXSG, &
ZACCINTP1S, ZACCINTP2S, ZACCINTP1R, ZACCINTP2R, &
ZDRYINTP1R, ZDRYINTP2R, ZDRYINTP1S, ZDRYINTP2S, &
ZDRYINTP1G, ZDRYINTP2G, &
ZRIMINTP1, ZRIMINTP2
REAL, DIMENSION(:), ALLOCATABLE :: ZRTMIN
!
! microphysical tendencies have to be transformed in 1D arrays
REAL, DIMENSION(KMICRO) :: ZRVHENI, ZRCHONI, ZRRHONG, ZRVDEPS, ZRIAGGS, &
ZRIAUTS, ZRVDEPG, ZRCAUTR, ZRCACCR, ZRREVAV, &
ZRIMLTC, ZRCBERI, ZRSMLTG, ZRRACCSS, ZRRACCSG, &
ZRSACCRG, ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRICFRRG, &
ZRRCFRIG, ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG, &
ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, ZRGMLTR
! optional microphysical tendencies
REAL, DIMENSION(:), ALLOCATABLE :: ZRCMLTSR, ZRICFRR, ZRVHENC, ZRCHINC, ZRVHONH, &
ZRRCVRC, ZRICNVI, ZRVDEPI, ZRSHMSI, ZRGHMGI, &
ZRICIBU, ZRIRDSF, ZRCCORR2, ZRRCORR2, ZRICORR2, &
ZRWETGH, ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH, &
ZRRWETH, ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH, &
ZRGDRYH, ZRHMLTR, ZRDRYHG
!
!------------------------------------------------------------------
!
!* 1. INITIALIZATIONS
! ---------------
!
!* 1.1 compute the loop bounds
!
IIB = D%NIB
IIE = D%NIE
IJB = D%NJB
IJE = D%NJE
IKB = D%NKB
IKE = D%NKE
!
!
!* 1.2 select parameters between ICEx and LIMA
!
IF (CCLOUD(1:3) == 'ICE') THEN
ZCEXVT = XCEXVT_I
IMOM_C = 1
IMOM_R = 1
IMOM_I = 2 ! Ni is diagnostic and always available
IMOM_S = 1
IMOM_G = 1
IF (KRR == 7) THEN
IMOM_H = 1
ELSE
IMOM_H = 0
END IF
ELSE IF (CCLOUD == 'LIMA') THEN
ZCEXVT = XCEXVT_L
IMOM_C = NMOM_C
IMOM_R = NMOM_R
IMOM_I = 2 ! Ni is diagnostic and always available
IMOM_S = NMOM_S
IMOM_G = NMOM_G
IMOM_H = NMOM_H
END IF
!
ZRHO00 = XP00 / (XRD * XTHVREFZ(IKB))
ZCOR00 = ZRHO00**ZCEXVT
!
IF (LINDUCTIVE) ALLOCATE (ZEFIELDW(KMICRO))
!
!
!* 1.3 packing
!
! optimization by looking for locations where
! the microphysical fields are larger than a minimal value only !!!
!
IF (KMICRO >= 0) THEN
IMICRO = COUNTJV(ODMICRO(:,:,:), II1(:), II2(:), II3(:))
!
! some microphysical tendencies are optional: the corresponding 1D arrays must be allocated
IF (CCLOUD(1:3) == 'ICE') THEN ! ICE3 scheme
ALLOCATE(ZRCMLTSR(IMICRO))
ALLOCATE(ZRICFRR(IMICRO))
END IF
IF (CCLOUD == 'LIMA') THEN ! LIMA scheme
ALLOCATE(ZRVHENC(IMICRO))
ALLOCATE(ZRCHINC(IMICRO))
ALLOCATE(ZRVHONH(IMICRO))
ALLOCATE(ZRRCVRC(IMICRO))
ALLOCATE(ZRICNVI(IMICRO))
ALLOCATE(ZRVDEPI(IMICRO))
ALLOCATE(ZRSHMSI(IMICRO))
ALLOCATE(ZRGHMGI(IMICRO))
ALLOCATE(ZRICIBU(IMICRO))
ALLOCATE(ZRIRDSF(IMICRO))
ALLOCATE(ZRCCORR2(IMICRO))
ALLOCATE(ZRRCORR2(IMICRO))
ALLOCATE(ZRICORR2(IMICRO))
END IF
IF (KRR == 7) THEN ! hail activated
ALLOCATE(ZRWETGH(IMICRO))
ALLOCATE(ZRCWETH(IMICRO))
ALLOCATE(ZRIWETH(IMICRO))
ALLOCATE(ZRSWETH(IMICRO))
ALLOCATE(ZRGWETH(IMICRO))
ALLOCATE(ZRRWETH(IMICRO))
ALLOCATE(ZRCDRYH(IMICRO))
ALLOCATE(ZRRDRYH(IMICRO))
ALLOCATE(ZRIDRYH(IMICRO))
ALLOCATE(ZRSDRYH(IMICRO))
ALLOCATE(ZRGDRYH(IMICRO))
ALLOCATE(ZRHMLTR(IMICRO))
ALLOCATE(ZRDRYHG(IMICRO))
END IF
!
DO JL = 1, IMICRO
ZZT(JL) = PZT(II1(JL),II2(JL),II3(JL))
ZRHODREF(JL) = PRHODREF(II1(JL),II2(JL),II3(JL))
ZRHOCOR(JL) = (ZRHO00 / ZRHODREF(JL))**ZCEXVT
ZRHODJ(JL) = PRHODJ(II1(JL),II2(JL),II3(JL))
!
ZCIT(JL) = PCIT(II1(JL),II2(JL),II3(JL))
IF (IMOM_C == 2) ZCCT(JL) = PCCT(II1(JL),II2(JL),II3(JL))
IF (IMOM_R == 2) ZCRT(JL) = PCRT(II1(JL),II2(JL),II3(JL))
IF (IMOM_S == 2) ZCST(JL) = PCST(II1(JL),II2(JL),II3(JL))
IF (IMOM_G == 2) ZCGT(JL) = PCGT(II1(JL),II2(JL),II3(JL))
IF (IMOM_H == 2) ZCHT(JL) = PCHT(II1(JL),II2(JL),II3(JL))
IF (IMOM_C == 1) ZCCT(JL) = 0.
IF (IMOM_R == 1) ZCRT(JL) = 0.
IF (IMOM_S == 1) ZCST(JL) = 0.
IF (IMOM_G == 1) ZCGT(JL) = 0.
IF (IMOM_H == 1) ZCHT(JL) = 0.
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
!
ZRVT(JL) = PRVT(II1(JL),II2(JL),II3(JL))
ZRCT(JL) = PRCT(II1(JL),II2(JL),II3(JL))
ZRRT(JL) = PRRT(II1(JL),II2(JL),II3(JL))
ZRIT(JL) = PRIT(II1(JL),II2(JL),II3(JL))
ZRST(JL) = PRST(II1(JL),II2(JL),II3(JL))
ZRGT(JL) = PRGT(II1(JL),II2(JL),II3(JL))
IF (KRR == 7) ZRHT(JL) = PRHT(II1(JL),II2(JL),II3(JL))
!
ZQPIT(JL) = PQPIT(II1(JL),II2(JL),II3(JL))
ZQNIT(JL) = PQNIT(II1(JL),II2(JL),II3(JL))
ZQCT(JL) = PQCT(II1(JL),II2(JL),II3(JL))
ZQRT(JL) = PQRT(II1(JL),II2(JL),II3(JL))
ZQIT(JL) = PQIT(II1(JL),II2(JL),II3(JL))
ZQST(JL) = PQST(II1(JL),II2(JL),II3(JL))
ZQGT(JL) = PQGT(II1(JL),II2(JL),II3(JL))
IF (KRR == 7) ZQHT(JL) = PQHT(II1(JL),II2(JL),II3(JL))
!
ZQPIS(JL) = PQPIS(II1(JL), II2(JL), II3(JL))
ZQNIS(JL) = PQNIS(II1(JL), II2(JL), II3(JL))
ZQCS(JL) = PQCS(II1(JL), II2(JL), II3(JL))
ZQRS(JL) = PQRS(II1(JL), II2(JL), II3(JL))
ZQIS(JL) = PQIS(II1(JL), II2(JL), II3(JL))
ZQSS(JL) = PQSS(II1(JL), II2(JL), II3(JL))
ZQGS(JL) = PQGS(II1(JL), II2(JL), II3(JL))
IF (KRR == 7) ZQHS(JL) = PQHS(II1(JL), II2(JL), II3(JL))
!
IF (LINDUCTIVE) ZEFIELDW(JL) = XEFIELDW(II1(JL), II2(JL), II3(JL))
!
! microphysical tendencies
ZRVHENI(JL) = PRVHENI(II1(JL), II2(JL), II3(JL))
ZRRHONG(JL) = PRRHONG(II1(JL), II2(JL), II3(JL))
ZRIMLTC(JL) = PRIMLTC(II1(JL), II2(JL), II3(JL))
ZRCHONI(JL) = PRCHONI(II1(JL), II2(JL), II3(JL))
ZRVDEPS(JL) = PRVDEPS(II1(JL), II2(JL), II3(JL))
ZRIAGGS(JL) = PRIAGGS(II1(JL), II2(JL), II3(JL))
ZRIAUTS(JL) = PRIAUTS(II1(JL), II2(JL), II3(JL))
ZRVDEPG(JL) = PRVDEPG(II1(JL), II2(JL), II3(JL))
ZRCAUTR(JL) = PRCAUTR(II1(JL), II2(JL), II3(JL))
ZRCACCR(JL) = PRCACCR(II1(JL), II2(JL), II3(JL))
ZRREVAV(JL) = PRREVAV(II1(JL), II2(JL), II3(JL))
ZRCRIMSS(JL) = PRCRIMSS(II1(JL), II2(JL), II3(JL))
ZRCRIMSG(JL) = PRCRIMSG(II1(JL), II2(JL), II3(JL))
ZRSRIMCG(JL) = PRSRIMCG(II1(JL), II2(JL), II3(JL))
ZRRACCSS(JL) = PRRACCSS(II1(JL), II2(JL), II3(JL))
ZRRACCSG(JL) = PRRACCSG(II1(JL), II2(JL), II3(JL))
ZRSACCRG(JL) = PRSACCRG(II1(JL), II2(JL), II3(JL))
ZRSMLTG(JL) = PRSMLTG(II1(JL), II2(JL), II3(JL))
ZRICFRRG(JL) = PRICFRRG(II1(JL), II2(JL), II3(JL))
ZRRCFRIG(JL) = PRRCFRIG(II1(JL), II2(JL), II3(JL))
ZRCWETG(JL) = PRCWETG(II1(JL), II2(JL), II3(JL))
ZRIWETG(JL) = PRIWETG(II1(JL), II2(JL), II3(JL))
ZRRWETG(JL) = PRRWETG(II1(JL), II2(JL), II3(JL))
ZRSWETG(JL) = PRSWETG(II1(JL), II2(JL), II3(JL))
ZRCDRYG(JL) = PRCDRYG(II1(JL), II2(JL), II3(JL))
ZRIDRYG(JL) = PRIDRYG(II1(JL), II2(JL), II3(JL))
ZRRDRYG(JL) = PRRDRYG(II1(JL), II2(JL), II3(JL))
ZRSDRYG(JL) = PRSDRYG(II1(JL), II2(JL), II3(JL))
ZRGMLTR(JL) = PRGMLTR(II1(JL), II2(JL), II3(JL))
ZRCBERI(JL) = PRCBERI(II1(JL), II2(JL), II3(JL))
IF (CCLOUD(1:3) == 'ICE') THEN
ZRCMLTSR(JL) = PRCMLTSR(II1(JL), II2(JL), II3(JL))
ZRICFRR(JL) = PRICFRR(II1(JL), II2(JL), II3(JL))
END IF
IF (CCLOUD == 'LIMA') THEN
ZCST(JL) = PCST(II1(JL), II2(JL), II3(JL))
ZCGT(JL) = PCGT(II1(JL), II2(JL), II3(JL))
ZRVHENC(JL) = PRVHENC(II1(JL), II2(JL), II3(JL))
ZRCHINC(JL) = PRCHINC(II1(JL), II2(JL), II3(JL))
ZRVHONH(JL) = PRVHONH(II1(JL), II2(JL), II3(JL))
ZRRCVRC(JL) = PRRCVRC(II1(JL), II2(JL), II3(JL))
ZRICNVI(JL) = PRICNVI(II1(JL), II2(JL), II3(JL))
ZRVDEPI(JL) = PRVDEPI(II1(JL), II2(JL), II3(JL))
ZRSHMSI(JL) = PRSHMSI(II1(JL), II2(JL), II3(JL))
ZRGHMGI(JL) = PRGHMGI(II1(JL), II2(JL), II3(JL))
ZRICIBU(JL) = PRICIBU(II1(JL), II2(JL), II3(JL))
ZRIRDSF(JL) = PRIRDSF(II1(JL), II2(JL), II3(JL))
ZRCCORR2(JL) = PRCCORR2(II1(JL), II2(JL), II3(JL))
ZRRCORR2(JL) = PRRCORR2(II1(JL), II2(JL), II3(JL))
ZRICORR2(JL) = PRICORR2(II1(JL), II2(JL), II3(JL))
END IF
IF (KRR == 7) THEN
ZCHT(JL) = PCHT(II1(JL), II2(JL), II3(JL))
ZRWETGH(JL) = PRWETGH(II1(JL), II2(JL), II3(JL))
ZRCWETH(JL) = PRCWETH(II1(JL), II2(JL), II3(JL))
ZRIWETH(JL) = PRIWETH(II1(JL), II2(JL), II3(JL))
ZRSWETH(JL) = PRSWETH(II1(JL), II2(JL), II3(JL))
ZRGWETH(JL) = PRGWETH(II1(JL), II2(JL), II3(JL))
ZRRWETH(JL) = PRRWETH(II1(JL), II2(JL), II3(JL))
ZRCDRYH(JL) = PRCDRYH(II1(JL), II2(JL), II3(JL))
ZRRDRYH(JL) = PRRDRYH(II1(JL), II2(JL), II3(JL))
ZRIDRYH(JL) = PRIDRYH(II1(JL), II2(JL), II3(JL))
ZRSDRYH(JL) = PRSDRYH(II1(JL), II2(JL), II3(JL))
ZRGDRYH(JL) = PRGDRYH(II1(JL), II2(JL), II3(JL))
ZRHMLTR(JL) = PRHMLTR(II1(JL), II2(JL), II3(JL))
ZRDRYHG(JL) = PRDRYHG(II1(JL), II2(JL), II3(JL))
END IF
END DO
!
ZRHOCOR(:) = (ZRHO00 / ZRHODREF(:))**ZCEXVT
!
!
!* 1.4 allocations for the non-inductive parameterizations
!
IF (CNI_CHARGING == 'GARDI') THEN
ALLOCATE( ZDELTALWC(KMICRO) )
ALLOCATE( ZFT(KMICRO) )
END IF
!
IF (CNI_CHARGING == 'SAUN1' .OR. CNI_CHARGING == 'SAUN2' .OR. &
CNI_CHARGING == 'TAKAH' .OR. &
CNI_CHARGING == 'BSMP1' .OR. CNI_CHARGING == 'BSMP2' .OR. &
CNI_CHARGING == 'TEEWC' .OR. CNI_CHARGING == 'TERAR') THEN
ALLOCATE( ZEW(KMICRO) )
END IF
!
IF (CNI_CHARGING == 'SAUN1' .OR. CNI_CHARGING == 'SAUN2' .OR. &
CNI_CHARGING == 'TAKAH' .OR. CNI_CHARGING == 'TEEWC') THEN
ALLOCATE( ZDQ(KMICRO) )
END IF
!
IF (CNI_CHARGING == 'SAUN1' .OR. CNI_CHARGING == 'SAUN2' .OR. &
CNI_CHARGING == 'TEEWC' ) THEN
ALLOCATE( ZSAUNSK(KMICRO) )
ALLOCATE( ZSAUNIM(KMICRO) )
ALLOCATE( ZSAUNIN(KMICRO) )
ALLOCATE( ZSAUNSM(KMICRO) )
ALLOCATE( ZSAUNSN(KMICRO) )
END IF
!
IF (CNI_CHARGING == 'SAUN1' .OR. CNI_CHARGING == 'SAUN2' .OR. &
CNI_CHARGING == 'SAP98' .OR. &
CNI_CHARGING == 'BSMP1' .OR. CNI_CHARGING == 'BSMP2' .OR. &
CNI_CHARGING == 'TEEWC' .OR. CNI_CHARGING == 'TERAR') THEN
ALLOCATE( ZFQIAGGS(KMICRO) )
ALLOCATE( ZFQIDRYGBS(KMICRO) )
ALLOCATE( ZLBQSDRYGB1S(KMICRO) )
ALLOCATE( ZLBQSDRYGB2S(KMICRO) )
ALLOCATE( ZLBQSDRYGB3S(KMICRO) )
END IF
!
IF (CNI_CHARGING == 'SAP98' .OR. CNI_CHARGING == 'TERAR' .OR. &
CNI_CHARGING == 'BSMP1' .OR. CNI_CHARGING == 'BSMP2') THEN
ALLOCATE( ZRAR(KMICRO) )
ALLOCATE( ZDQ_IS(KMICRO) )
ALLOCATE( ZDQ_IG(KMICRO) )
ALLOCATE( ZDQ_SG(KMICRO) )
ALLOCATE( ZSAUNIM_IS(KMICRO) )
ALLOCATE( ZSAUNIN_IS(KMICRO) )
ALLOCATE( ZSAUNIM_IG(KMICRO) )
ALLOCATE( ZSAUNIN_IG(KMICRO) )
ALLOCATE( ZSAUNSK_SG(KMICRO) )
ALLOCATE( ZSAUNSM_SG(KMICRO) )
ALLOCATE( ZSAUNSN_SG(KMICRO) )
END IF
!
!
!* 1.5 select parameters between ICEx and LIMA
!
ALLOCATE(ZRTMIN(KRR))
IF (CCLOUD(1:3) == 'ICE') THEN
! in ini_rain_ice, xrtmin is initialized with dimension 6 (hail not activated) or 7 (hail activated)
ZRTMIN(1:KRR) = XRTMIN_I(1:KRR)
!
ZALPHAI = XALPHAI_I
ZNUI = XNUI_I
ZAI = XAI_I
ZBI = XBI_I
ZDS = XDS_I
ZDG = XDG_I
ZCXS = XCXS_I
ZCXG = XCXG_I
!
ZCOLIS = XCOLIS_I
ZCOLEXIS = XCOLEXIS_I
ZCOLIG = XCOLIG_I
ZCOLEXIG = XCOLEXIG_I
ZCOLSG = XCOLSG_I
ZCOLEXSG = XCOLEXSG_I
!
IGAMINC = NGAMINC_I
!
IACCLBDAR = NACCLBDAR_I
IACCLBDAS = NACCLBDAS_I
ZACCINTP1S = XACCINTP1S_I
ZACCINTP2S = XACCINTP2S_I
ZACCINTP1R = XACCINTP1R_I
ZACCINTP2R = XACCINTP2R_I
!
IDRYLBDAR = NDRYLBDAR_I
IDRYLBDAS = NDRYLBDAS_I
IDRYLBDAG = NDRYLBDAG_I
ZDRYINTP1R = XDRYINTP1R_I
ZDRYINTP2R = XDRYINTP2R_I
ZDRYINTP1S = XDRYINTP1S_I
ZDRYINTP2S = XDRYINTP2S_I
ZDRYINTP1G = XDRYINTP1G_I
ZDRYINTP2G = XDRYINTP2G_I
!
ZRIMINTP1 = XRIMINTP1_I
ZRIMINTP2 = XRIMINTP2_I
!
ELSE IF (CCLOUD == 'LIMA') THEN
! in ini_lima, xrtmin is initialized with dimension 7
ZRTMIN(1:KRR) = XRTMIN_L(1:KRR)
!
ZALPHAI = XALPHAI_L
ZNUI = XNUI_L
ZAI = XAI_L
ZBI = XBI_L
ZDS = XDS_L
ZDG = XDG_L
ZCXS = XCXS_L
ZCXG = XCXG_L
!
ZCOLIS = 0.25 ! variable not defined in LIMA, the value of ICEx is used
ZCOLEXIS = XCOLEXIS_L
ZCOLIG = XCOLIG_L
ZCOLEXIG = XCOLEXIG_L
ZCOLSG = XCOLSG_L
ZCOLEXSG = XCOLEXSG_L
!
IGAMINC = NGAMINC_L
!
IACCLBDAR = NACCLBDAR_L
IACCLBDAS = NACCLBDAS_L
ZACCINTP1S = XACCINTP1S_L
ZACCINTP2S = XACCINTP2S_L
ZACCINTP1R = XACCINTP1R_L
ZACCINTP2R = XACCINTP2R_L
!
IDRYLBDAR = NDRYLBDAR_L
IDRYLBDAS = NDRYLBDAS_L
IDRYLBDAG = NDRYLBDAG_L
ZDRYINTP1R = XDRYINTP1R_L
ZDRYINTP2R = XDRYINTP2R_L
ZDRYINTP1S = XDRYINTP1S_L
ZDRYINTP2S = XDRYINTP2S_L
ZDRYINTP1G = XDRYINTP1G_L
ZDRYINTP2G = XDRYINTP2G_L
!
ZRIMINTP1 = XRIMINTP1_L
ZRIMINTP2 = XRIMINTP2_L
END IF
!
!
!* 1.6 update the slope parameter of the distribution
!* and compute N_x if necessary
!
IF (CCLOUD(1:3) == 'ICE') ZCCT(:) = 0.
CALL COMPUTE_LAMBDA(2, IMOM_C, KMICRO, ZRHODREF, ZRTMIN(2), ZRCT, ZCCT, ZLBDAC)
CALL COMPUTE_LAMBDA(3, IMOM_R, KMICRO, ZRHODREF, ZRTMIN(3), ZRRT, ZCRT, ZLBDAR)
CALL COMPUTE_LAMBDA(4, IMOM_I, KMICRO, ZRHODREF, ZRTMIN(4), ZRIT, ZCIT, ZLBDAI)
CALL COMPUTE_LAMBDA(5, IMOM_S, KMICRO, ZRHODREF, ZRTMIN(5), ZRST, ZCST, ZLBDAS)
CALL COMPUTE_LAMBDA(6, IMOM_G, KMICRO, ZRHODREF, ZRTMIN(6), ZRGT, ZCGT, ZLBDAG)
IF (KRR == 7) CALL COMPUTE_LAMBDA(7, IMOM_H, KMICRO, ZRHODREF, ZRTMIN(7), ZRHT, ZCHT, ZLBDAH)
!
!
!* 1.7 update the parameter e in the charge-diameter relationship
!
! Compute e_x at time t
IF (CCLOUD == 'LIMA') THEN
CALL ELEC_COMPUTE_EX(2, IMOM_C, KMICRO, 1., ZRHODREF, ZRTMIN(2), ZRCT, ZQCT, ZECT, PLBDX=ZLBDAC, PCX=ZCCT)
CALL ELEC_COMPUTE_EX(3, IMOM_R, KMICRO, 1., ZRHODREF, ZRTMIN(3), ZRRT, ZQRT, ZERT, PLBDX=ZLBDAR, PCX=ZCRT)
CALL ELEC_COMPUTE_EX(4, IMOM_I, KMICRO, 1., ZRHODREF, ZRTMIN(4), ZRIT, ZQIT, ZEIT, PLBDX=ZLBDAI, PCX=ZCIT)
CALL ELEC_COMPUTE_EX(5, IMOM_S, KMICRO, 1., ZRHODREF, ZRTMIN(5), ZRST, ZQST, ZEST, PLBDX=ZLBDAS, PCX=ZCST)
CALL ELEC_COMPUTE_EX(6, IMOM_G, KMICRO, 1., ZRHODREF, ZRTMIN(6), ZRGT, ZQGT, ZEGT, PLBDX=ZLBDAG, PCX=ZCGT)
IF (KRR == 7) CALL ELEC_COMPUTE_EX(7, IMOM_H, KMICRO, 1., ZRHODREF, ZRTMIN(7), ZRHT, ZQHT, ZEHT, PLBDX=ZLBDAH, PCX=ZCHT)
ELSE IF (CCLOUD(1:3) == 'ICE') THEN
CALL ELEC_COMPUTE_EX(2, 1, KMICRO, 1., ZRHODREF, ZRTMIN(2), ZRCT, ZQCT, ZECT)
CALL ELEC_COMPUTE_EX(3, 1, KMICRO, 1., ZRHODREF, ZRTMIN(3), ZRRT, ZQRT, ZERT, PLBDX=ZLBDAR)
CALL ELEC_COMPUTE_EX(4, 1, KMICRO, 1., ZRHODREF, ZRTMIN(4), ZRIT, ZQIT, ZEIT, PCX=ZCIT)
CALL ELEC_COMPUTE_EX(5, 1, KMICRO, 1., ZRHODREF, ZRTMIN(5), ZRST, ZQST, ZEST, PLBDX=ZLBDAS)
CALL ELEC_COMPUTE_EX(6, 1, KMICRO, 1., ZRHODREF, ZRTMIN(6), ZRGT, ZQGT, ZEGT, PLBDX=ZLBDAG)
IF (KRR == 7) CALL ELEC_COMPUTE_EX(7, 1, KMICRO, 1., ZRHODREF, ZRTMIN(7), ZRHT, ZQHT, ZEHT, PLBDX=ZLBDAH)
END IF
!
!
!* 1.8 initialization for the non-inductive charging process
!
SELECT CASE (CNI_CHARGING)
! Initialization for the parameterization of Gardiner et al. (1995)
CASE ('GARDI')
CALL ELEC_INIT_NOIND_GARDI()
! Save the effective water content
DO JL = 1, KMICRO
XEW(II1(JL),II2(JL),II3(JL)) = ZDELTALWC(JL) !
END DO
!
! Initialization for the parameterizations of Saunders et al. (1991)
! with and without anomalies, and Tsenova and Mitzeva (2009)
CASE ('SAUN1', 'SAUN2', 'TEEWC')
CALL ELEC_INIT_NOIND_EWC()
! Save the effective water content
DO JL = 1, KMICRO
XEW(II1(JL),II2(JL),II3(JL)) = ZEW(JL) ! g/m3
END DO
!
! Initialization for the parameterizations of Saunders and Peck (1998),
! Brooks et al. (1997) and Tsenova and Mitzeva (2011)
CASE ('SAP98', 'BSMP1', 'BSMP2', 'TERAR')
CALL ELEC_INIT_NOIND_RAR()
! Save the rime accretion rate (not recorded properly: 3 different RAR are computed !!!)
DO JL = 1, KMICRO
XEW(II1(JL),II2(JL),II3(JL)) = ZRAR(JL) ! g/m3
END DO
!
! Initialization for the parameterization of Takahashi (1978)
CASE ('TAKAH')
CALL ELEC_INIT_NOIND_TAKAH()
! Save the effective water content
DO JL = 1, KMICRO
XEW(II1(JL),II2(JL),II3(JL)) = ZEW(JL) ! g/m3
END DO
END SELECT
!
!
!------------------------------------------------------------------
!
!* 2. COMPUTE THE SLOW COLD PROCESS SOURCES
! -------------------------------------
!
!* 2.1 heterogeneous nucleation
!
! --> rien n'est fait pour l'elec pour le moment
! ICE3/4 : rvheni/rvhind
! LIMA : rvhenc, rchinc, rvhonh
!
!
!* 2.2 spontaneous freezing (rhong)
!
if ( lbudget_sv ) then
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'SFR', &
Unpack( zqrs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'SFR', &
Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
ZWQ(:) = 0.
WHERE (ZRRHONG(:) > 0. .AND. &
ZRRT(:) > XRTMIN_ELEC(3) .AND. ABS(ZQRT(:)) > XQTMIN(3))
ZWQ(:) = ZQRS(:)
!
ZQGS(:) = ZQGS(:) + ZQRS(:)
ZQRS(:) = 0.
END WHERE
!
if ( lbudget_sv ) then
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'SFR', &
Unpack( zqrs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'SFR', &
Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 2.3 cloud ice melting (rimltc)
!
if ( lbudget_sv ) then
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'IMLT', &
Unpack( zqcs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'IMLT', &
Unpack( zqis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
WHERE (ZRIMLTC(:) > 0.)
ZQCS(:) = ZQCS(:) + ZQIS(:)
ZQIS(:) = 0.
END WHERE
!
if ( lbudget_sv ) then
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'IMLT', &
Unpack( zqcs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'IMLT', &
Unpack( zqis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 2.4 riming-conversion of the large sized aggregates into graupel ???
! ancienne param => on calcule plutot cette tendance un peu plus loin ?
!
!
!* 2.5 homogeneous nucleation (rchoni)
!
! CB : traitement different entre ice3 et lima --> a modifier eventuellement
!
ZWQ(:) = 0.
WHERE (ZRCHONI(:) > 0. .AND. &
ZRCT(:) > XRTMIN_ELEC(2) .AND. &
ABS(ZQCT(:)) > XQTMIN(2) .AND. ABS(ZECT(:)) > XECMIN)
ZWQ(:) = XQHON * ZECT(:) * ZRCHONI(:)
ZWQ(:) = SIGN( MIN( ABS(ZQCT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQCS(:) )
!
ZQIS(:) = ZQIS(:) + ZWQ(:)
ZQCS(:) = ZQCS(:) - ZWQ(:)
END WHERE
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'HON', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'HON', &
Unpack( zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 2.6 deposition on snow/aggregates (rvdeps)
!
if ( lbudget_sv ) then
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'DEPS', &
Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'DEPS', &
Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
ZWQ(:) = 0.
!
! Only the sublimation of snow/aggregates is considered (negative part of PRVDEPS)
WHERE (ZRVDEPS(:) < 0. .AND. &
ZRST(:) > XRTMIN_ELEC(5) .AND. ABS(ZQST(:)) > XQTMIN(5))
ZWQ(:) = XCOEF_RQ_S * ZQST(:) * ZRVDEPS(:) / ZRST(:)
ZWQ(:) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ(:)) ),ZQSS(:) )
!
ZQSS(:) = ZQSS(:) - ZWQ(:)
ZQPIS(:) = ZQPIS(:) + MAX( 0.0,ZWQ(:)/XECHARGE )
ZQNIS(:) = ZQNIS(:) - MIN( 0.0,ZWQ(:)/XECHARGE )
END WHERE
!
if ( lbudget_sv ) then
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'DEPS', &
Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'DEPS', &
Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'DEPS', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 2.7 aggregation on snow/aggregates (riaggs)
!
CALL COMPUTE_CHARGE_TRANSFER (ZRIAGGS, ZRIT, ZQIT, PTSTEP, &
XRTMIN_ELEC(4), XQTMIN(4), XCOEF_RQ_I, &
ZWQ, ZQIS, ZQSS)
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'AGGS', &
Unpack( -zwq(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'AGGS', &
Unpack( zwq(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 2.8 non-inductive charging during ice - snow collisions
!
CALL ELEC_IAGGS_B()
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'NIIS', &
Unpack( -zwq_ni(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'NIIS', &
Unpack( zwq_ni(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
! Save the NI charging rate
DO JL = 1, KMICRO
XNI_IAGGS(II1(JL),II2(JL),II3(JL)) = ZWQ_NI(JL) * ZRHODREF(JL) ! C/m3/s
END DO
!
!
!* 2.9 autoconversion of r_i for r_s production (riauts/ricnvs)
!
CALL COMPUTE_CHARGE_TRANSFER (ZRIAUTS, ZRIT, ZQIT, PTSTEP, &
XRTMIN_ELEC(4), XQTMIN(4), XCOEF_RQ_I, &
ZWQ, ZQIS, ZQSS)
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'AUTS', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'AUTS', &
Unpack( zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 2.10 snow --> ice conversion (rscnvi)
!
IF (CCLOUD == 'LIMA') THEN
CALL COMPUTE_CHARGE_TRANSFER (ZRICNVI, ZRST, ZQST, PTSTEP, &
XRTMIN_ELEC(5), XQTMIN(5), XCOEF_RQ_S, &
ZWQ, ZQSS, ZQIS)
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'CNVI', &
Unpack( zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'CNVI', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!* 2.11 water vapor deposition on ice crystals (rvdepi)
!
if ( lbudget_sv ) then
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'SUBI', &
Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'SUBI', &
Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
ZWQ(:) = 0.
!
! Only the sublimation of ice crystals is considered (negative part of PRVDEPI)
WHERE (ZRVDEPI(:) < 0. .AND. &
ZRIT(:) > XRTMIN_ELEC(4) .AND. ABS(ZQIT(:)) > XQTMIN(4))
ZWQ(:) = XCOEF_RQ_I * ZQIT(:) * ZRVDEPI(:) / ZRIT(:)
ZWQ(:) = SIGN( MIN( ABS(ZQIT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQIS(:) )
!
ZQIS(:) = ZQIS(:) - ZWQ(:)
ZQPIS(:) = ZQPIS(:) + MAX( 0.0,ZWQ(:)/XECHARGE )
ZQNIS(:) = ZQNIS(:) - MIN( 0.0,ZWQ(:)/XECHARGE )
END WHERE
!
if ( lbudget_sv ) then
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'SUBI', &
Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'SUBI', &
Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'SUBI', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
END IF
!
!
!* 2.12 water vapor deposition on graupel (rvdepg)
!
if ( lbudget_sv ) then
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'DEPG', &
Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'DEPG', &
Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
ZWQ(:) = 0.
!
! Only the sublimation of graupel is considered (negative part of PRVDEPG)
WHERE (ZRVDEPG(:) < 0. .AND. &
ZRGT(:) > XRTMIN_ELEC(6) .AND. ABS(ZQGT(:)) > XQTMIN(6))
ZWQ(:) = XCOEF_RQ_G * ZQGT(:) * ZRVDEPG(:) / ZRGT(:)
ZWQ(:) = SIGN( MIN( ABS(ZQGT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQGS(:) )
!
ZQGS(:) = ZQGS(:) - ZWQ(:)
ZQPIS(:) = ZQPIS(:) + MAX( 0.0,ZWQ(:)/XECHARGE )
ZQNIS(:) = ZQNIS(:) - MIN( 0.0,ZWQ(:)/XECHARGE )
END WHERE
!
if ( lbudget_sv ) then
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'DEPG', &
Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'DEPG', &
Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'DEPG', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!------------------------------------------------------------------
!
!* 3. COMPUTE THE WARM PROCESS SOURCES
! --------------------------------
!
!* 3.1 autoconversion of r_c for r_r production (rcautr)
!
CALL COMPUTE_CHARGE_TRANSFER (ZRCAUTR, ZRCT, ZQCT, PTSTEP, &
XRTMIN_ELEC(2), XQTMIN(2), XCOEF_RQ_C, &
ZWQ, ZQCS, ZQRS)
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'AUTO', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'AUTO', &
Unpack( zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 3.2 accretion of r_c for r_r production (rcaccr)
!
CALL COMPUTE_CHARGE_TRANSFER (ZRCACCR, ZRCT, ZQCT, PTSTEP, &
XRTMIN_ELEC(2), XQTMIN(2), XCOEF_RQ_C, &
ZWQ, ZQCS, ZQRS)
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'ACCR', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'ACCR', &
Unpack( zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 3.3 evaporation of raindrops (rrevav)
!
if ( lbudget_sv ) then
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'REVA', &
Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'REVA', &
Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
ZWQ(:) = 0.
WHERE (ZRREVAV(:) > 0. .AND. &
ZRRT(:) > XRTMIN_ELEC(3) .AND. ABS(ZQRT(:)) > XQTMIN(3))
ZWQ(:) = XCOEF_RQ_R * ZQRT(:) * ZRREVAV(:) / ZRRT(:)
ZWQ(:) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQRS(:) )
!
ZQRS(:) = ZQRS(:) - ZWQ(:)
ZQPIS(:) = ZQPIS(:) + MAX( 0.0,ZWQ(:)/XECHARGE )
ZQNIS(:) = ZQNIS(:) - MIN( 0.0,ZWQ(:)/XECHARGE )
END WHERE
!
if ( lbudget_sv ) then
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg ), 'REVA', &
Unpack( zqpis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecend ), 'REVA', &
Unpack( zqnis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'REVA', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 3.4 conversion of drops to droplets (rrcvrc)
!
IF (CCLOUD == 'LIMA') THEN
if ( lbudget_sv ) then
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'R2C1', &
Unpack( zqcs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'R2C1', &
Unpack( zqrs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
CALL COMPUTE_CHARGE_TRANSFER (ZRRCVRC, ZRRT, ZQRT, PTSTEP, &
XRTMIN_ELEC(3), XQTMIN(3), XCOEF_RQ_R, &
ZWQ, ZQRS, ZQCS)
!
if ( lbudget_sv ) then
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'R2C1', &
Unpack( zqcs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'R2C1', &
Unpack( zqrs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
END IF
!
!------------------------------------------------------------------
!
!* 4. COMPUTE THE FAST COLD PROCESS SOURCES FOR r_s
! ---------------------------------------------
!
!* 4.1 cloud droplet riming of the aggregates
!
if ( lbudget_sv ) then
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'RIM', &
Unpack( zqcs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'RIM', &
Unpack( zqss(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'RIM', &
Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!* 4.1.1 riming of the small sized aggregates (rcrimss)
!
CALL COMPUTE_CHARGE_TRANSFER (ZRCRIMSS, ZRCT, ZQCT, PTSTEP, &
XRTMIN_ELEC(2), XQTMIN(2), XCOEF_RQ_C, &
ZWQ, ZQCS, ZQSS)
!
!
!* 4.1.2 riming conversion of the large sized aggregates into graupel (rcrimsg)
!
ZWQ(:) = 0.
WHERE (ZRCRIMSG(:) > 0. .AND. &
ZRCT(:) > XRTMIN_ELEC(2) .AND. ZRST(:) > XRTMIN_ELEC(5) .AND. &
ABS(ZQCT(:)) > XQTMIN(2))
ZWQ(:) = XCOEF_RQ_C * ZQCT(:) * ZRCRIMSG(:) / ZRCT(:) ! QCRIMSG
ZWQ(:) = SIGN( MIN( ABS(ZQCT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQCS(:) )
!
ZQGS(:) = ZQGS(:) + ZWQ(:)
ZQCS(:) = ZQCS(:) - ZWQ(:)
END WHERE
!
!
!* 4.1.3 riming conversion of the large sized aggregates into graupel (rsrimcg)
!
GMASK(:) = .FALSE.
IGMASK = 0
DO JJ = 1, SIZE(GMASK)
IF (ZRSRIMCG(JJ) > 0. .AND. ZZT(JJ) < XTT .AND. &
ZRCT(JJ) > XRTMIN_ELEC(2) .AND. ZRST(JJ) > XRTMIN_ELEC(5) .AND. &
ZLBDAS(JJ) > 0.) THEN !++cb-- 12/07/23 condition ajoutee pour eviter log(0)
IGMASK = IGMASK + 1
I1(IGMASK) = JJ
GMASK(JJ) = .TRUE.
ELSE
GMASK(JJ) = .FALSE.
END IF
END DO
!
ALLOCATE(ZVEC1(IGMASK))
ALLOCATE(ZVEC2(IGMASK))
ALLOCATE(IVEC2(IGMASK))
!
! select the ZLBDAS
DO JJ = 1, IGMASK
ZVEC1(JJ) = ZLBDAS(I1(JJ))
END DO
! find the next lower indice for the ZLBDAS in the geometrical set of Lbda_s
! used to tabulate some moments of the incomplete gamma function
ZVEC2(1:IGMASK) = MAX( 1.00001, MIN( REAL(IGAMINC)-0.00001, &
ZRIMINTP1 * LOG( ZVEC1(1:IGMASK) ) + ZRIMINTP2 ) )
IVEC2(1:IGMASK) = INT( ZVEC2(1:IGMASK) )
ZVEC2(1:IGMASK) = ZVEC2(1:IGMASK) - REAL( IVEC2(1:IGMASK) )
!
! perform the linear interpolation of the normalized "XFS"-moment of
! the incomplete gamma function
ZVEC1(1:IGMASK) = XGAMINC_RIM3( IVEC2(1:IGMASK)+1 ) * ZVEC2(1:IGMASK) &
- XGAMINC_RIM3( IVEC2(1:IGMASK) ) * (ZVEC2(1:IGMASK) - 1.0)
!
ZWQ(:) = 0.
DO JJ = 1, IGMASK
ZWQ(I1(JJ)) = ZVEC1(JJ)
END DO
!
DEALLOCATE(ZVEC1)
DEALLOCATE(ZVEC2)
DEALLOCATE(IVEC2)
!
! riming-conversion of the large sized aggregates into graupeln (rsrimcg)
WHERE (ZRSRIMCG(:) > 0. .AND. &
ZRCT(:) > XRTMIN_ELEC(2) .AND. ZRST(:) > XRTMIN_ELEC(5) .AND. &
ABS(ZQCT(:)) > XQTMIN(2) .AND. ABS(ZEST(:)) > XESMIN)
ZWQ(:) = XQSRIMCG * ZEST(:) * ZCST(:) * & ! QSRIMCG
ZLBDAS(:)**XEXQSRIMCG * (1. - ZWQ(:)) / &
(PTSTEP * ZRHODREF(:))
ZWQ(:) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ(:)) ),ZQSS(:) )
!
ZQGS(:) = ZQGS(:) + ZWQ(:)
ZQSS(:) = ZQSS(:) - ZWQ(:)
END WHERE
!
if ( lbudget_sv ) then
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'RIM', &
Unpack( zqcs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'RIM', &
Unpack( zqss(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'RIM', &
Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 4.2 Hallett-Mossop ice multiplication process due to snow riming (rhmsi)
!
IF (CCLOUD == 'LIMA') THEN
CALL COMPUTE_CHARGE_TRANSFER (ZRSHMSI, ZRST, ZQST, PTSTEP, &
XRTMIN_ELEC(4), XQTMIN(4), XCOEF_RQ_S, &
ZWQ, ZQSS, ZQIS)
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'HMS', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'HMS', &
Unpack( zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
END IF
!
!
!* 4.3 Raindrop accretion onto the aggregates
!
IGMASK = 0
DO JJ = 1, SIZE(GMASK)
IF (ZRRT(JJ) > ZRTMIN(3) .AND. ZLBDAR(JJ) > 0. .AND. &
ZRST(JJ) > ZRTMIN(5) .AND. ZLBDAS(JJ) > 0.) THEN
IGMASK = IGMASK + 1
I1(IGMASK) = JJ
GMASK(JJ) = .TRUE.
ELSE
GMASK(JJ) = .FALSE.
END IF
END DO
!
IF (IGMASK > 0) THEN
ALLOCATE(ZVEC1(IGMASK))
ALLOCATE(ZVEC2(IGMASK))
ALLOCATE(IVEC1(IGMASK))
ALLOCATE(IVEC2(IGMASK))
ALLOCATE(ZVECQ1(IGMASK))
ALLOCATE(ZVECQ2(IGMASK))
ALLOCATE(ZVECQ3(IGMASK))
!
! select the (ZLBDAS,ZLBDAR) couplet
DO JJ = 1, IGMASK
ZVEC1(JJ) = ZLBDAS(I1(JJ))
ZVEC2(JJ) = ZLBDAR(I1(JJ))
END DO
!
! find the next lower indice for the ZLBDAS and for the ZLBDAR in the geometrical
! set of (Lbda_s,Lbda_r) couplet use to tabulate the kernels
ZVEC1(1:IGMASK) = MAX( 1.00001, MIN( REAL(IACCLBDAS)-0.00001, &
ZACCINTP1S * LOG( ZVEC1(1:IGMASK) ) + ZACCINTP2S ) )
IVEC1(1:IGMASK) = INT( ZVEC1(1:IGMASK) )
ZVEC1(1:IGMASK) = ZVEC1(1:IGMASK) - REAL( IVEC1(1:IGMASK) )
!
ZVEC2(1:IGMASK) = MAX( 1.00001, MIN( REAL(IACCLBDAR)-0.00001, &
ZACCINTP1R * LOG( ZVEC2(1:IGMASK) ) + ZACCINTP2R ) )
IVEC2(1:IGMASK) = INT( ZVEC2(1:IGMASK) )
ZVEC2(1:IGMASK) = ZVEC2(1:IGMASK) - REAL( IVEC2(1:IGMASK) )
!
! perform the bilinear interpolation of the normalized kernels
ZVECQ1(:) = BI_LIN_INTP_V(XKER_Q_RACCSS, IVEC1, IVEC2, ZVEC1, ZVEC2, IGMASK)
ZVECQ2(:) = BI_LIN_INTP_V(XKER_Q_RACCS, IVEC1, IVEC2, ZVEC1, ZVEC2, IGMASK)
ZVECQ3(:) = BI_LIN_INTP_V(XKER_Q_SACCRG, IVEC1, IVEC2, ZVEC1, ZVEC2, IGMASK)
ZWQ1(:) = 0.
ZWQ2(:) = 0.
ZWQ3(:) = 0.
DO JJ = 1, IGMASK
ZWQ1(I1(JJ)) = ZVECQ1(JJ)
ZWQ2(I1(JJ)) = ZVECQ2(JJ)
ZWQ3(I1(JJ)) = ZVECQ3(JJ)
END DO
!
DEALLOCATE(ZVEC1)
DEALLOCATE(ZVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(IVEC2)
DEALLOCATE(ZVECQ1)
DEALLOCATE(ZVECQ2)
DEALLOCATE(ZVECQ3)
!
!
!* 4.3.1 raindrop accretion onto the small sized aggregates (rraccss)
!
ZWQ4(:) = 0.
ZWQ5(:,:) = 0.
WHERE (ZRRACCSS(:) > 0. .AND. &
ZRRT(:) > XRTMIN_ELEC(3) .AND. ZRST(:) > XRTMIN_ELEC(5) .AND. &
ZCRT(:) > 0. .AND. ZCST(:) > 0. .AND. &
ZLBDAR(:) > 0. .AND. ZLBDAS(:) > 0. .AND. &
ABS(ZERT(:)) > XERMIN) ! and zzt(:) < xtt ?
ZWQ4(:) = XFQRACCS * ZERT(:) * ZRHOCOR(:) / (ZCOR00 * ZRHODREF(:)) * &
ZCRT(:) * ZCST(:) * &
(XLBQRACCS1 * ZLBDAR(:)**(-2.0 - XFR) + &
XLBQRACCS2 * ZLBDAR(:)**(-1.0 - XFR) * ZLBDAS(:)**(-1.0) + &
XLBQRACCS3 * ZLBDAR(:)**(-XFR) * ZLBDAS(:)**(-2.0))
ZWQ5(:,1) = ZWQ4(:) * ZWQ1(:) ! QRACCSS
ZWQ5(:,1) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ5(:,1)) ),ZQRS(:) )
!
ZQRS(:) = ZQRS(:) - ZWQ5(:,1)
ZQSS(:) = ZQSS(:) + ZWQ5(:,1)
END WHERE
!
!
!* 4.3.2 raindrop accretion-conversion of the large sized aggregates into graupel
!* (rsaccrg & rraccsg)
!
ZWQ5(:,2) = ZWQ2(:) * ZWQ4(:) ! QRACCS
WHERE (ZRRACCSG(:) > 0. .AND. &
ZRRT(:) > XRTMIN_ELEC(3) .AND. ZRST(:) > XRTMIN_ELEC(5) .AND. &
ZLBDAR(:) > 0. .AND. ZLBDAS(:) > 0.)
ZWQ5(:,3) = ZWQ5(:,2) - ZWQ5(:,1) ! QRACCSG
ZWQ5(:,3) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ5(:,3)) ),ZQRS(:) )
!
ZQRS(:) = ZQRS(:) - ZWQ5(:,3)
ZQGS(:) = ZQGS(:) + ZWQ5(:,3)
END WHERE
!
WHERE (ZRSACCRG(:) > 0. .AND. &
ZRRT(:) > XRTMIN_ELEC(3) .AND. ZRST(:) > XRTMIN_ELEC(5) .AND. &
ZCRT(:) > 0. .AND. ZCST(:) > 0. .AND. &
ZLBDAR(:) > 0. .AND. ZLBDAS(:) > 0. .AND. &
ABS(ZEST) > XESMIN)
ZWQ5(:,4) = ZWQ3(:) * XFQRACCS * ZEST(:) * &
ZRHOCOR(:) / (ZCOR00 * ZRHODREF(:)) * &
ZCRT(:) * ZCST(:) * &
(XLBQSACCRG1 * ZLBDAS(:)**(-2.0 - XFS) + &
XLBQSACCRG2 * ZLBDAS(:)**(-1.0 - XFS) * ZLBDAR(:)**(-1.0) + &
XLBQSACCRG3 * ZLBDAS(:)**(-XFS) * ZLBDAR(:)**(-2.0)) ! QSACCR
ZWQ5(:,4) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ5(:,4)) ),ZQSS(:) )
!
ZQSS(:) = ZQSS(:) - ZWQ5(:,4)
ZQGS(:) = ZQGS(:) + ZWQ5(:,4)
END WHERE
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'ACC', &
Unpack( (-zwq5(:,1) - zwq5(:,3)) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'ACC', &
Unpack( ( zwq5(:,1) - zwq5(:,4)) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'ACC', &
Unpack( ( zwq5(:,3) + zwq5(:,4)) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
END IF ! end if igmask>0
!
!
!* 4.4 conversion-melting of the aggregates (rsmltg)
!
CALL COMPUTE_CHARGE_TRANSFER (ZRSMLTG, ZRST, ZQST, PTSTEP, &
XRTMIN_ELEC(5), XQTMIN(5), XCOEF_RQ_S, &
ZWQ, ZQSS, ZQGS)
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'CMEL', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'CMEL', &
Unpack( zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 4.5 cloud droplet collection onto aggregates by positive temperature (rcmltsr)
!
IF (CCLOUD(1:3) == 'ICE') THEN
CALL COMPUTE_CHARGE_TRANSFER (ZRCMLTSR, ZRCT, ZQCT, PTSTEP, &
XRTMIN_ELEC(2), XQTMIN(2), XCOEF_RQ_C, &
ZWQ, ZQCS, ZQRS)
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'CMEL', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'CMEL', &
Unpack( zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
END IF
!
!
!------------------------------------------------------------------
!
!* 5. COMPUTE THE FAST COLD PROCESS SOURCES FOR r_g
! ---------------------------------------------
!
!* 5.1 rain contact freezing (ricfrrg, rrcfrig, ricfrr)
!
if ( lbudget_sv ) then
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'CFRZ', &
Unpack( zqrs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'CFRZ', &
Unpack( zqis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'CFRZ', &
Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
ZWQ(:) = 0.
WHERE (ZRRCFRIG(:) > 0. .AND. &
ZRIT(:) > XRTMIN_ELEC(4) .AND. ZRRT(:) > XRTMIN_ELEC(3) .AND. &
ZCRT(:) > 0. .AND. &
ABS(ZERT(:)) > XERMIN .AND. ABS(ZQRT(:)) > XQTMIN(3))
ZWQ(:) = XQRCFRIG * ZLBDAR(:)**XEXQRCFRIG * ZCIT(:) * ZCRT(:) * &
ZERT(:) * ZRHOCOR(:) / (ZCOR00 * ZRHODREF(:)) ! QRCFRIG
ZWQ(:) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQRS(:) )
!
ZQGS(:) = ZQGS(:) + ZWQ(:)
ZQRS(:) = ZQRS(:) - ZWQ(:)
END WHERE
!
ZWQ(:) = 0.
WHERE (ZRICFRRG(:) > 0. .AND. &
ZRIT(:) > XRTMIN_ELEC(4) .AND. ZRRT(:) > XRTMIN_ELEC(3) .AND. &
ABS(ZQIT(:)) > XQTMIN(4))
ZWQ(:) = XCOEF_RQ_I * ZQIT(:) * ZRICFRRG(:) / ZRIT(:) ! QICFRRG
ZWQ(:) = SIGN( MIN( ABS(ZQIT(:)/PTSTEP),ABS(ZWQ(:)) ),ZQIS(:) )
!
ZQGS(:) = ZQGS(:) + ZWQ(:)
ZQIS(:) = ZQIS(:) - ZWQ(:)
ENDWHERE
!
!++CB-- 16/06/2022 il manque le traitement de qricfrr
!
if ( lbudget_sv ) then
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'CFRZ', &
Unpack( zqrs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'CFRZ', &
Unpack( zqis(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'CFRZ', &
Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 5.2 graupel dry growth (qcdryg, qrdryg, qidryg & qsdryg)
!
ZWQ5(:,:) = 0.
!
!* 5.2.1 compute qcdryg
!
WHERE (ZRCDRYG(:) > 0. .AND. &
ZRCT(:) > XRTMIN_ELEC(2) .AND. ZRGT(:) > XRTMIN_ELEC(6) .AND. &
ABS(ZQCT(:)) > XQTMIN(2))
ZWQ5(:,1) = XCOEF_RQ_C * ZQCT(:) * ZRCDRYG(:) / ZRCT(:)
ZWQ5(:,1) = SIGN( MIN( ABS(ZQCT(:)/PTSTEP),ABS(ZWQ5(:,1)) ),ZQCS(:) )
!
ZQCS(:) = ZQCS(:) - ZWQ5(:,1)
ZQGS(:) = ZQGS(:) + ZWQ5(:,1)
ENDWHERE
!
!
!* 5.2.2 compute qidryg = qidryg_coal + qidryg_boun
!
WHERE (ZRIDRYG(:) > 0. .AND. &
ZRIT(:) > XRTMIN_ELEC(4) .AND. ZRGT(:) > XRTMIN_ELEC(6) .AND. &
ABS(ZQIT(:)) > XQTMIN(4))
ZWQ5(:,2) = XCOEF_RQ_I * ZQIT(:) * ZRIDRYG(:) / ZRIT(:) ! QIDRYG_coal
ZWQ5(:,2) = SIGN( MIN( ABS(ZQIT(:)/PTSTEP),ABS(ZWQ5(:,2)) ),ZQIS(:) )
!
ZQIS(:) = ZQIS(:) - ZWQ5(:,2)
ZQGS(:) = ZQGS(:) + ZWQ5(:,2)
END WHERE
!
!
!* 5.2.3 compute non-inductive charging durig ice - graupel collisions
!
! charge separation during collision between ice and graupel
CALL ELEC_IDRYG_B() ! QIDRYG_boun
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'NIIG', &
Unpack( -zwq_ni(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'NIIG', &
Unpack( zwq_ni(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
! Save the NI charging rate
DO JL = 1, KMICRO
XNI_IDRYG(II1(JL),II2(JL),II3(JL)) = ZWQ_NI(JL) * ZRHODREF(JL) ! C/m3/s
END DO
!
!
!* 5.2.4 compute qsdryg
!
IGMASK = 0
DO JJ = 1, SIZE(GMASK)
IF (ZRST(JJ) > ZRTMIN(5) .AND. ZLBDAS(JJ) > 0. .AND. &
ZRGT(JJ) > ZRTMIN(6) .AND. ZLBDAG(JJ) > 0.) THEN
IGMASK = IGMASK + 1
I1(IGMASK) = JJ
GMASK(JJ) = .TRUE.
ELSE
GMASK(JJ) = .FALSE.
END IF
END DO
!
IF (IGMASK > 0) THEN
!
ALLOCATE(ZVEC1(IGMASK))
ALLOCATE(ZVEC2(IGMASK))
ALLOCATE(IVEC1(IGMASK))
ALLOCATE(IVEC2(IGMASK))
ALLOCATE(ZVECQ1(IGMASK))
ALLOCATE(ZVECQ2(IGMASK))
ALLOCATE(ZVECQ3(IGMASK))
ALLOCATE(ZVECQ4(IGMASK))
!
! select the (ZLBDAG,ZLBDAS) couplet
DO JJ = 1, IGMASK
ZVEC1(JJ) = ZLBDAG(I1(JJ))
ZVEC2(JJ) = ZLBDAS(I1(JJ))
END DO
!
! find the next lower indice for the ZLBDAG and for the ZLBDAS in the geometrical set
! of (Lbda_g,Lbda_s) couplet use to tabulate the SDRYG-kernel
ZVEC1(1:IGMASK) = MAX(1.00001, MIN(REAL(IDRYLBDAG)-0.00001, &
ZDRYINTP1G*LOG(ZVEC1(1:IGMASK))+ZDRYINTP2G))
IVEC1(1:IGMASK) = INT(ZVEC1(1:IGMASK) )
ZVEC1(1:IGMASK) = ZVEC1(1:IGMASK) - REAL(IVEC1(1:IGMASK))
!
ZVEC2(1:IGMASK) = MAX(1.00001, MIN( REAL(IDRYLBDAS)-0.00001, &
ZDRYINTP1S*LOG(ZVEC2(1:IGMASK))+ZDRYINTP2S))
IVEC2(1:IGMASK) = INT(ZVEC2(1:IGMASK))
ZVEC2(1:IGMASK) = ZVEC2(1:IGMASK) - REAL(IVEC2(1:IGMASK))
!
! perform the bilinear interpolation of the normalized QSDRYG-kernels
! normalized Q-SDRYG-kernel
ZVECQ1(:) = BI_LIN_INTP_V(XKER_Q_SDRYG, IVEC1, IVEC2, ZVEC1, ZVEC2, IGMASK)
ZWQ5(:,3) = 0. ! normalement pas utile
DO JJ = 1, IGMASK
ZWQ5(I1(JJ),3) = ZVECQ1(JJ)
END DO
!
! normalized Q-???-kernel
IF (CNI_CHARGING == 'TAKAH' .OR. CNI_CHARGING == 'SAUN1' .OR. &
CNI_CHARGING == 'SAUN2' .OR. CNI_CHARGING == 'SAP98' .OR. &
CNI_CHARGING == 'GARDI' .OR. &
CNI_CHARGING == 'BSMP1' .OR. CNI_CHARGING == 'BSMP2' .OR. &
CNI_CHARGING == 'TEEWC' .OR. CNI_CHARGING == 'TERAR') THEN
ZVECQ2(:) = BI_LIN_INTP_V(XKER_Q_LIMSG, IVEC1, IVEC2, ZVEC1, ZVEC2, IGMASK)
ZWQ5(:,4) = 0. ! normalement pas utile
DO JJ = 1, IGMASK
ZWQ5(I1(JJ),4) = ZVECQ2(JJ)
END DO
END IF
!
! normalized Q-SDRYG-bouncing kernel
IF (CNI_CHARGING == 'TAKAH' .OR. CNI_CHARGING == 'HELFA' .OR. &
CNI_CHARGING == 'GARDI') THEN
ZVECQ3(:) = BI_LIN_INTP_V(XKER_Q_SDRYGB,IVEC1,IVEC2,ZVEC1,ZVEC2,IGMASK)
ZWQ5(:,5) = 0. ! normalement pas utile
DO JJ = 1, IGMASK
ZWQ5(I1(JJ),5) = ZVECQ3(JJ)
END DO
ELSE
ZVECQ3(:) = BI_LIN_INTP_V(XKER_Q_SDRYGB1,IVEC1,IVEC2,ZVEC1,ZVEC2,IGMASK)
ZVECQ4(:) = BI_LIN_INTP_V(XKER_Q_SDRYGB2,IVEC1,IVEC2,ZVEC1,ZVEC2,IGMASK)
ZWQ5(:,6:7) = 0. ! normalement pas utile
DO JJ = 1, IGMASK
ZWQ5(I1(JJ),6) = ZVECQ3(JJ) ! Dvqsgmn if charge>0
ZWQ5(I1(JJ),7) = ZVECQ4(JJ) ! Dvqsgmn if charge<0
END DO
ENDIF
!
DEALLOCATE(ZVEC1)
DEALLOCATE(ZVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(IVEC2)
DEALLOCATE(ZVECQ1)
DEALLOCATE(ZVECQ2)
DEALLOCATE(ZVECQ3)
DEALLOCATE(ZVECQ4)
!
!++CB-- CALCULER E_SG ICI POUR EVITER DES CALCULS REDONDANTS
!
! compute QSDRYG_coal
WHERE (ZRSDRYG(:) > 0 .AND. & !GDRY(:) .AND. &
ZRST(:) > XRTMIN_ELEC(5) .AND. &
ZLBDAS(:) > 0. .AND. ZLBDAG(:) > 0. .AND. &
ABS(ZQST(:)) > XQTMIN(5) .AND. ABS(ZEST(:)) > XESMIN)
ZWQ5(:,3) = ZWQ5(:,3) * XFQSDRYG * &
ZCOLSG * EXP(ZCOLEXSG * (ZZT(:) - XTT)) * &
ZEST(:) * ZRHOCOR(:) / (ZCOR00 * ZRHODREF(:)) * &
ZCGT(:) * ZCST(:) * &
(XLBQSDRYG1 * ZLBDAS(:)**(-2.0-XFS) + &
XLBQSDRYG2 * ZLBDAS(:)**(-1.0-XFS) * ZLBDAG(:)**(-1.0) + &
XLBQSDRYG3 * ZLBDAS(:)**(-XFS) * ZLBDAG(:)**(-2.0)) ! QSDRYG_coal
ZWQ5(:,3) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ5(:,3)) ),ZQSS(:) )
!
ZQSS(:) = ZQSS(:) - ZWQ5(:,3)
ZQGS(:) = ZQGS(:) + ZWQ5(:,3)
ELSEWHERE
ZWQ5(:,3) = 0.
END WHERE
!
!
!* 5.2.5 compute non-inductive charging during snow - graupel collisions
!
! compute QSDRYG_boun
CALL ELEC_SDRYG_B()
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'NISG', &
Unpack( -zwq_ni(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'NISG', &
Unpack( zwq_ni(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
! Save the NI charging rate
DO JL = 1, KMICRO
XNI_SDRYG(II1(JL),II2(JL),II3(JL)) = ZWQ_NI(JL) * ZRHODREF(JL) ! C/m3/s
END DO
END IF ! end if igmask>0
!
!
!* 5.2.6 compute qrdryg
!
IGMASK = 0
GMASK(:) = .FALSE.
DO JJ = 1, SIZE(GMASK)
IF (ZRRT(JJ) > ZRTMIN(3) .AND. ZLBDAR(JJ) > 0. .AND. &
ZRGT(JJ) > ZRTMIN(6) .AND. ZLBDAG(JJ) > 0.) THEN
IGMASK = IGMASK + 1
I1(IGMASK) = JJ
GMASK(JJ) = .TRUE.
ELSE
GMASK(JJ) = .FALSE.
END IF
END DO
!
IF (IGMASK > 0) THEN
!
ALLOCATE(ZVEC1(IGMASK))
ALLOCATE(ZVEC2(IGMASK))
ALLOCATE(IVEC1(IGMASK))
ALLOCATE(IVEC2(IGMASK))
ALLOCATE(ZVECQ1(IGMASK))
!
! select the (ZLBDAG,ZLBDAR) couplet
DO JJ = 1, IGMASK
ZVEC1(JJ) = ZLBDAG(I1(JJ))
ZVEC2(JJ) = ZLBDAR(I1(JJ))
END DO
!
! find the next lower indice for the ZLBDAG and for the ZLBDAR in the geometrical set
! of (Lbda_g,Lbda_r) couplet use to tabulate the QDRYG-kernel
ZVEC1(1:IGMASK) = MAX(1.00001, MIN( REAL(IDRYLBDAG)-0.00001, &
ZDRYINTP1G*LOG(ZVEC1(1:IGMASK))+ZDRYINTP2G))
IVEC1(1:IGMASK) = INT(ZVEC1(1:IGMASK))
ZVEC1(1:IGMASK) = ZVEC1(1:IGMASK) - REAL(IVEC1(1:IGMASK))
!
ZVEC2(1:IGMASK) = MAX(1.00001, MIN( REAL(IDRYLBDAR)-0.00001, &
ZDRYINTP1R*LOG(ZVEC2(1:IGMASK))+ZDRYINTP2R))
IVEC2(1:IGMASK) = INT(ZVEC2(1:IGMASK))
ZVEC2(1:IGMASK) = ZVEC2(1:IGMASK) - REAL(IVEC2(1:IGMASK))
!
! perform the bilinear interpolation of the normalized RDRYG-kernel
ZVECQ1(:) = BI_LIN_INTP_V(XKER_Q_RDRYG, IVEC1, IVEC2, ZVEC1, ZVEC2, IGMASK)
ZWQ5(:,4) = 0.
DO JJ = 1, IGMASK
ZWQ5(I1(JJ),4) = ZVECQ1(JJ)
END DO
!
DEALLOCATE(ZVEC1)
DEALLOCATE(ZVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(IVEC2)
DEALLOCATE(ZVECQ1)
!
! compute QRDRYG
WHERE (ZRRDRYG(:) > 0. .AND. &
ZRRT(:) > XRTMIN_ELEC(3) .AND. ZRGT(:) > XRTMIN_ELEC(6) .AND. &
ZCRT(:) > 0. .AND. ZCGT(:) > 0. .AND. &
ZLBDAR(:) > 0. .AND. ZLBDAG(:) > 0. .AND. &
ABS(ZERT(:)) > XERMIN .AND. ABS(ZQRT(:)) > XQTMIN(3))
ZWQ5(:,4) = ZWQ5(:,4) * XFQRDRYG * &
ZRHODREF(:)**(-ZCEXVT) * &
ZERT(:) * ZCGT(:) * ZCRT(:) * &
(XLBQRDRYG1 * ZLBDAR(:)**(-2.0 - XFR) + &
XLBQRDRYG2 * ZLBDAR(:)**(-1.0 - XFR) * ZLBDAG(:)**(-1.0) + &
XLBQRDRYG3 * ZLBDAR(:)**(-XFR) * ZLBDAG(:)**(-2.0))
ZWQ5(:,4) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ5(:,4)) ),ZQRS(:) )
!
ZQRS(:) = ZQRS(:) - ZWQ5(:,4)
ZQGS(:) = ZQGS(:) + ZWQ5(:,4)
ELSEWHERE
ZWQ5(:,4) = 0.
ENDWHERE
! ZRDRYG(:) = ZWQ5(:,1) + ZWQ5(:,2) + ZWQ5(:,3) + ZWQ5(:,4)
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'DRYG', &
Unpack( -zwq5(:,1) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'DRYG', &
Unpack( -zwq5(:,4) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'DRYG', &
Unpack( -zwq5(:,2) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'DRYG', &
Unpack( -zwq5(:,3) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'DRYG', &
Unpack( (zwq5(:,1) + zwq5(:,2) + zwq5(:,3) + zwq5(:,4)) * zrhodj(:), &
mask = odmicro(:, :, :), field = 0. ) )
end if
!
END IF ! end if igmask>0
!
!
!* 5.3 Hallett-Mossop ice multiplication process due to graupel riming (rhmgi)
!
IF (CCLOUD == 'LIMA') THEN
CALL COMPUTE_CHARGE_TRANSFER (ZRGHMGI, ZRGT, ZQGT, PTSTEP, &
XRTMIN_ELEC(6), XQTMIN(6), XCOEF_RQ_G, &
ZWQ, ZQGS, ZQIS)
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'HMG', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'HMG', &
Unpack( zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
END IF
!
!
!* 5.4 graupel wet growth (rcwetg, rrwetg, riwetg & rswetg)
!
!* 5.4.1 compute qcwetg
!
ZWQ5(:,5) = 0.
WHERE (ZRCWETG(:) > 0. .AND. ZRCT(:) > XRTMIN_ELEC(2) .AND. ABS(ZQCT(:)) > XQTMIN(2) .AND. &
ZRGT(:) > XRTMIN_ELEC(6))
ZWQ5(:,5) = XCOEF_RQ_C * ZRCWETG(:) * ZQCT(:) / ZRCT(:)
ZWQ5(:,5) = SIGN( MIN( ABS(ZQCT(:)/PTSTEP),ABS(ZWQ5(:,5)) ),ZQCS(:) )
END WHERE
!
!
!* 5.4.1 compute qiwetg
!
ZWQ5(:,6) = 0.
WHERE (ZRIWETG(:) > 0. .AND. ZRIT(:) > XRTMIN_ELEC(4) .AND. ABS(ZQIT(:)) > XQTMIN(4) .AND. &
ZRGT(:) > XRTMIN_ELEC(6))
ZWQ5(:,6) = XCOEF_RQ_I * ZRIWETG(:) * ZQIT(:) / ZRIT(:)
ZWQ5(:,6) = SIGN( MIN( ABS(ZQIT(:)/PTSTEP),ABS(ZWQ5(:,6)) ),ZQIS(:) )
END WHERE
!
!
!* 5.4.2 compute qswetg
!
ZWQ5(:,7) = 0.
WHERE (ZRSWETG(:) > 0. .AND. ZRST(:) > XRTMIN_ELEC(5) .AND. ABS(ZQST(:)) > XQTMIN(5) .AND. &
ZRGT(:) > XRTMIN_ELEC(6))
ZWQ5(:,7) = XCOEF_RQ_S * ZRSWETG(:) * ZQST(:) / ZRST(:)
ZWQ5(:,7) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ5(:,7)) ),ZQSS(:) )
END WHERE
!
!
!* 5.4.3 compute qrwetg
!
ZWQ5(:,8) = 0.
WHERE (ZRRWETG(:) > 0. .AND. ZRRT(:) > XRTMIN_ELEC(3) .AND. ABS(ZQRT(:)) > XQTMIN(3) .AND. &
ZRGT(:) > XRTMIN_ELEC(6))
ZWQ5(:,8) = XCOEF_RQ_R * ZQRT(:) * ZRRWETG(:) / ZRRT(:)
ZWQ5(:,8) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ5(:,8)) ),ZQRS(:) )
ENDWHERE
!
!
!* 5.4.4 conversion of graupel into hail (rwetgh)
!
if ( lbudget_sv ) then
call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'WETG', &
Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
IF (KRR == 7) THEN
ZWQ5(:,9) = 0.
WHERE (ZRWETGH(:) > 0. .AND. ZRGT(:) > XRTMIN_ELEC(6) .AND. ABS(ZQGT(:)) > XQTMIN(6))
ZWQ5(:,9) = XCOEF_RQ_G * ZQGT(:) * ZRWETGH(:) / ZRGT(:)
ZWQ5(:,9) = SIGN( MIN( ABS(ZQGT(:)/PTSTEP),ABS(ZWQ5(:,9)) ),ZQGS(:) )
END WHERE
!
WHERE (ZRCWETG(:) > 0. .OR. ZRRWETG(:) > 0. .OR. ZRIWETG(:) > 0. .OR. &
ZRSWETG(:) > 0. .OR. ZRWETGH(:) > 0.)
ZQCS(:) = ZQCS(:) - ZWQ5(:,5)
ZQRS(:) = ZQRS(:) - ZWQ5(:,8)
ZQIS(:) = ZQIS(:) - ZWQ5(:,6)
ZQSS(:) = ZQSS(:) - ZWQ5(:,7)
ZQGS(:) = ZQGS(:) + ZWQ5(:,5) + ZWQ5(:,8) + ZWQ5(:,6) + ZWQ5(:,7) - ZWQ5(:,9)
ZQHS(:) = ZQHS(:) + ZWQ5(:,9)
END WHERE
ELSE IF (KRR == 6) THEN
WHERE (ZRCWETG(:) > 0. .OR. ZRRWETG(:) > 0. .OR. ZRIWETG(:) > 0. .OR. &
ZRSWETG(:) > 0.)
ZQCS(:) = ZQCS(:) - ZWQ5(:,5)
ZQRS(:) = ZQRS(:) - ZWQ5(:,8)
ZQIS(:) = ZQIS(:) - ZWQ5(:,6)
ZQSS(:) = ZQSS(:) - ZWQ5(:,7)
ZQGS(:) = ZQGS(:) + ZWQ5(:,5) + ZWQ5(:,8) + ZWQ5(:,6) + ZWQ5(:,7)
END WHERE
END IF
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'WETG', &
Unpack( -zwq5(:,5) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'WETG', &
Unpack( -zwq5(:,8) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'WETG', &
Unpack( -zwq5(:,6) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'WETG', &
Unpack( -zwq5(:,7) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'WETG', &
Unpack( zqgs(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
if ( krr == 7 ) &
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 6 ), 'WETG', &
Unpack( zwq5(:,9) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 5.5 compute charge separation by the inductive mechanism
!
! Computation of the charge transfer rate during inductive mechanism
! Only the bouncing droplet-graupel collision when the graupel is in the dry
! growth mode is considered
! The electric field is limited to 100 kV/m
!
IF (LINDUCTIVE) THEN
ZWQ(:) = 0.
GMASK(:) = ZRCDRYG(:) > 0.
IGMASK = COUNT(GMASK(:))
!
IF (IGMASK > 0) THEN
ZWQ(:) = 0.
!
WHERE (GMASK(:) .AND. &
ZEFIELDW(:) /= 0. .AND. ABS(ZEGT(:)) > XEGMIN .AND. &
ZLBDAG(:) > 0. .AND. ZCGT(:) > 0. .AND. &
ZRGT(:) > XRTMIN_ELEC(6) .AND. ZRCT(:) > XRTMIN_ELEC(2))
ZWQ(:) = XIND1 * ZCGT(:) * ZRHOCOR(:) * &
(XIND2 * SIGN(MIN(100.E3, ABS(ZEFIELDW(:))), ZEFIELDW(:)) * &
ZLBDAG(:) **(-2.-ZDG) - &
XIND3 * ZEGT(:) * ZLBDAG(:)**(-XFG-ZDG))
ZWQ(:) = ZWQ(:) / ZRHODREF(:)
!
ZQGS(:) = ZQGS(:) + ZWQ(:)
ZQCS(:) = ZQCS(:) - ZWQ(:)
END WHERE
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'INCG', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'INCG', &
Unpack( zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
! Save the inductive charging rate
DO JL = 1, KMICRO
XIND_RATE(II1(JL),II2(JL),II3(JL)) = ZWQ(JL) * ZRHODREF(JL) ! C/m3/s
END DO
END IF
!
! Save the inductive charging rate
DO JL = 1, KMICRO
XIND_RATE(II1(JL),II2(JL),II3(JL)) = ZWQ(JL) * ZRHODREF(JL) ! C/m3/s
END DO
END IF
!
!
!* 5.6 melting of the graupel (rgmltr)
!
CALL COMPUTE_CHARGE_TRANSFER (ZRGMLTR, ZRGT, ZQGT, PTSTEP, &
XRTMIN_ELEC(6), XQTMIN(6), XCOEF_RQ_G, &
ZWQ, ZQGS, ZQRS)
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'GMLT', &
Unpack( zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'GMLT', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!------------------------------------------------------------------
!
!* 6. COMPUTE THE OPTIONAL SECONDARY ICE PRODUCTION
! ---------------------------------------------
!
! dans un premier temps, on considere que la charge echangee est proportionnelle
! a la masse echangee
!
!* 6.1 collisional ice breakup (cibu)
!
IF (CCLOUD == 'LIMA' .AND. LCIBU) &
CALL COMPUTE_CHARGE_TRANSFER (ZRICIBU, ZRST, ZQST, PTSTEP, &
XRTMIN_ELEC(5), XQTMIN(5), XCOEF_RQ_S, &
ZWQ, ZQSS, ZQIS)
!
!* 6.2 raindrop shattering freezing (rdsf)
!
IF (CCLOUD == 'LIMA' .AND. LRDSF) &
CALL COMPUTE_CHARGE_TRANSFER (ZRIRDSF, ZRRT, ZQRT, PTSTEP, &
XRTMIN_ELEC(3), XQTMIN(3), XCOEF_RQ_R, &
ZWQ, ZQRS, ZQIS)
!
!
!------------------------------------------------------------------
!
!* 7. COMPUTE THE FAST COLD PROCESS SOURCES FOR r_h
! ---------------------------------------------
!
IF (KRR == 7) THEN
!
!* 7.1 wet growth of hail (qcweth, qrweth, qiweth, qsweth, qgweth)
!
ZWQ5(:,:) = 0.
!
WHERE (ZRCWETH(:) > 0. .AND. ZRCT(:) > XRTMIN_ELEC(2))
ZWQ5(:,1) = XCOEF_RQ_C * ZQCT(:) * ZRCWETH(:) / ZRCT(:) ! QCWETH
ZWQ5(:,1) = SIGN( MIN( ABS(ZQCT(:)/PTSTEP),ABS(ZWQ5(:,1)) ),ZQCS(:) )
!
ZQCS(:) = ZQCS(:) - ZWQ5(:,1)
ZQHS(:) = ZQHS(:) + ZWQ5(:,1)
END WHERE
!
WHERE (ZRIWETH(:) > 0. .AND. ZRIT(:) > XRTMIN_ELEC(4))
ZWQ5(:,2) = XCOEF_RQ_I * ZQIT(:) * ZRIWETH(:) / ZRIT(:) ! QIWETH
ZWQ5(:,2) = SIGN( MIN( ABS(ZQIT(:)/PTSTEP),ABS(ZWQ5(:,2)) ),ZQIS(:) )
!
ZQIS(:) = ZQIS(:) - ZWQ5(:,2)
ZQHS(:) = ZQHS(:) + ZWQ5(:,2)
END WHERE
!
WHERE (ZRSWETH(:) > 0. .AND. ZRST(:) > XRTMIN_ELEC(5))
ZWQ5(:,3) = XCOEF_RQ_S * ZQST(:) * ZRSWETH(:) / ZRST(:) ! QSWETH
ZWQ5(:,3) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ5(:,3)) ),ZQSS(:) )
!
ZQSS(:) = ZQSS(:) - ZWQ5(:,3)
ZQHS(:) = ZQHS(:) + ZWQ5(:,3)
END WHERE
!
WHERE (ZRGWETH(:) > 0. .AND. ZRGT(:) > XRTMIN_ELEC(6))
ZWQ5(:,5) = XCOEF_RQ_G * ZQGT(:) * ZRGWETH(:) / ZRGT(:) ! QGWETH
ZWQ5(:,5) = SIGN( MIN( ABS(ZQGT(:)/PTSTEP),ABS(ZWQ5(:,5)) ),ZQGS(:) )
!
ZQGS(:) = ZQGS(:) - ZWQ5(:,5)
ZQHS(:) = ZQHS(:) + ZWQ5(:,5)
END WHERE
!
WHERE (ZRRWETH(:) > 0. .AND. ZRRT(:) > XRTMIN_ELEC(3))
ZWQ5(:,4) = XCOEF_RQ_R * ZQRT(:) * ZRRWETH(:) / ZRRT(:) ! QRWETH
ZWQ5(:,4) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ5(:,4)) ),ZQRS(:) )
!
ZQRS(:) = ZQRS(:) - ZWQ5(:,4)
ZQHS(:) = ZQHS(:) + ZWQ5(:,4)
END WHERE
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'WETH', &
Unpack( -zwq5(:, 1) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'WETH', &
Unpack( -zwq5(:, 4) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'WETH', &
Unpack( -zwq5(:, 2) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'WETH', &
Unpack( -zwq5(:, 3) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'WETH', &
Unpack( -zwq5(:, 5) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 6 ), 'WETH', &
Unpack( ( zwq5(:, 1) + zwq5(:, 2) + zwq5(:, 3) + zwq5(:, 4) + zwq5(:, 5) ) &
* zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 7.2 dry growth of hail (qcdryh, qrdryh, qidryh, qsdryh, qgdryh)
!
ZWQ5(:,:) = 0.
!
WHERE (ZRCDRYH(:) > 0. .AND. ZRCT(:) > XRTMIN_ELEC(2))
ZWQ5(:,1) = XCOEF_RQ_C * ZQCT(:) * ZRCDRYH(:) / ZRCT(:) ! QCDRYH
ZWQ5(:,1) = SIGN( MIN( ABS(ZQCT(:)/PTSTEP),ABS(ZWQ5(:,1)) ),ZQCS(:) )
!
ZQCS(:) = ZQCS(:) - ZWQ5(:,1)
ZQHS(:) = ZQHS(:) + ZWQ5(:,1)
END WHERE
!
WHERE (ZRIDRYH(:) > 0. .AND. ZRIT(:) > XRTMIN_ELEC(4))
ZWQ5(:,2) = XCOEF_RQ_I * ZQIT(:) * ZRIDRYH(:) / ZRIT(:) ! QIDRYH
ZWQ5(:,2) = SIGN( MIN( ABS(ZQIT(:)/PTSTEP),ABS(ZWQ5(:,2)) ),ZQIS(:) )
!
ZQIS(:) = ZQIS(:) - ZWQ5(:,2)
ZQHS(:) = ZQHS(:) + ZWQ5(:,2)
END WHERE
!
WHERE (ZRSDRYH(:) > 0. .AND. ZRST(:) > XRTMIN_ELEC(5))
ZWQ5(:,3) = XCOEF_RQ_S * ZQST(:) * ZRSDRYH(:) / ZRST(:) ! QSDRYH
ZWQ5(:,3) = SIGN( MIN( ABS(ZQST(:)/PTSTEP),ABS(ZWQ5(:,3)) ),ZQSS(:) )
!
ZQSS(:) = ZQSS(:) - ZWQ5(:,3)
ZQHS(:) = ZQHS(:) + ZWQ5(:,3)
END WHERE
!
WHERE (ZRGDRYH(:) > 0. .AND. ZRGT(:) > XRTMIN_ELEC(6))
ZWQ5(:,5) = XCOEF_RQ_G * ZQGT(:) * ZRGDRYH(:) / ZRGT(:) ! QGDRYH
ZWQ5(:,5) = SIGN( MIN( ABS(ZQGT(:)/PTSTEP),ABS(ZWQ5(:,5)) ),ZQGS(:) )
!
ZQGS(:) = ZQGS(:) - ZWQ5(:,5)
ZQHS(:) = ZQHS(:) + ZWQ5(:,5)
END WHERE
!
WHERE (ZRRDRYH(:) > 0. .AND. ZRRT(:) > XRTMIN_ELEC(3))
ZWQ5(:,4) = XCOEF_RQ_R * ZQRT(:) * ZRRDRYH(:) / ZRRT(:) ! QRDRYH
ZWQ5(:,4) = SIGN( MIN( ABS(ZQRT(:)/PTSTEP),ABS(ZWQ5(:,4)) ),ZQRS(:) )
!
ZQRS(:) = ZQRS(:) - ZWQ5(:,4)
ZQHS(:) = ZQHS(:) + ZWQ5(:,4)
END WHERE
!
!
!* 7.3 conversion of hail into graupel (qdryhg)
!
CALL COMPUTE_CHARGE_TRANSFER (ZRDRYHG, ZRHT, ZQHT, PTSTEP, &
XRTMIN_ELEC(7), XQTMIN(7), XCOEF_RQ_H, &
ZWQ, ZQHS, ZQGS)
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 1 ), 'DRYH', &
Unpack( -zwq5(:, 1) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'DRYH', &
Unpack( -zwq5(:, 4) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 3 ), 'DRYH', &
Unpack( -zwq5(:, 2) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 4 ), 'DRYH', &
Unpack( -zwq5(:, 3) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 5 ), 'DRYH', &
Unpack( (-zwq5(:, 5) - zwq(:)) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 6 ), 'DRYH', &
Unpack( ( zwq5(:, 1) + zwq5(:, 2) + zwq5(:, 3) + zwq5(:, 4) + zwq5(:, 5) + zwq(:) ) &
* zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
!
!* 7.4 melting of hail (qhmltr)
!
CALL COMPUTE_CHARGE_TRANSFER (ZRHMLTR, ZRHT, ZQHT, PTSTEP, &
XRTMIN_ELEC(7), XQTMIN(7), XCOEF_RQ_H, &
ZWQ, ZQHS, ZQRS)
!
if ( lbudget_sv ) then
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 2 ), 'HMLT', &
Unpack( zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
call Budget_store_add( tbudgets(NBUDGET_SV1 - 1 + nsv_elecbeg + 6 ), 'HMLT', &
Unpack( -zwq(:) * zrhodj(:), mask = odmicro(:, :, :), field = 0. ) )
end if
!
END IF ! end if krr==7
!
!
!------------------------------------------------------------------
!
!* 8. COMPUTE THE FAST COLD PROCESS SOURCES FOR r_i
! ---------------------------------------------
!
!* 8.1 Bergeron-Findeisen effect (qcberi)
!
CALL COMPUTE_CHARGE_TRANSFER (ZRCBERI, ZRCT, ZQCT, PTSTEP, &
XRTMIN_ELEC(2), XQTMIN(2), XCOEF_RQ_C, &
ZWQ, ZQCS, ZQIS)
!
Loading
Loading full blame...