Newer
Older
!MNH_LIC Copyright 1995-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence

WAUTELET Philippe
committed
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! ######spl
MODULE MODI_RAIN_ICE_RED
! ########################
!
INTERFACE

RODIER Quentin
committed
SUBROUTINE RAIN_ICE_RED ( KIT, KJT, KKT, KSIZE, &
OSEDIC, HSEDIM, HSUBG_AUCV_RC, HSUBG_AUCV_RI, &
OWARM, KKA, KKU, KKL, &
PTSTEP, KRR, ODMICRO, PEXN, &
PDZZ, PRHODJ, PRHODREF, PEXNREF, PPABST, PCIT, PCLDFR,&

RODIER Quentin
committed
PHLC_HRC, PHLC_HCF, PHLI_HRI, PHLI_HCF,&
PTHT, PRVT, PRCT, PRRT, PRIT, PRST, &
PRGT, PTHS, PRVS, PRCS, PRRS, PRIS, PRSS, PRGS, &
PINPRC,PINPRR, PINPRR3D, PEVAP3D, &

RODIER Quentin
committed
PINPRS, PINPRG, PINDEP, PRAINFR, PSIGS, PSEA, PTOWN, &
PRHT, PRHS, PINPRH, PFPR )
!
!

RODIER Quentin
committed
INTEGER, INTENT(IN) :: KIT, KJT, KKT ! arrays size
INTEGER, INTENT(IN) :: KSIZE
LOGICAL, INTENT(IN) :: OSEDIC ! Switch for droplet sedim.
CHARACTER(LEN=4), INTENT(IN) :: HSEDIM ! Sedimentation scheme
CHARACTER(LEN=4), INTENT(IN) :: HSUBG_AUCV_RC ! Switch for rc->rr Subgrid autoconversion
! Kind of Subgrid autoconversion method

RODIER Quentin
committed
CHARACTER(LEN=80), INTENT(IN) :: HSUBG_AUCV_RI ! Switch for ri->rs Subgrid autoconversion
! Kind of Subgrid autoconversion method
LOGICAL, INTENT(IN) :: OWARM ! .TRUE. allows raindrops to
! form by warm processes
! (Kessler scheme)
!
INTEGER, INTENT(IN) :: KKA !near ground array index
INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO
REAL, INTENT(IN) :: PTSTEP ! Double Time step
! (single if cold start)
INTEGER, INTENT(IN) :: KRR ! Number of moist variable

RODIER Quentin
committed
LOGICAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: ODMICRO ! mask to limit computation
!
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PEXN ! Exner function
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PDZZ ! Layer thikness (m)
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PEXNREF ! Reference Exner function
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PPABST ! absolute pressure at t
!
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PCIT ! Pristine ice n.c. at t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PCLDFR ! Cloud fraction
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLC_HRC
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLC_HCF
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLI_HRI
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLI_HCF
!
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PTHT ! Theta at time t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRIT ! Pristine ice m.r. at t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRGT ! Graupel/hail m.r. at t
!
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PTHS ! Theta source
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRVS ! Water vapor m.r. source
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRCS ! Cloud water m.r. source
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRRS ! Rain water m.r. source
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRIS ! Pristine ice m.r. source
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRSS ! Snow/aggregate m.r. source
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRGS ! Graupel m.r. source
!

WAUTELET Philippe
committed
! REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRC! Cloud instant precip
REAL, DIMENSION(:,:), INTENT(OUT) :: PINPRC! Cloud instant precip

RODIER Quentin
committed
REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRR! Rain instant precip
REAL, DIMENSION(KIT,KJT,KKT), INTENT(OUT) :: PINPRR3D! Rain inst precip 3D
REAL, DIMENSION(KIT,KJT,KKT), INTENT(OUT) :: PEVAP3D! Rain evap profile
REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRS! Snow instant precip
REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRG! Graupel instant precip

WAUTELET Philippe
committed
! REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINDEP ! Cloud instant deposition
REAL, DIMENSION(:,:), INTENT(OUT) :: PINDEP ! Cloud instant deposition

RODIER Quentin
committed
REAL, DIMENSION(KIT,KJT,KKT), INTENT(OUT) :: PRAINFR

WAUTELET Philippe
committed
! REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PSIGS ! Sigma_s at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSIGS ! Sigma_s at t

RODIER Quentin
committed
REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(IN) :: PSEA ! Sea Mask
REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(IN) :: PTOWN! Fraction that is town
REAL, DIMENSION(KIT,KJT,KKT), OPTIONAL, INTENT(IN) :: PRHT ! Hail m.r. at t
REAL, DIMENSION(KIT,KJT,KKT), OPTIONAL, INTENT(INOUT) :: PRHS ! Hail m.r. source
REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(OUT) :: PINPRH! Hail instant precip
REAL, DIMENSION(KIT,KJT,KKT,KRR), OPTIONAL, INTENT(OUT) :: PFPR ! upper-air precipitation fluxes
!
END SUBROUTINE RAIN_ICE_RED
END INTERFACE
END MODULE MODI_RAIN_ICE_RED
! ######spl

RODIER Quentin
committed
SUBROUTINE RAIN_ICE_RED ( KIT, KJT, KKT, KSIZE, &
OSEDIC, HSEDIM, HSUBG_AUCV_RC, HSUBG_AUCV_RI, &
OWARM,KKA,KKU,KKL,&
PTSTEP, KRR, ODMICRO, PEXN, &
PDZZ, PRHODJ, PRHODREF, PEXNREF, PPABST, PCIT, PCLDFR,&

RODIER Quentin
committed
PHLC_HRC, PHLC_HCF, PHLI_HRI, PHLI_HCF, &
PTHT, PRVT, PRCT, PRRT, PRIT, PRST, &
PRGT, PTHS, PRVS, PRCS, PRRS, PRIS, PRSS, PRGS, &
PINPRC,PINPRR, PINPRR3D, PEVAP3D, &

RODIER Quentin
committed
PINPRS, PINPRG, PINDEP, PRAINFR, PSIGS, PSEA, PTOWN, &
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
PRHT, PRHS, PINPRH, PFPR )
! ######################################################################
!
!!**** * - compute the explicit microphysical sources
!!
!! PURPOSE
!! -------
!! The purpose of this routine is to compute the slow microphysical sources
!! which can be computed explicitly
!!
!!
!!** METHOD
!! ------
!! The autoconversion computation follows Kessler (1969).
!! The sedimentation rate is computed with a time spliting technique and
!! an upstream scheme, written as a difference of non-advective fluxes. This
!! source term is added to the future instant ( split-implicit process ).
!! The others microphysical processes are evaluated at the central instant
!! (split-explicit process ): autoconversion, accretion and rain evaporation.
!! These last 3 terms are bounded in order not to create negative values
!! for the water species at the future instant.
!!
!! EXTERNAL
!! --------
!! None
!!
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAMETERS
!! JPHEXT : Horizontal external points number
!! JPVEXT : Vertical external points number
!! Module MODD_CONF :
!! CCONF configuration of the model for the first time step
!! Module MODD_CST
!! XP00 ! Reference pressure
!! XRD,XRV ! Gaz constant for dry air, vapor
!! XMD,XMV ! Molecular weight for dry air, vapor
!! XCPD ! Cpd (dry air)
!! XCL ! Cl (liquid)
!! XCI ! Ci (solid)
!! XTT ! Triple point temperature
!! XLVTT ! Vaporization heat constant
!! XALPW,XBETAW,XGAMW ! Constants for saturation vapor pressure
!! function over liquid water
!! XALPI,XBETAI,XGAMI ! Constants for saturation vapor pressure
!! function over solid ice
!! Module MODD_BUDGET:
!! NBUMOD : model in which budget is calculated
!! CBUTYPE : type of desired budget
!! 'CART' for cartesian box configuration
!! 'MASK' for budget zone defined by a mask
!! 'NONE' ' for no budget
!! LBU_RTH : logical for budget of RTH (potential temperature)
!! .TRUE. = budget of RTH
!! .FALSE. = no budget of RTH
!! LBU_RRV : logical for budget of RRV (water vapor)
!! .TRUE. = budget of RRV
!! .FALSE. = no budget of RRV
!! LBU_RRC : logical for budget of RRC (cloud water)
!! .TRUE. = budget of RRC
!! .FALSE. = no budget of RRC
!! LBU_RRI : logical for budget of RRI (cloud ice)
!! .TRUE. = budget of RRI
!! .FALSE. = no budget of RRI
!! LBU_RRR : logical for budget of RRR (rain water)
!! .TRUE. = budget of RRR
!! .FALSE. = no budget of RRR
!! LBU_RRS : logical for budget of RRS (aggregates)
!! .TRUE. = budget of RRS
!! .FALSE. = no budget of RRS
!! LBU_RRG : logical for budget of RRG (graupeln)
!! .TRUE. = budget of RRG
!! .FALSE. = no budget of RRG
!!
!! REFERENCE
!! ---------
!!
!! Book1 and Book2 of documentation ( routine RAIN_ICE )
!!
!! AUTHOR
!! ------
!! J.-P. Pinty * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original 02/11/95
!! (J.Viviand) 04/02/97 debug accumulated prcipitation & convert
!! precipitation rate in m/s
!! (J.-P. Pinty) 17/02/97 add budget calls
!! (J.-P. Pinty) 17/11/97 set ice sedim. for cirrus ice, reset RCHONI
!! and RRHONG, reverse order for DEALLOCATE
!! (J.-P. Pinty) 11/02/98 correction of the air dynamical viscosity and
!! add advance of the budget calls
!! (J.-P. Pinty) 18/05/98 correction of the air density in the RIAUTS
!! process
!! (J.-P. Pinty) 18/11/98 split the main routine
!! (V. Masson) 18/11/98 bug in IVEC1 and IVEC2 upper limits
!! (J. Escobar & J.-P. Pinty)
!! 11/12/98 contains and rewrite count+pack
!! (J. Stein & J.-P. Pinty)
!! 14/10/99 correction for very small RIT
!! (J. Escobar & J.-P. Pinty)
!! 24/07/00 correction for very samll m.r. in
!! the sedimentation subroutine
!! (M. Tomasini) 11/05/01 Autoconversion of rc into rr modification to take
!! into account the subgrid variance
!! (cf Redelsperger & Sommeria JAS 86)
!! (G. Molinie) 21/05/99 bug in RRCFRIG process, RHODREF**(-1) missing
!! in RSRIMCG
!! (G. Molinie & J.-P. Pinty)
!! 21/06/99 bug in RACCS process
!! (P. Jabouille) 27/05/04 safety test for case where esw/i(T)> pabs (~Z>40km)
!! (J-.P. Chaboureau) 12/02/05 temperature depending ice-to-snow autocon-
! version threshold (Chaboureau and Pinty GRL 2006)
!! (J.-P. Pinty) 01/01/O1 add the hail category and correction of the
!! wet growth rate of the graupeln
!! (S.Remy & C.Lac) 06/06 Add the cloud sedimentation
!! (S.Remy & C.Lac) 06/06 Sedimentation becoming the last process
!! to settle the precipitating species created during the current time step
!! (S.Remy & C.Lac) 06/06 Modification of the algorithm of sedimentation
!! to settle n times the precipitating species created during Dt/n instead
!! of Dt
!! (C.Lac) 11/06 Optimization of the sedimentation loop for NEC
!! (J.Escobar) 18/01/2008 Parallel Bug in Budget when IMICRO >= 1
!! --> Path inhibit this test by IMICRO >= 0 allway true
!! (Y.Seity) 03/2008 Add Statistic sedimentation
!! (Y.Seity) 10/2009 Added condition for the raindrop accretion of the aggregates
!! into graupeln process (5.2.6) to avoid negative graupel mixing ratio
!! (V.Masson, C.Lac) 09/2010 Correction in split sedimentation for
!! reproducibility
!! (S. Riette) Oct 2010 Better vectorisation of RAIN_ICE_SEDIMENTATION_STAT
!! (Y. Seity), 02-2012 add possibility to run with reversed vertical levels
!! (L. Bengtsson), 02-2013 Passing in land/sea mask and town fraction in
!! order to use different cloud droplet number conc. over
!! land, sea and urban areas in the cloud sedimentation.
!! (D. Degrauwe), 2013-11: Export upper-air precipitation fluxes PFPR.
!! (S. Riette) Nov 2013 Protection against null sigma
!! (C. Lac) FIT temporal scheme : instant M removed
!! (JP Pinty), 01-2014 : ICE4 : partial reconversion of hail to graupel
!! July, 2015 (O.Nuissier/F.Duffourg) Add microphysics diagnostic for
!! aircraft, ballon and profiler
!! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
!! C.Lac : 10/2016 : add droplet deposition
!! C.Lac : 01/2017 : correction on droplet deposition
!! J.Escobar : 10/2017 : for real*4 , limit exp() in RAIN_ICE_SLOW with XMNH_HUGE_12_LOG
!! (C. Abiven, Y. Léauté, V. Seigner, S. Riette) Phasing of Turner rain subgrid param
!! (S. Riette) Source code split into several files
!! 02/2019 C.Lac add rain fraction as an output field
! P. Wautelet 10/04/2019: replace ABORT and STOP calls by Print_msg
! P. Wautelet 28/05/2019: move COUNTJV function to tools.f90

WAUTELET Philippe
committed
! P. Wautelet 29/05/2019: remove PACK/UNPACK intrinsics (to get more performance and better OpenACC support)

WAUTELET Philippe
committed
! P. Wautelet 17/01/2020: move Quicksort to tools.f90

WAUTELET Philippe
committed
! P. Wautelet 02/2020: use the new data structures and subroutines for budgets
! P. Wautelet 25/02/2020: bugfix: add missing budget: WETH_BU_RRG

WAUTELET Philippe
committed
!-----------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!

RODIER Quentin
committed
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK

WAUTELET Philippe
committed
use modd_budget, only: lbu_enable, &
lbudget_th, lbudget_rv, lbudget_rc, lbudget_rr, lbudget_ri, lbudget_rs, lbudget_rg, lbudget_rh, &
NBUDGET_TH, NBUDGET_RV, NBUDGET_RC, NBUDGET_RR, NBUDGET_RI, NBUDGET_RS, NBUDGET_RG, NBUDGET_RH, &
tbudgets
USE MODD_CST, ONLY: XCI,XCL,XCPD,XCPV,XLSTT,XLVTT,XTT
USE MODD_PARAMETERS, ONLY: JPVEXT,XUNDEF
USE MODD_PARAM_ICE, ONLY: CSUBG_PR_PDF,CSUBG_RC_RR_ACCR,CSUBG_RR_EVAP,LDEPOSC,LFEEDBACKT,LSEDIM_AFTER, &
NMAXITER,XMRSTEP,XTSTEP_TS,XVDEPOSC
USE MODD_RAIN_ICE_DESCR, ONLY: XRTMIN
USE MODD_VAR_ll, ONLY: IP

WAUTELET Philippe
committed
use mode_budget, only: Budget_store_add, Budget_store_init, Budget_store_end
USE MODE_ll
USE MODE_MSG
use mode_tools, only: Countjv
USE MODI_ICE4_NUCLEATION_WRAPPER
USE MODI_ICE4_RAINFR_VERT
USE MODI_ICE4_SEDIMENTATION_STAT
USE MODI_ICE4_SEDIMENTATION_SPLIT
USE MODI_ICE4_TENDENCIES
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
!

RODIER Quentin
committed
INTEGER, INTENT(IN) :: KIT, KJT, KKT ! arrays size
INTEGER, INTENT(IN) :: KSIZE
LOGICAL, INTENT(IN) :: OSEDIC ! Switch for droplet sedim.
CHARACTER(LEN=4), INTENT(IN) :: HSEDIM ! Sedimentation scheme
CHARACTER(LEN=4), INTENT(IN) :: HSUBG_AUCV_RC ! Kind of Subgrid autoconversion method

RODIER Quentin
committed
CHARACTER(LEN=80), INTENT(IN) :: HSUBG_AUCV_RI ! Kind of Subgrid autoconversion method
LOGICAL, INTENT(IN) :: OWARM ! .TRUE. allows raindrops to
! form by warm processes
! (Kessler scheme)
INTEGER, INTENT(IN) :: KKA !near ground array index
INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO
REAL, INTENT(IN) :: PTSTEP ! Double Time step (single if cold start)
INTEGER, INTENT(IN) :: KRR ! Number of moist variable

RODIER Quentin
committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
LOGICAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: ODMICRO ! mask to limit computation
!
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PEXN ! Exner function
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PDZZ ! Layer thikness (m)
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PEXNREF ! Reference Exner function
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PPABST ! absolute pressure at t
!
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PCIT ! Pristine ice n.c. at t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PCLDFR ! Convective Mass Flux Cloud fraction
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLC_HRC
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLC_HCF
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLI_HRI
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLI_HCF
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PTHT ! Theta at time t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRIT ! Pristine ice m.r. at t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRGT ! Graupel/hail m.r. at t
!
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PTHS ! Theta source
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRVS ! Water vapor m.r. source
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRCS ! Cloud water m.r. source
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRRS ! Rain water m.r. source
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRIS ! Pristine ice m.r. source
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRSS ! Snow/aggregate m.r. source
REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRGS ! Graupel m.r. source
!
REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRC! Cloud instant precip
REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRR! Rain instant precip
REAL, DIMENSION(KIT,KJT,KKT),INTENT(OUT) :: PINPRR3D! Rain inst precip 3D
REAL, DIMENSION(KIT,KJT,KKT), INTENT(OUT) :: PEVAP3D! Rain evap profile
REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRS! Snow instant precip
REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRG! Graupel instant precip
REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINDEP ! Cloud instant deposition
REAL, DIMENSION(KIT,KJT,KKT), INTENT(OUT) :: PRAINFR
REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PSIGS ! Sigma_s at t
REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(IN) :: PSEA ! Sea Mask
REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(IN) :: PTOWN! Fraction that is town
REAL, DIMENSION(KIT,KJT,KKT), OPTIONAL, INTENT(IN) :: PRHT ! Hail m.r. at t
REAL, DIMENSION(KIT,KJT,KKT), OPTIONAL, INTENT(INOUT) :: PRHS ! Hail m.r. source
REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(OUT) :: PINPRH! Hail instant precip
REAL, DIMENSION(KIT,KJT,KKT,KRR), OPTIONAL, INTENT(OUT) :: PFPR ! upper-air precipitation fluxes
!
!* 0.2 Declarations of local variables :
!
INTEGER :: IIB ! Define the domain where is
INTEGER :: IIE ! the microphysical sources have to be computed
INTEGER :: IJB !
INTEGER :: IJE !

RODIER Quentin
committed
INTEGER :: IKB, IKTB !
INTEGER :: IKE, IKTE !
!

RODIER Quentin
committed
INTEGER :: JI, JJ, JK
!
!For packing
INTEGER :: IMICRO ! Case r_x>0 locations

RODIER Quentin
committed
INTEGER, DIMENSION(KSIZE) :: I1,I2,I3 ! Used to replace the COUNT
INTEGER :: JL ! and PACK intrinsics

RODIER Quentin
committed
!Arrays for nucleation call outisde of LDMICRO points
REAL, DIMENSION(KIT, KJT, KKT) :: ZW ! work array
REAL, DIMENSION(KIT, KJT, KKT) :: ZT ! Temperature
REAL, DIMENSION(KIT, KJT, KKT) :: &
& ZZ_RVHENI_MR, & ! heterogeneous nucleation mixing ratio change
& ZZ_RVHENI ! heterogeneous nucleation

RODIER Quentin
committed
real, dimension(:,:,:), allocatable :: zw1, zw2, zw3, zw4, zw5, zw6 !Work arrays

WAUTELET Philippe
committed
real, dimension(:,:,:), allocatable :: zz_diff

RODIER Quentin
committed
REAL, DIMENSION(KIT, KJT, KKT) :: ZZ_LVFACT, ZZ_LSFACT
!
!Diagnostics

RODIER Quentin
committed
REAL, DIMENSION(KIT, KJT, KKT) :: &
& ZHLC_HCF3D,& ! HLCLOUDS cloud fraction in high water content part
& ZHLC_LCF3D,& ! HLCLOUDS cloud fraction in low water content part
& ZHLC_HRC3D,& ! HLCLOUDS cloud water content in high water content
& ZHLC_LRC3D,& ! HLCLOUDS cloud water content in low water content
& ZHLI_HCF3D,& ! HLCLOUDS cloud fraction in high ice content part
& ZHLI_LCF3D,& ! HLCLOUDS cloud fraction in low ice content part
& ZHLI_HRI3D,& ! HLCLOUDS cloud water content in high ice content
& ZHLI_LRI3D ! HLCLOUDS cloud water content in high ice content
REAL, DIMENSION(SIZE(PTHT,1),SIZE(PTHT,2)) :: ZINPRI ! Pristine ice instant precip
!
!Packed variables

RODIER Quentin
committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
REAL, DIMENSION(KSIZE) :: ZRVT, & ! Water vapor m.r. at t
& ZRCT, & ! Cloud water m.r. at t
& ZRRT, & ! Rain water m.r. at t
& ZRIT, & ! Pristine ice m.r. at t
& ZRST, & ! Snow/aggregate m.r. at t
& ZRGT, & ! Graupel m.r. at t
& ZRHT, & ! Hail m.r. at t
& ZCIT, & ! Pristine ice conc. at t
& ZTHT, & ! Potential temperature
& ZRHODREF, & ! RHO Dry REFerence
& ZZT, & ! Temperature
& ZPRES, & ! Pressure
& ZEXN, & ! EXNer Pressure
& ZLSFACT, & ! L_s/(Pi*C_ph)
& ZLVFACT, & ! L_v/(Pi*C_ph)
& ZSIGMA_RC,& ! Standard deviation of rc at time t
& ZCF, & ! Cloud fraction
& ZHLC_HCF, & ! HLCLOUDS : fraction of High Cloud Fraction in grid
& ZHLC_LCF, & ! HLCLOUDS : fraction of Low Cloud Fraction in grid
! note that ZCF = ZHLC_HCF + ZHLC_LCF
& ZHLC_HRC, & ! HLCLOUDS : LWC that is High LWC in grid
& ZHLC_LRC, & ! HLCLOUDS : LWC that is Low LWC in grid
! note that ZRC = ZHLC_HRC + ZHLC_LRC
& ZHLI_HCF, &
& ZHLI_LCF, &
& ZHLI_HRI, &
& ZHLI_LRI, &
& ZFRAC
!
!Output packed tendencies (for budgets only)

RODIER Quentin
committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
REAL, DIMENSION(KSIZE) :: ZRVHENI_MR, & ! heterogeneous nucleation mixing ratio change
& ZRCHONI, & ! Homogeneous nucleation
& ZRRHONG_MR, & ! Spontaneous freezing mixing ratio change
& ZRVDEPS, & ! Deposition on r_s,
& ZRIAGGS, & ! Aggregation on r_s
& ZRIAUTS, & ! Autoconversion of r_i for r_s production
& ZRVDEPG, & ! Deposition on r_g
& ZRCAUTR, & ! Autoconversion of r_c for r_r production
& ZRCACCR, & ! Accretion of r_c for r_r production
& ZRREVAV, & ! Evaporation of r_r
& ZRIMLTC_MR, & ! Cloud ice melting mixing ratio change
& ZRCBERI, & ! Bergeron-Findeisen effect
& ZRHMLTR, & ! Melting of the hailstones
& ZRSMLTG, & ! Conversion-Melting of the aggregates
& ZRCMLTSR, & ! Cloud droplet collection onto aggregates by positive temperature
& ZRRACCSS, ZRRACCSG, ZRSACCRG, & ! Rain accretion onto the aggregates
& ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRSRIMCG_MR, & ! Cloud droplet riming of the aggregates
& ZRICFRRG, ZRRCFRIG, ZRICFRR, & ! Rain contact freezing
& ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG, & ! Graupel wet growth
& ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, & ! Graupel dry growth
& ZRWETGH, & ! Conversion of graupel into hail
& ZRWETGH_MR, & ! Conversion of graupel into hail, mr change
& ZRGMLTR, & ! Melting of the graupel
& ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH, ZRRWETH, & ! Dry growth of hailstone
& ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH, ZRGDRYH, & ! Wet growth of hailstone
& ZRDRYHG ! Conversion of hailstone into graupel
!
!Output packed total mixing ratio change (for budgets only)

RODIER Quentin
committed
REAL, DIMENSION(KSIZE) :: ZTOT_RVHENI, & ! heterogeneous nucleation mixing ratio change
& ZTOT_RCHONI, & ! Homogeneous nucleation
& ZTOT_RRHONG, & ! Spontaneous freezing mixing ratio change
& ZTOT_RVDEPS, & ! Deposition on r_s,
& ZTOT_RIAGGS, & ! Aggregation on r_s
& ZTOT_RIAUTS, & ! Autoconversion of r_i for r_s production
& ZTOT_RVDEPG, & ! Deposition on r_g
& ZTOT_RCAUTR, & ! Autoconversion of r_c for r_r production
& ZTOT_RCACCR, & ! Accretion of r_c for r_r production
& ZTOT_RREVAV, & ! Evaporation of r_r
& ZTOT_RCRIMSS, ZTOT_RCRIMSG, ZTOT_RSRIMCG, & ! Cloud droplet riming of the aggregates
& ZTOT_RIMLTC, & ! Cloud ice melting mixing ratio change
& ZTOT_RCBERI, & ! Bergeron-Findeisen effect
& ZTOT_RHMLTR, & ! Melting of the hailstones
& ZTOT_RSMLTG, & ! Conversion-Melting of the aggregates
& ZTOT_RCMLTSR, & ! Cloud droplet collection onto aggregates by positive temperature
& ZTOT_RRACCSS, ZTOT_RRACCSG, ZTOT_RSACCRG, & ! Rain accretion onto the aggregates
& ZTOT_RICFRRG, ZTOT_RRCFRIG, ZTOT_RICFRR, & ! Rain contact freezing
& ZTOT_RCWETG, ZTOT_RIWETG, ZTOT_RRWETG, ZTOT_RSWETG, & ! Graupel wet growth
& ZTOT_RCDRYG, ZTOT_RIDRYG, ZTOT_RRDRYG, ZTOT_RSDRYG, & ! Graupel dry growth
& ZTOT_RWETGH, & ! Conversion of graupel into hail
& ZTOT_RGMLTR, & ! Melting of the graupel
& ZTOT_RCWETH, ZTOT_RIWETH, ZTOT_RSWETH, ZTOT_RGWETH, ZTOT_RRWETH, & ! Dry growth of hailstone
& ZTOT_RCDRYH, ZTOT_RIDRYH, ZTOT_RSDRYH, ZTOT_RRDRYH, ZTOT_RGDRYH, & ! Wet growth of hailstone
& ZTOT_RDRYHG ! Conversion of hailstone into graupel
!
!For time- or mixing-ratio- splitting

RODIER Quentin
committed
REAL, DIMENSION(KSIZE) :: Z0RVT, & ! Water vapor m.r. at the beginig of the current loop
& Z0RCT, & ! Cloud water m.r. at the beginig of the current loop
& Z0RRT, & ! Rain water m.r. at the beginig of the current loop
& Z0RIT, & ! Pristine ice m.r. at the beginig of the current loop
& Z0RST, & ! Snow/aggregate m.r. at the beginig of the current loop
& Z0RGT, & ! Graupel m.r. at the beginig of the current loop
& Z0RHT, & ! Hail m.r. at the beginig of the current loop
& ZA_TH, ZA_RV, ZA_RC, ZA_RR, ZA_RI, ZA_RS, ZA_RG, ZA_RH, &
& ZB_TH, ZB_RV, ZB_RC, ZB_RR, ZB_RI, ZB_RS, ZB_RG, ZB_RH
!
!To take into acount external tendencies inside the splitting

RODIER Quentin
committed
REAL, DIMENSION(KSIZE) :: ZEXT_RV, & ! External tendencie for rv
& ZEXT_RC, & ! External tendencie for rc
& ZEXT_RR, & ! External tendencie for rr
& ZEXT_RI, & ! External tendencie for ri
& ZEXT_RS, & ! External tendencie for rs
& ZEXT_RG, & ! External tendencie for rg
& ZEXT_RH, & ! External tendencie for rh
& ZEXT_TH, & ! External tendencie for th
& ZEXT_WW ! Working array
LOGICAL :: GEXT_TEND

RODIER Quentin
committed
INTEGER, DIMENSION(KSIZE) :: IITER ! Number of iterations done (with real tendencies computation)
INTEGER :: INB_ITER_MAX ! Maximum number of iterations (with real tendencies computation)

RODIER Quentin
committed
REAL, DIMENSION(KSIZE) :: ZTIME, & ! Current integration time (starts with 0 and ends with PTSTEP)
& ZMAXTIME, & ! Time on which we can apply the current tendencies
& ZTIME_THRESHOLD, & ! Time to reach threshold
& ZTIME_LASTCALL ! Integration time when last tendecies call has been done
REAL, DIMENSION(KSIZE) :: ZW1D
REAL, DIMENSION(KSIZE) :: ZCOMPUTE ! 1. for points where we must compute tendencies, 0. elsewhere
LOGICAL :: LSOFT ! Must we really compute tendencies or only adjust them to new T variables
LOGICAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2)):: GDEP
REAL :: ZTSTEP ! length of sub-timestep in case of time splitting
REAL :: ZINV_TSTEP ! Inverse ov PTSTEP

RODIER Quentin
committed
REAL, DIMENSION(KSIZE, 8) :: ZRS_TEND
REAL, DIMENSION(KSIZE, 8) :: ZRG_TEND
REAL, DIMENSION(KSIZE, 10) :: ZRH_TEND
REAL, DIMENSION(KSIZE) :: ZSSI
!
!For total tendencies computation
REAL, DIMENSION(SIZE(PTHT,1),SIZE(PTHT,2),SIZE(PTHT,3)) :: &
&ZW_RVS, ZW_RCS, ZW_RRS, ZW_RIS, ZW_RSS, ZW_RGS, ZW_RHS, ZW_THS
!
!-------------------------------------------------------------------------------

WAUTELET Philippe
committed
if ( lbu_enable ) then
if ( lbudget_th ) call Budget_store_init( tbudgets(NBUDGET_TH), 'HENU', pths(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rv ) call Budget_store_init( tbudgets(NBUDGET_RV), 'HENU', prvs(:, :, :) * prhodj(:, :, :) )
end if
!-------------------------------------------------------------------------------
!
!* 1. COMPUTE THE LOOP BOUNDS
! -----------------------
!
CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
IKB=KKA+JPVEXT*KKL
IKE=KKU-JPVEXT*KKL
IKTB=1+JPVEXT

RODIER Quentin
committed
IKTE=KKT-JPVEXT
!
ZINV_TSTEP=1./PTSTEP
GEXT_TEND=.TRUE.
!
! LSFACT and LVFACT without exner
IF(KRR==7) THEN

RODIER Quentin
committed
DO JK = 1, KKT
DO JJ = 1, KJT
DO JI = 1, KIT
ZT(JI,JJ,JK) = PTHT(JI,JJ,JK) * PEXN(JI,JJ,JK)
ZZ_LSFACT(JI,JJ,JK)=(XLSTT+(XCPV-XCI)*(ZT(JI,JJ,JK)-XTT)) &
/( XCPD + XCPV*PRVT(JI,JJ,JK) + XCL*(PRCT(JI,JJ,JK)+PRRT(JI,JJ,JK)) &
+ XCI*(PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK)+PRHT(JI,JJ,JK)))
ZZ_LVFACT(JI,JJ,JK)=(XLVTT+(XCPV-XCL)*(ZT(JI,JJ,JK)-XTT)) &
/( XCPD + XCPV*PRVT(JI,JJ,JK) + XCL*(PRCT(JI,JJ,JK)+PRRT(JI,JJ,JK)) &
+ XCI*(PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK)+PRHT(JI,JJ,JK)))
ENDDO
ENDDO
ENDDO

RODIER Quentin
committed
DO JK = 1, KKT
DO JJ = 1, KJT
DO JI = 1, KIT
ZT(JI,JJ,JK) = PTHT(JI,JJ,JK) * PEXN(JI,JJ,JK)
ZZ_LSFACT(JI,JJ,JK)=(XLSTT+(XCPV-XCI)*(ZT(JI,JJ,JK)-XTT)) &
/( XCPD + XCPV*PRVT(JI,JJ,JK) + XCL*(PRCT(JI,JJ,JK)+PRRT(JI,JJ,JK)) &
+ XCI*(PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK)))
ZZ_LVFACT(JI,JJ,JK)=(XLVTT+(XCPV-XCL)*(ZT(JI,JJ,JK)-XTT)) &
/( XCPD + XCPV*PRVT(JI,JJ,JK) + XCL*(PRCT(JI,JJ,JK)+PRRT(JI,JJ,JK)) &
+ XCI*(PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK)))
ENDDO
ENDDO
ENDDO
ENDIF
!
!-------------------------------------------------------------------------------
!
!* 2. COMPUTE THE SEDIMENTATION (RS) SOURCE
! -------------------------------------
!
IF(.NOT. LSEDIM_AFTER) THEN
!
!* 2.1 sedimentation
!

WAUTELET Philippe
committed
if ( lbudget_rc .and. osedic ) call Budget_store_init( tbudgets(NBUDGET_RC), 'SEDI', prcs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_init( tbudgets(NBUDGET_RR), 'SEDI', prrs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_init( tbudgets(NBUDGET_RI), 'SEDI', pris(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_init( tbudgets(NBUDGET_RS), 'SEDI', prss(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_init( tbudgets(NBUDGET_RG), 'SEDI', prgs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rh ) call Budget_store_init( tbudgets(NBUDGET_RH), 'SEDI', prhs(:, :, :) * prhodj(:, :, :) )
!Init only if not osedic (to prevent crash with double init)

WAUTELET Philippe
committed
!Remark: the 2 source terms SEDI and DEPO could be mixed and stored in the same source term (SEDI)
! if osedic=T and ldeposc=T (a warning is printed in ini_budget in that case)
if ( lbudget_rc .and. ldeposc .and. .not.osedic ) &
call Budget_store_init( tbudgets(NBUDGET_RC), 'DEPO', prcs(:, :, :) * prhodj(:, :, :) )
IF(HSEDIM=='STAT') THEN
!SR: It *seems* that we must have two separate calls for ifort
IF(KRR==7) THEN

RODIER Quentin
committed
CALL ICE4_SEDIMENTATION_STAT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
&PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, &
&PRHODREF, PPABST, PTHT, PRHODJ, &
&PRCS, PRCS*PTSTEP, PRRS, PRRS*PTSTEP, PRIS, PRIS*PTSTEP,&
&PRSS, PRSS*PTSTEP, PRGS, PRGS*PTSTEP,&
&PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, &

RODIER Quentin
committed
&PSEA=PSEA, PTOWN=PTOWN, &
&PINPRH=PINPRH, PRHT=PRHS*PTSTEP, PRHS=PRHS, PFPR=PFPR)
ELSE

RODIER Quentin
committed
CALL ICE4_SEDIMENTATION_STAT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
&PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, &
&PRHODREF, PPABST, PTHT, PRHODJ, &
&PRCS, PRCS*PTSTEP, PRRS, PRRS*PTSTEP, PRIS, PRIS*PTSTEP,&
&PRSS, PRSS*PTSTEP, PRGS, PRGS*PTSTEP,&
&PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, &

RODIER Quentin
committed
&PSEA=PSEA, PTOWN=PTOWN, &
&PFPR=PFPR)
ENDIF
PINPRS(:,:) = PINPRS(:,:) + ZINPRI(:,:)
!No negativity correction here as we apply sedimentation on PR.S*PTSTEP variables
ELSEIF(HSEDIM=='SPLI') THEN
!SR: It *seems* that we must have two separate calls for ifort
IF(KRR==7) THEN

RODIER Quentin
committed
CALL ICE4_SEDIMENTATION_SPLIT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
&PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, &
&PRHODREF, PPABST, PTHT, PRHODJ, &
&PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,&
&PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, &

RODIER Quentin
committed
&PSEA=PSEA, PTOWN=PTOWN, &
&PINPRH=PINPRH, PRHT=PRHT, PRHS=PRHS, PFPR=PFPR)
ELSE

RODIER Quentin
committed
CALL ICE4_SEDIMENTATION_SPLIT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
&PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, &
&PRHODREF, PPABST, PTHT, PRHODJ, &
&PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,&
&PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, &

RODIER Quentin
committed
&PSEA=PSEA, PTOWN=PTOWN, &
&PFPR=PFPR)
ENDIF
PINPRS(:,:) = PINPRS(:,:) + ZINPRI(:,:)
!We correct negativities with conservation
!SPLI algorith uses a time-splitting. Inside the loop a temporary m.r. is used.
! It is initialized with the m.r. at T and is modified by two tendencies:
! sedimentation tendency and an external tendency which represents all other
! processes (mainly advection and microphysical processes). If both tendencies
! are negative, sedimentation can remove a specie at a given sub-timestep. From
! this point sedimentation stops for the remaining sub-timesteps but the other tendency
! will be still active and will lead to negative values.
! We could prevent the algorithm to not consume too much a specie, instead we apply
! a correction here.

RODIER Quentin
committed
CALL CORRECT_NEGATIVITIES(KIT, KJT, KKT, KRR, PRVS, PRCS, PRRS, &
&PRIS, PRSS, PRGS, &
&PTHS, ZZ_LVFACT, ZZ_LSFACT, PRHS)

RODIER Quentin
committed
ELSEIF(HSEDIM=='NONE') THEN
call Print_msg( NVERB_FATAL, 'GEN', 'RAIN_ICE_RED', 'no sedimentation scheme for HSEDIM='//HSEDIM )
END IF
!
!* 2.2 budget storage
!

WAUTELET Philippe
committed
if ( lbudget_rc .and. osedic ) call Budget_store_end( tbudgets(NBUDGET_RC), 'SEDI', prcs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_end( tbudgets(NBUDGET_RR), 'SEDI', prrs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_ri ) call Budget_store_end( tbudgets(NBUDGET_RI), 'SEDI', pris(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_end( tbudgets(NBUDGET_RS), 'SEDI', prss(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_end( tbudgets(NBUDGET_RG), 'SEDI', prgs(:, :, :) * prhodj(:, :, :) )
if ( lbudget_rh ) call Budget_store_end( tbudgets(NBUDGET_RH), 'SEDI', prhs(:, :, :) * prhodj(:, :, :) )
!If osedic=T and ldeposc=T, DEPO is in fact mixed and stored with the SEDI source term
!(a warning is printed in ini_budget in that case)
if ( lbudget_rc .and. ldeposc .and. .not.osedic) &
call Budget_store_end( tbudgets(NBUDGET_RC), 'DEPO', prcs(:, :, :) * prhodj(:, :, :) )
ENDIF
!
!-------------------------------------------------------------------------------
!
!* 3. PACKING
! --------
! optimization by looking for locations where
! the microphysical fields are larger than a minimal value only !!!
!

RODIER Quentin
committed
IMICRO=0

RODIER Quentin
committed
IF(KSIZE/=0) IMICRO=COUNTJV(ODMICRO(:,:,:), I1(:), I2(:), I3(:))
!Packing
IF(IMICRO>0) THEN
DO JL=1, IMICRO
ZRVT(JL) = PRVT(I1(JL),I2(JL),I3(JL))
ZRCT(JL) = PRCT(I1(JL),I2(JL),I3(JL))
ZRRT(JL) = PRRT(I1(JL),I2(JL),I3(JL))
ZRIT(JL) = PRIT(I1(JL),I2(JL),I3(JL))
ZRST(JL) = PRST(I1(JL),I2(JL),I3(JL))
ZRGT(JL) = PRGT(I1(JL),I2(JL),I3(JL))
ZCIT(JL) = PCIT(I1(JL),I2(JL),I3(JL))
ZCF(JL) = PCLDFR(I1(JL),I2(JL),I3(JL))
ZRHODREF(JL) = PRHODREF(I1(JL),I2(JL),I3(JL))
ZTHT(JL) = PTHT(I1(JL),I2(JL),I3(JL))
ZPRES(JL) = PPABST(I1(JL),I2(JL),I3(JL))
ZEXN(JL) = PEXN(I1(JL),I2(JL),I3(JL))

RODIER Quentin
committed
ZHLC_HCF(JL) = PHLC_HCF(I1(JL),I2(JL),I3(JL))
ZHLC_HRC(JL) = PHLC_HRC(I1(JL),I2(JL),I3(JL))
ZHLC_LRC(JL) = ZRCT(JL) - ZHLC_HRC(JL)
ZHLI_HCF(JL) = PHLI_HCF(I1(JL),I2(JL),I3(JL))
ZHLI_HRI(JL) = PHLI_HRI(I1(JL),I2(JL),I3(JL))
ZHLI_LRI(JL) = ZRIT(JL) - ZHLI_HRI(JL)
IF(ZRCT(JL)>0.) THEN
ZHLC_LCF(JL) = ZCF(JL)- ZHLC_HCF(JL)
ELSE
ZHLC_LCF(JL)=0.
ENDIF
IF(ZRIT(JL)>0.) THEN
ZHLI_LCF(JL) = ZCF(JL)- ZHLI_HCF(JL)
ELSE
ZHLI_LCF(JL)=0.
ENDIF
IF(GEXT_TEND) THEN
DO JL=1, IMICRO
ZEXT_RV(JL) = PRVS(I1(JL),I2(JL),I3(JL)) - ZRVT(JL)*ZINV_TSTEP
ZEXT_RC(JL) = PRCS(I1(JL),I2(JL),I3(JL)) - ZRCT(JL)*ZINV_TSTEP
ZEXT_RR(JL) = PRRS(I1(JL),I2(JL),I3(JL)) - ZRRT(JL)*ZINV_TSTEP
ZEXT_RI(JL) = PRIS(I1(JL),I2(JL),I3(JL)) - ZRIT(JL)*ZINV_TSTEP
ZEXT_RS(JL) = PRSS(I1(JL),I2(JL),I3(JL)) - ZRST(JL)*ZINV_TSTEP
ZEXT_RG(JL) = PRGS(I1(JL),I2(JL),I3(JL)) - ZRGT(JL)*ZINV_TSTEP
ZEXT_TH(JL) = PTHS(I1(JL),I2(JL),I3(JL)) - ZTHT(JL)*ZINV_TSTEP
!The th tendency is not related to a mixing ratio change, there is no exn/exnref issue here
ENDDO
ENDIF
IF(HSUBG_AUCV_RC=='PDF ' .AND. CSUBG_PR_PDF=='SIGM') THEN
DO JL=1, IMICRO
ZSIGMA_RC(JL) = PSIGS(I1(JL),I2(JL),I3(JL))*2.
ENDDO
ENDIF
IF(KRR==7) THEN
DO JL=1, IMICRO
ZRHT(JL) = PRHT(I1(JL),I2(JL),I3(JL))
ENDDO
IF(GEXT_TEND) THEN
DO JL=1, IMICRO
ZEXT_RH(JL) = PRHS(I1(JL),I2(JL),I3(JL)) - ZRHT(JL)*ZINV_TSTEP
ENDDO
ENDIF
ELSE
ZRHT(:)=0.
IF(GEXT_TEND) ZEXT_RH(:)=0.
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
ENDIF
IF(LBU_ENABLE) THEN
ZTOT_RVHENI(:)=0.
ZTOT_RCHONI(:)=0.
ZTOT_RRHONG(:)=0.
ZTOT_RVDEPS(:)=0.
ZTOT_RIAGGS(:)=0.
ZTOT_RIAUTS(:)=0.
ZTOT_RVDEPG(:)=0.
ZTOT_RCAUTR(:)=0.
ZTOT_RCACCR(:)=0.
ZTOT_RREVAV(:)=0.
ZTOT_RCRIMSS(:)=0.
ZTOT_RCRIMSG(:)=0.
ZTOT_RSRIMCG(:)=0.
ZTOT_RIMLTC(:)=0.
ZTOT_RCBERI(:)=0.
ZTOT_RHMLTR(:)=0.
ZTOT_RSMLTG(:)=0.
ZTOT_RCMLTSR(:)=0.
ZTOT_RRACCSS(:)=0.
ZTOT_RRACCSG(:)=0.
ZTOT_RSACCRG(:)=0.
ZTOT_RICFRRG(:)=0.
ZTOT_RRCFRIG(:)=0.
ZTOT_RICFRR(:)=0.
ZTOT_RCWETG(:)=0.
ZTOT_RIWETG(:)=0.
ZTOT_RRWETG(:)=0.
ZTOT_RSWETG(:)=0.
ZTOT_RCDRYG(:)=0.
ZTOT_RIDRYG(:)=0.
ZTOT_RRDRYG(:)=0.
ZTOT_RSDRYG(:)=0.
ZTOT_RWETGH(:)=0.
ZTOT_RGMLTR(:)=0.
ZTOT_RCWETH(:)=0.
ZTOT_RIWETH(:)=0.
ZTOT_RSWETH(:)=0.
ZTOT_RGWETH(:)=0.
ZTOT_RRWETH(:)=0.
ZTOT_RCDRYH(:)=0.
ZTOT_RIDRYH(:)=0.
ZTOT_RSDRYH(:)=0.
ZTOT_RRDRYH(:)=0.
ZTOT_RGDRYH(:)=0.
ZTOT_RDRYHG(:)=0.
ENDIF
ENDIF
!-------------------------------------------------------------------------------
!
!* 4. LOOP
! ----
!
!Maximum number of iterations
!We only count real iterations (those for which we *compute* tendencies)
INB_ITER_MAX=NMAXITER
IF(XTSTEP_TS/=0.)THEN
INB_ITER_MAX=MAX(1, INT(PTSTEP/XTSTEP_TS)) !At least the number of iterations needed for the time-splitting
ZTSTEP=PTSTEP/INB_ITER_MAX
INB_ITER_MAX=MAX(NMAXITER, INB_ITER_MAX) !For the case XMRSTEP/=0. at the same time
ENDIF
IITER(:)=0
ZTIME(:)=0. ! Current integration time (all points may have a different integration time)
DO WHILE(ANY(ZTIME(:)<PTSTEP)) ! Loop to *really* compute tendencies
IF(XMRSTEP/=0.) THEN
! In this case we need to remember the mixing ratios used to compute the tendencies
! because when mixing ratio has evolved more than a threshold, we must re-compute tendecies

RODIER Quentin
committed
DO JL=1, IMICRO
Z0RVT(JL)=ZRVT(JL)
Z0RCT(JL)=ZRCT(JL)
Z0RRT(JL)=ZRRT(JL)
Z0RIT(JL)=ZRIT(JL)
Z0RST(JL)=ZRST(JL)
Z0RGT(JL)=ZRGT(JL)
Z0RHT(JL)=ZRHT(JL)
ENDDO
ENDIF
IF(XTSTEP_TS/=0.) THEN
! In this case we need to remember the time when tendencies were computed
! because when time has evolved more than a limit, we must re-compute tendecies
ZTIME_LASTCALL(:)=ZTIME(:)
ENDIF

RODIER Quentin
committed
ZCOMPUTE(:)=MAX(0., -SIGN(1., ZTIME(:)-PTSTEP)) ! Compuation (1.) only for points for which integration time has not reached the timestep
LSOFT=.FALSE. ! We *really* compute the tendencies

RODIER Quentin
committed
IITER(:)=IITER(:)+INT(ZCOMPUTE(:))
DO WHILE(SUM(ZCOMPUTE(:))>0.) ! Loop to adjust tendencies when we cross the 0°C or when a specie disappears
IF(KRR==7) THEN

RODIER Quentin
committed
DO JL=1, IMICRO
ZZT(JL) = ZTHT(JL) * ZEXN(JL)
ZLSFACT(JL)=(XLSTT+(XCPV-XCI)*(ZZT(JL)-XTT)) &
&/( (XCPD + XCPV*ZRVT(JL) + XCL*(ZRCT(JL)+ZRRT(JL)) &
&+ XCI*(ZRIT(JL)+ZRST(JL)+ZRGT(JL)+ZRHT(JL)))*ZEXN(JL) )
ZLVFACT(JL)=(XLVTT+(XCPV-XCL)*(ZZT(JL)-XTT)) &
&/( (XCPD + XCPV*ZRVT(JL) + XCL*(ZRCT(JL)+ZRRT(JL)) &
&+ XCI*(ZRIT(JL)+ZRST(JL)+ZRGT(JL)+ZRHT(JL)))*ZEXN(JL) )
ENDDO

RODIER Quentin
committed
DO JL=1, IMICRO
ZZT(JL) = ZTHT(JL) * ZEXN(JL)
ZLSFACT(JL)=(XLSTT+(XCPV-XCI)*(ZZT(JL)-XTT)) &
&/( (XCPD + XCPV*ZRVT(JL) + XCL*(ZRCT(JL)+ZRRT(JL)) &
&+ XCI*(ZRIT(JL)+ZRST(JL)+ZRGT(JL)))*ZEXN(JL) )
ZLVFACT(JL)=(XLVTT+(XCPV-XCL)*(ZZT(JL)-XTT)) &
&/( (XCPD + XCPV*ZRVT(JL) + XCL*(ZRCT(JL)+ZRRT(JL)) &
&+ XCI*(ZRIT(JL)+ZRST(JL)+ZRGT(JL)))*ZEXN(JL) )
ENDDO
ENDIF
!
!*** 4.1 Tendecies computation
!
! Tendencies are *really* computed when LSOFT==.FALSE. and only adjusted otherwise

RODIER Quentin
committed
CALL ICE4_TENDENCIES(IMICRO, IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, KKT, KKL, &
&KRR, LSOFT, ZCOMPUTE, &
&OWARM, CSUBG_RC_RR_ACCR, CSUBG_RR_EVAP, &
&HSUBG_AUCV_RC, HSUBG_AUCV_RI, CSUBG_PR_PDF, &

WAUTELET Philippe
committed
&ZEXN, ZRHODREF, ZLVFACT, ZLSFACT, I1, I2, I3, &

RODIER Quentin
committed
&ZPRES, ZCF, ZSIGMA_RC,&
&ZCIT, &
&ZZT, ZTHT, &

RODIER Quentin
committed
&ZRVT, ZRCT, ZRRT, ZRIT, ZRST, ZRGT, ZRHT, &
&ZRVHENI_MR, ZRRHONG_MR, ZRIMLTC_MR, ZRSRIMCG_MR, &
&ZRCHONI, ZRVDEPS, ZRIAGGS, ZRIAUTS, ZRVDEPG, &
&ZRCAUTR, ZRCACCR, ZRREVAV, &
&ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRRACCSS, ZRRACCSG, ZRSACCRG, ZRSMLTG, ZRCMLTSR, &
&ZRICFRRG, ZRRCFRIG, ZRICFRR, ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG, &
&ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, ZRWETGH, ZRWETGH_MR, ZRGMLTR, &
&ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH, ZRRWETH, &
&ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH, ZRGDRYH, ZRDRYHG, ZRHMLTR, &
&ZRCBERI, &

RODIER Quentin
committed
&ZRS_TEND, ZRG_TEND, ZRH_TEND, ZSSI, &
&ZA_TH, ZA_RV, ZA_RC, ZA_RR, ZA_RI, ZA_RS, ZA_RG, ZA_RH, &
&ZB_TH, ZB_RV, ZB_RC, ZB_RR, ZB_RI, ZB_RS, ZB_RG, ZB_RH, &

RODIER Quentin
committed
&ZHLC_HCF, ZHLC_LCF, ZHLC_HRC, ZHLC_LRC, &
&ZHLI_HCF, ZHLI_LCF, ZHLI_HRI, ZHLI_LRI, PRAINFR)
! External tendencies
IF(GEXT_TEND) THEN

RODIER Quentin
committed
DO JL=1, IMICRO
ZA_TH(JL) = ZA_TH(JL) + ZEXT_TH(JL)
ZA_RV(JL) = ZA_RV(JL) + ZEXT_RV(JL)
ZA_RC(JL) = ZA_RC(JL) + ZEXT_RC(JL)
ZA_RR(JL) = ZA_RR(JL) + ZEXT_RR(JL)
ZA_RI(JL) = ZA_RI(JL) + ZEXT_RI(JL)
ZA_RS(JL) = ZA_RS(JL) + ZEXT_RS(JL)
ZA_RG(JL) = ZA_RG(JL) + ZEXT_RG(JL)
ZA_RH(JL) = ZA_RH(JL) + ZEXT_RH(JL)
ENDDO
ENDIF
!
!*** 4.2 Integration time
!

RODIER Quentin
committed
! If we can, we will use these tendencies until the end of the timestep
ZMAXTIME(:)=ZCOMPUTE(:) * (PTSTEP-ZTIME(:)) ! Remaining time until the end of the timestep
!We need to adjust tendencies when temperature reaches 0
IF(LFEEDBACKT) THEN

RODIER Quentin
committed
DO JL=1, IMICRO
!Is ZB_TH enough to change temperature sign?
ZW1D(JL)=(ZTHT(JL) - XTT/ZEXN(JL)) * (ZTHT(JL) + ZB_TH(JL) - XTT/ZEXN(JL))
ZMAXTIME(JL)=ZMAXTIME(JL)*MAX(0., SIGN(1., ZW1D(JL)))
!Can ZA_TH make temperature change of sign?
ZW1D(JL)=MAX(0., -SIGN(1., 1.E-20 - ABS(ZA_TH(JL)))) ! WHERE(ABS(ZA_TH(:))>1.E-20)
ZTIME_THRESHOLD(JL)=(1. - ZW1D(JL))*(-1.) + &
ZW1D(JL) * &
(XTT/ZEXN(JL) - ZB_TH(JL) - ZTHT(JL))/ &
SIGN(MAX(ABS(ZA_TH(JL)), 1.E-20), ZA_TH(JL))
ZW1D(JL)=MAX(0., -SIGN(1., 1.E-20 - ZTIME_THRESHOLD(JL))) ! WHERE(ZTIME_THRESHOLD(:)>1.E-20)
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
ZW1D(JL) * MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL))
ENDDO
ENDIF
!We need to adjust tendencies when a specy disappears
!When a species is missing, only the external tendencies can be negative (and we must keep track of it)

RODIER Quentin
committed
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
DO JL=1, IMICRO
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RV(JL)+1.E-20)) * & ! WHERE(ZA_RV(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(1)-ZRVT(JL))) ! WHERE(ZRVT(:)>XRTMIN(1))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RV(JL)+ZRVT(JL))/MIN(ZA_RV(JL), -1.E-20))
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RC(JL)+1.E-20)) * & ! WHERE(ZA_RC(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(2)-ZRCT(JL))) ! WHERE(ZRCT(:)>XRTMIN(2))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RC(JL)+ZRCT(JL))/MIN(ZA_RC(JL), -1.E-20))
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RR(JL)+1.E-20)) * & ! WHERE(ZA_RR(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(3)-ZRRT(JL))) ! WHERE(ZRRT(:)>XRTMIN(3))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RR(JL)+ZRRT(JL))/MIN(ZA_RR(JL), -1.E-20))
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RI(JL)+1.E-20)) * & ! WHERE(ZI_RV(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(4)-ZRIT(JL))) ! WHERE(ZRIT(:)>XRTMIN(4))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RI(JL)+ZRIT(JL))/MIN(ZA_RI(JL), -1.E-20))
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RS(JL)+1.E-20)) * & ! WHERE(ZA_RS(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(5)-ZRST(JL))) ! WHERE(ZRST(:)>XRTMIN(5))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RS(JL)+ZRST(JL))/MIN(ZA_RS(JL), -1.E-20))
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RG(JL)+1.E-20)) * & ! WHERE(ZA_RG(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(6)-ZRGT(JL))) ! WHERE(ZRGT(:)>XRTMIN(6))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RG(JL)+ZRGT(JL))/MIN(ZA_RG(JL), -1.E-20))
ENDDO
IF(KRR==7) THEN

RODIER Quentin
committed
DO JL=1, IMICRO
ZW1D(JL)=MAX(0., -SIGN(1., ZA_RH(JL)+1.E-20)) * & ! WHERE(ZA_RH(:)<-1.E-20)
&MAX(0., -SIGN(1., XRTMIN(7)-ZRHT(JL))) ! WHERE(ZRHT(:)>XRTMIN(7))
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RH(JL)+ZRHT(JL))/MIN(ZA_RH(JL), -1.E-20))
ENDDO
ENDIF
!We stop when the end of the timestep is reached

RODIER Quentin
committed
ZCOMPUTE(:)=ZCOMPUTE(:) * MAX(0., -SIGN(1., ZTIME(:)+ZMAXTIME(:)-PTSTEP))
!We must recompute tendencies when the end of the sub-timestep is reached
IF(XTSTEP_TS/=0.) THEN

RODIER Quentin
committed
DO JL=1, IMICRO
ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX)
&MAX(0., -SIGN(1., ZTIME_LASTCALL(JL)+ZTSTEP-ZTIME(JL)-ZMAXTIME(JL))) ! WHERE(ZTIME(:)+ZMAXTIME(:)>ZTIME_LASTCALL(:)+ZTSTEP)
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL) * (ZTIME_LASTCALL(JL)-ZTIME(JL)+ZTSTEP)
ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL))
ENDDO
ENDIF
!We must recompute tendencies when the maximum allowed change is reached
!When a specy is missing, only the external tendencies can be active and we do not want to recompute
!the microphysical tendencies when external tendencies are negative (results won't change because specy was already missing)
IF(XMRSTEP/=0.) THEN

RODIER Quentin
committed
DO JL=1, IMICRO
ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX)
&MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RV(JL)))) ! WHERE(ABS(ZA_RV(:))>1.E-20)
ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + &
&ZW1D(JL)*(SIGN(1., ZA_RV(JL))*XMRSTEP+Z0RVT(JL)-ZRVT(JL)-ZB_RV(JL))/ &
&SIGN(MAX(ABS(ZA_RV(JL)), 1.E-20), ZA_RV(JL))
ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.)
&MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:))
&MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRVT(JL))) + & !WHERE(ZRVT(:)>XRTMIN(6)) .OR.
&MAX(0., -SIGN(1., -ZA_RV(JL)))) !WHERE(ZA_RV(:)>0.)
ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + &
&ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL))
ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL))
ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX)
&MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RC(JL)))) ! WHERE(ABS(ZA_RC(:))>1.E-20)
ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + &
&ZW1D(JL)*(SIGN(1., ZA_RC(JL))*XMRSTEP+Z0RCT(JL)-ZRCT(JL)-ZB_RC(JL))/ &
&SIGN(MAX(ABS(ZA_RC(JL)), 1.E-20), ZA_RC(JL))
ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.)
&MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:))
&MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRCT(JL))) + & !WHERE(ZRCT(:)>XRTMIN(6)) .OR.