Newer
Older
!MNH_LIC Copyright 2009-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
! ######spl
MODULE MODE_COMPUTE_ENTR_DETR
! ##############################
!
IMPLICIT NONE
CONTAINS
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
! ######spl
SUBROUTINE COMPUTE_ENTR_DETR(KK,KKB,KKE,KKL,OTEST,OTESTLCL,&
HFRAC_ICE,PFRAC_ICE,PRHODREF,&
PPRE_MINUS_HALF,&
PPRE_PLUS_HALF,PZZ,PDZZ,&
PTHVM,PTHLM,PRTM,PW_UP2,PTH_UP,&
PTHL_UP,PRT_UP,PLUP,&
PRC_UP,PRI_UP,PTHV_UP,&
PRSAT_UP,PRC_MIX,PRI_MIX, &
PENTR,PDETR,PENTR_CLD,PDETR_CLD,&
PBUO_INTEG_DRY,PBUO_INTEG_CLD,&
PPART_DRY)
! #############################################################
!!
!!***COMPUTE_ENTR_DETR* - calculates caracteristics of the updraft or downdraft
!! using model of the EDMF scheme
!!
!! PURPOSE
!! -------
!!**** The purpose of this routine is to compute entrainement and
!! detrainement at one level of the updraft
!
!!** METHOD
!! ------
!!
!! EXTERNAL
!! --------
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
!! REFERENCE
!! ---------
!! Book 1 of Meso-NH documentation (chapter Convection)
!!
!!
!! AUTHOR
!! ------
!! J.Pergaud : 2009
!!
!! MODIFICATIONS
!! -------------
!! Y.Seity (06/2010) Bug correction
!! V.Masson (09/2010) Optimization
!! S. Riette april 2011 : ice added, protection against zero divide by Yves Bouteloup
!! protection against too big ZPART_DRY, interface modified
!! S. Riette Jan 2012: support for both order of vertical levels
!! S. Riette & J. Escobar (11/2013) : remove div by 0 on real*4 case
!! P.Marguinaud Jun 2012: fix uninitialized variable
!! P.Marguinaud Nov 2012: fix gfortran bug
!! S. Riette Apr 2013: bugs correction, rewriting (for optimisation) and
!! improvement of continuity at the condensation level
!! S. Riette Nov 2013: protection against zero divide for min value of dry PDETR
!! R.Honnert Oct 2016 : Update with AROME
! P. Wautelet 08/02/2019: bugfix: compute ZEPSI_CLOUD only once and only when it is needed
!! R. El Khatib 29-Apr-2019 portability fix : compiler may get confused by embricked WHERE statements
!! eventually breaking tests with NaN initializations at compile time.
!! Replace by IF conditions and traditional DO loops can only improve the performance.
! P. Wautelet 10/02/2021: bugfix: initialized PPART_DRY everywhere
!! --------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST
!
USE MODD_PARAM_MFSHALL_n

RODIER Quentin
committed
USE MODE_TH_R_FROM_THL_RT_1D, ONLY: TH_R_FROM_THL_RT_1D
USE MODE_THERMO
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
IMPLICIT NONE
!
!
!* 1.1 Declaration of Arguments
!
!
INTEGER, INTENT(IN) :: KK
INTEGER, INTENT(IN) :: KKB ! near ground physical index
INTEGER, INTENT(IN) :: KKE ! uppest atmosphere physical index
INTEGER, INTENT(IN) :: KKL ! +1 if grid goes from ground to atmosphere top, -1 otherwise
LOGICAL,DIMENSION(:), INTENT(IN) :: OTEST ! test to see if updraft is running
LOGICAL,DIMENSION(:), INTENT(IN) :: OTESTLCL !test of condensation
CHARACTER(LEN=1), INTENT(IN) :: HFRAC_ICE ! frac_ice can be compute using
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
! Temperature (T) or prescribed
! (Y)
REAL, DIMENSION(:), INTENT(IN) :: PFRAC_ICE ! fraction of ice
!
! prognostic variables at t- deltat
!
REAL, DIMENSION(:), INTENT(IN) :: PRHODREF !rhodref
REAL, DIMENSION(:), INTENT(IN) :: PPRE_MINUS_HALF ! Pressure at flux level KK
REAL, DIMENSION(:), INTENT(IN) :: PPRE_PLUS_HALF ! Pressure at flux level KK+KKL
REAL, DIMENSION(:,:), INTENT(IN) :: PZZ ! Height at the flux point
REAL, DIMENSION(:,:), INTENT(IN) :: PDZZ ! metrics coefficient
REAL, DIMENSION(:,:), INTENT(IN) :: PTHVM ! ThetaV environment
!
! thermodynamical variables which are transformed in conservative var.
!
REAL, DIMENSION(:,:), INTENT(IN) :: PTHLM ! Thetal
REAL, DIMENSION(:,:), INTENT(IN) :: PRTM ! total mixing ratio
REAL, DIMENSION(:,:), INTENT(IN) :: PW_UP2 ! Vertical velocity^2
REAL, DIMENSION(:), INTENT(IN) :: PTH_UP,PTHL_UP,PRT_UP ! updraft properties
REAL, DIMENSION(:), INTENT(IN) :: PLUP ! LUP compute from the ground
REAL, DIMENSION(:), INTENT(IN) :: PRC_UP,PRI_UP ! Updraft cloud content
REAL, DIMENSION(:), INTENT(IN) :: PTHV_UP ! Thetav of updraft
REAL, DIMENSION(:), INTENT(IN) :: PRSAT_UP ! Mixing ratio at saturation in updraft
REAL, DIMENSION(:), INTENT(INOUT) :: PRC_MIX, PRI_MIX ! Mixture cloud content
REAL, DIMENSION(:), INTENT(OUT) :: PENTR ! Mass flux entrainment of the updraft
REAL, DIMENSION(:), INTENT(OUT) :: PDETR ! Mass flux detrainment of the updraft
REAL, DIMENSION(:), INTENT(OUT) :: PENTR_CLD ! Mass flux entrainment of the updraft in cloudy part
REAL, DIMENSION(:), INTENT(OUT) :: PDETR_CLD ! Mass flux detrainment of the updraft in cloudy part
REAL, DIMENSION(:), INTENT(OUT) :: PBUO_INTEG_DRY, PBUO_INTEG_CLD! Integral Buoyancy
REAL, DIMENSION(:), INTENT(OUT) :: PPART_DRY ! ratio of dry part at the transition level
!
!
! 1.2 Declaration of local variables
!
!
! Variables for cloudy part
REAL, DIMENSION(SIZE(PTHLM,1)) :: ZKIC, ZKIC_F2 ! fraction of env. mass in the muxtures
REAL, DIMENSION(SIZE(PTHLM,1)) :: ZEPSI,ZDELTA ! factor entrainment detrainment
REAL :: ZEPSI_CLOUD ! factor entrainment detrainment
REAL :: ZCOEFFMF_CLOUD ! factor for compputing entr. detr.
REAL, DIMENSION(SIZE(PTHLM,1)) :: ZMIXTHL,ZMIXRT ! Thetal and rt in the mixtures
REAL, DIMENSION(SIZE(PTHLM,1)) :: ZTHMIX ! Theta and Thetav of mixtures
REAL, DIMENSION(SIZE(PTHLM,1)) :: ZRVMIX,ZRCMIX,ZRIMIX ! mixing ratios in mixtures
REAL, DIMENSION(SIZE(PTHLM,1)) :: ZTHVMIX, ZTHVMIX_F2 ! Theta and Thetav of mixtures
REAL, DIMENSION(SIZE(PTHLM,1)) :: ZTHV_UP_F2 ! thv_up at flux point kk+kkl
REAL, DIMENSION(SIZE(PTHLM,1)) :: ZRSATW, ZRSATI ! working arrays (mixing ratio at saturation)
REAL, DIMENSION(SIZE(PTHLM,1)) :: ZTHV ! theta V of environment at the bottom of cloudy part
REAL :: ZKIC_INIT !Initial value of ZKIC
REAL :: ZCOTHVU ! Variation of Thvup between bottom and top of cloudy part
! Variables for dry part
REAL :: ZFOESW, ZFOESI ! saturating vapor pressure
REAL :: ZDRSATODP ! d.Rsat/dP
REAL :: ZT ! Temperature
REAL :: ZWK ! Work array
! Variables for dry and cloudy parts
REAL, DIMENSION(SIZE(PTHLM,1)) :: ZCOEFF_MINUS_HALF,& ! Variation of Thv between mass points kk-kkl and kk
ZCOEFF_PLUS_HALF ! Variation of Thv between mass points kk and kk+kkl
REAL, DIMENSION(SIZE(PTHLM,1)) :: ZPRE ! pressure at the bottom of the cloudy part
REAL, DIMENSION(SIZE(PTHVM,1)) :: ZG_O_THVREF
REAL, DIMENSION(SIZE(PTHLM,1)) :: ZFRAC_ICE ! fraction of ice
REAL :: ZRVORD ! RV/RD
REAL, DIMENSION(SIZE(PTHLM,1)) :: ZDZ_STOP,& ! Exact Height of the LCL above flux level KK
ZTHV_MINUS_HALF,& ! Thv at flux point(kk)
ZTHV_PLUS_HALF ! Thv at flux point(kk+kkl)
REAL :: ZDZ ! Delta Z used in computations
INTEGER :: JI, JLOOP
REAL(KIND=JPRB) :: ZHOOK_HANDLE
!----------------------------------------------------------------------------------
! 1.3 Initialisation
! ------------------
IF (LHOOK) CALL DR_HOOK('COMPUTE_ENTR_DETR',0,ZHOOK_HANDLE)
ZRVORD = XRV / XRD !=1.607
ZG_O_THVREF(:)=XG/PTHVM(:,KK)
ZCOEFFMF_CLOUD=XENTR_MF * XG / XCRAD_MF
ZFRAC_ICE(:)=PFRAC_ICE(:) ! to not modify fraction of ice
ZPRE(:)=PPRE_MINUS_HALF(:)
ZMIXTHL(:)=0.1
ZMIXRT(:)=0.1
! 1.4 Estimation of PPART_DRY
DO JLOOP=1,SIZE(OTEST)
IF(OTEST(JLOOP) .AND. OTESTLCL(JLOOP)) THEN
!No dry part when condensation level is reached
PPART_DRY(JLOOP)=0.
ZDZ_STOP(JLOOP)=0.
ZPRE(JLOOP)=PPRE_MINUS_HALF(JLOOP)
ELSE IF (OTEST(JLOOP) .AND. .NOT. OTESTLCL(JLOOP)) THEN
!Temperature at flux level KK
ZT=PTH_UP(JLOOP)*(PPRE_MINUS_HALF(JLOOP)/XP00) ** (XRD/XCPD)
!Saturating vapor pressure at flux level KK
ZFOESW = MIN(EXP( XALPW - XBETAW/ZT - XGAMW*LOG(ZT) ), 0.99*PPRE_MINUS_HALF(JLOOP))
ZFOESI = MIN(EXP( XALPI - XBETAI/ZT - XGAMI*LOG(ZT) ), 0.99*PPRE_MINUS_HALF(JLOOP))
!Computation of d.Rsat / dP (partial derivations with respect to P and T
!and use of T=Theta*(P/P0)**(R/Cp) to transform dT into dP with theta_up
!constant at the vertical)
ZDRSATODP=(XBETAW/ZT-XGAMW)*(1-ZFRAC_ICE(JLOOP))+(XBETAI/ZT-XGAMI)*ZFRAC_ICE(JLOOP)
ZDRSATODP=((XRD/XCPD)*ZDRSATODP-1.)*PRSAT_UP(JLOOP)/ &
&(PPRE_MINUS_HALF(JLOOP)-(ZFOESW*(1-ZFRAC_ICE(JLOOP)) + ZFOESI*ZFRAC_ICE(JLOOP)))
!Use of d.Rsat / dP and pressure at flux level KK to find pressure (ZPRE)
!where Rsat is equal to PRT_UP
ZPRE(JLOOP)=PPRE_MINUS_HALF(JLOOP)+(PRT_UP(JLOOP)-PRSAT_UP(JLOOP))/ZDRSATODP
!Fraction of dry part (computed with pressure and used with heights, no
!impact found when using log function here and for pressure on flux levels
!computation)
PPART_DRY(JLOOP)=MAX(0., MIN(1., (PPRE_MINUS_HALF(JLOOP)-ZPRE(JLOOP))/(PPRE_MINUS_HALF(JLOOP)-PPRE_PLUS_HALF(JLOOP))))
!Height above flux level KK of the cloudy part
ZDZ_STOP(JLOOP) = (PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))*PPART_DRY(JLOOP)
ELSE
PPART_DRY(JLOOP)=0. ! value does not matter, here
END IF
END DO
! 1.5 Gradient and flux values of thetav
IF(KK/=KKB)THEN
ZCOEFF_MINUS_HALF(:)=((PTHVM(:,KK)-PTHVM(:,KK-KKL))/PDZZ(:,KK))
ZTHV_MINUS_HALF(:) = PTHVM(:,KK) - ZCOEFF_MINUS_HALF(:)*0.5*(PZZ(:,KK+KKL)-PZZ(:,KK))
ELSE
ZCOEFF_MINUS_HALF(:)=0.
ZTHV_MINUS_HALF(:) = PTHVM(:,KK)
ENDIF
ZCOEFF_PLUS_HALF(:) = ((PTHVM(:,KK+KKL)-PTHVM(:,KK))/PDZZ(:,KK+KKL))
ZTHV_PLUS_HALF(:) = PTHVM(:,KK) + ZCOEFF_PLUS_HALF(:)*0.5*(PZZ(:,KK+KKL)-PZZ(:,KK))
! 2 Dry part computation:
! Integral buoyancy and computation of PENTR and PDETR for dry part
! --------------------------------------------------------------------
DO JLOOP=1,SIZE(OTEST)
IF (OTEST(JLOOP) .AND. PPART_DRY(JLOOP)>0.) THEN
!Buoyancy computation in two parts to use change of gradient of theta v of environment
!Between flux level KK and min(mass level, bottom of cloudy part)
ZDZ=MIN(ZDZ_STOP(JLOOP),(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))*0.5)
PBUO_INTEG_DRY(JLOOP) = ZG_O_THVREF(JLOOP)*ZDZ*&
(0.5 * ( - ZCOEFF_MINUS_HALF(JLOOP))*ZDZ &
- ZTHV_MINUS_HALF(JLOOP) + PTHV_UP(JLOOP) )
!Between mass flux KK and bottom of cloudy part (if above mass flux)
ZDZ=MAX(0., ZDZ_STOP(JLOOP)-(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))*0.5)
PBUO_INTEG_DRY(JLOOP) = PBUO_INTEG_DRY(JLOOP) + ZG_O_THVREF(JLOOP)*ZDZ*&
(0.5 * ( - ZCOEFF_PLUS_HALF(JLOOP))*ZDZ &
- PTHVM(JLOOP,KK) + PTHV_UP(JLOOP) )
!Entr//Detr. computation
IF (PBUO_INTEG_DRY(JLOOP)>=0.) THEN
PENTR(JLOOP) = 0.5/(XABUO-XBENTR*XENTR_DRY)*&
LOG(1.+ (2.*(XABUO-XBENTR*XENTR_DRY)/PW_UP2(JLOOP,KK))* &
PBUO_INTEG_DRY(JLOOP))
PDETR(JLOOP) = 0.
PENTR(JLOOP) = 0.
PDETR(JLOOP) = 0.5/(XABUO)*&
LOG(1.+ (2.*(XABUO)/PW_UP2(JLOOP,KK))* &
(-PBUO_INTEG_DRY(JLOOP)))
PENTR(JLOOP) = XENTR_DRY*PENTR(JLOOP)/(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))
PDETR(JLOOP) = XDETR_DRY*PDETR(JLOOP)/(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))
!Minimum value of detrainment
ZWK=PLUP(JLOOP)-0.5*(PZZ(JLOOP,KK)+PZZ(JLOOP,KK+KKL))
ZWK=SIGN(MAX(1., ABS(ZWK)), ZWK) ! ZWK must not be zero
PDETR(JLOOP) = MAX(PPART_DRY(JLOOP)*XDETR_LUP/ZWK, PDETR(JLOOP))
ELSE
!No dry part, condensation reached (OTESTLCL)
PBUO_INTEG_DRY(JLOOP) = 0.
PENTR(JLOOP)=0.
PDETR(JLOOP)=0.
ENDIF
ENDDO
! 3 Wet part computation
! -----------------------
! 3.1 Integral buoyancy for cloudy part
! Compute theta_v of updraft at flux level KK+KKL
!MIX variables are used to avoid declaring new variables
!but we are dealing with updraft and not mixture
ZRCMIX(:)=PRC_UP(:)
ZRIMIX(:)=PRI_UP(:)
CALL TH_R_FROM_THL_RT_1D(HFRAC_ICE,ZFRAC_ICE,&
PPRE_PLUS_HALF,PTHL_UP,PRT_UP,&
ZTHMIX,ZRVMIX,ZRCMIX,ZRIMIX,&
ZRSATW, ZRSATI)
ZTHV_UP_F2(:) = ZTHMIX(:)*(1.+ZRVORD*ZRVMIX(:))/(1.+PRT_UP(:))
! Integral buoyancy for cloudy part
DO JLOOP=1,SIZE(OTEST)
IF(OTEST(JLOOP) .AND. PPART_DRY(JLOOP)<1.) THEN
!Gradient of Theta V updraft over the cloudy part, assuming that thetaV updraft don't change
!between flux level KK and bottom of cloudy part
ZCOTHVU=(ZTHV_UP_F2(JLOOP)-PTHV_UP(JLOOP))/((PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))*(1-PPART_DRY(JLOOP)))
!Computation in two parts to use change of gradient of theta v of environment
!Between bottom of cloudy part (if under mass level) and mass level KK
ZDZ=MAX(0., 0.5*(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))-ZDZ_STOP(JLOOP))
PBUO_INTEG_CLD(JLOOP) = ZG_O_THVREF(JLOOP)*ZDZ*&
(0.5*( ZCOTHVU - ZCOEFF_MINUS_HALF(JLOOP))*ZDZ &
- (PTHVM(JLOOP,KK)-ZDZ*ZCOEFF_MINUS_HALF(JLOOP)) + PTHV_UP(JLOOP) )
!Between max(mass level, bottom of cloudy part) and flux level KK+KKL
ZDZ=(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))-MAX(ZDZ_STOP(JLOOP),0.5*(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK)))
PBUO_INTEG_CLD(JLOOP) = PBUO_INTEG_CLD(JLOOP)+ZG_O_THVREF(JLOOP)*ZDZ*&
(0.5*( ZCOTHVU - ZCOEFF_PLUS_HALF(JLOOP))*ZDZ&
- (PTHVM(JLOOP,KK)+(0.5*((PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK)))-ZDZ)*ZCOEFF_PLUS_HALF(JLOOP)) +&
PTHV_UP(JLOOP) )
!No cloudy part
PBUO_INTEG_CLD(JLOOP)=0.
END IF
END DO
! 3.2 Critical mixed fraction for KK+KKL flux level (ZKIC_F2) and
! for bottom of cloudy part (ZKIC), then a mean for the cloudy part
! (put also in ZKIC)
!
! computation by estimating unknown
! T^mix r_c^mix and r_i^mix from enthalpy^mix and r_w^mix
! We determine the zero crossing of the linear curve
! evaluating the derivative using ZMIXF=0.1
ZKIC_INIT=0.1 ! starting value for critical mixed fraction for CLoudy Part
! Compute thetaV of environment at the bottom of cloudy part
! and cons then non cons. var. of mixture at the bottom of cloudy part
! JI computed to avoid KKL(KK-KKL) being < KKL*KKB
JI=KKL*MAX(KKL*(KK-KKL),KKL*KKB)
DO JLOOP=1,SIZE(OTEST)
IF(OTEST(JLOOP) .AND. PPART_DRY(JLOOP)>0.5) THEN
ZDZ=ZDZ_STOP(JLOOP)-0.5*(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))
ZTHV(JLOOP)= PTHVM(JLOOP,KK)+ZCOEFF_PLUS_HALF(JLOOP)*ZDZ
ZMIXTHL(JLOOP) = ZKIC_INIT * &
(PTHLM(JLOOP,KK)+ZDZ*(PTHLM(JLOOP,KK+KKL)-PTHLM(JLOOP,KK))/PDZZ(JLOOP,KK+KKL)) + &
(1. - ZKIC_INIT)*PTHL_UP(JLOOP)
ZMIXRT(JLOOP) = ZKIC_INIT * &
(PRTM(JLOOP,KK)+ZDZ*(PRTM(JLOOP,KK+KKL)-PRTM(JLOOP,KK))/PDZZ(JLOOP,KK+KKL)) + &
(1. - ZKIC_INIT)*PRT_UP(JLOOP)
ELSEIF(OTEST(JLOOP)) THEN
ZDZ=0.5*(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))-ZDZ_STOP(JLOOP)
ZTHV(JLOOP)= PTHVM(JLOOP,KK)-ZCOEFF_MINUS_HALF(JLOOP)*ZDZ
ZMIXTHL(JLOOP) = ZKIC_INIT * &
(PTHLM(JLOOP,KK)-ZDZ*(PTHLM(JLOOP,KK)-PTHLM(JLOOP,JI))/PDZZ(JLOOP,KK)) + &
(1. - ZKIC_INIT)*PTHL_UP(JLOOP)
ZMIXRT(JLOOP) = ZKIC_INIT * &
(PRTM(JLOOP,KK)-ZDZ*(PRTM(JLOOP,KK)-PRTM(JLOOP,JI))/PDZZ(JLOOP,KK)) + &
(1. - ZKIC_INIT)*PRT_UP(JLOOP)
ENDIF
ENDDO
CALL TH_R_FROM_THL_RT_1D(HFRAC_ICE,ZFRAC_ICE,&
ZPRE,ZMIXTHL,ZMIXRT,&
ZTHMIX,ZRVMIX,PRC_MIX,PRI_MIX,&
ZRSATW, ZRSATI)
ZTHVMIX(:) = ZTHMIX(:)*(1.+ZRVORD*ZRVMIX(:))/(1.+ZMIXRT(:))
! Compute cons then non cons. var. of mixture at the flux level KK+KKL with initial ZKIC
ZMIXTHL(:) = ZKIC_INIT * 0.5*(PTHLM(:,KK)+PTHLM(:,KK+KKL))+(1. - ZKIC_INIT)*PTHL_UP(:)
ZMIXRT(:) = ZKIC_INIT * 0.5*(PRTM(:,KK)+PRTM(:,KK+KKL))+(1. - ZKIC_INIT)*PRT_UP(:)
CALL TH_R_FROM_THL_RT_1D(HFRAC_ICE,ZFRAC_ICE,&
PPRE_PLUS_HALF,ZMIXTHL,ZMIXRT,&
ZTHMIX,ZRVMIX,PRC_MIX,PRI_MIX,&
ZRSATW, ZRSATI)
ZTHVMIX_F2(:) = ZTHMIX(:)*(1.+ZRVORD*ZRVMIX(:))/(1.+ZMIXRT(:))
!Computation of mean ZKIC over the cloudy part
DO JLOOP=1,SIZE(OTEST)
IF (OTEST(JLOOP)) THEN
! Compute ZKIC at the bottom of cloudy part
! Thetav_up at bottom is equal to Thetav_up at flux level KK
IF (ABS(PTHV_UP(JLOOP)-ZTHVMIX(JLOOP))<1.E-10) THEN
ZKIC(JLOOP)=1.
ELSE
ZKIC(JLOOP) = MAX(0.,PTHV_UP(JLOOP)-ZTHV(JLOOP))*ZKIC_INIT / &
(PTHV_UP(JLOOP)-ZTHVMIX(JLOOP))
END IF
! Compute ZKIC_F2 at flux level KK+KKL
IF (ABS(ZTHV_UP_F2(JLOOP)-ZTHVMIX_F2(JLOOP))<1.E-10) THEN
ZKIC_F2(JLOOP)=1.
ELSE
ZKIC_F2(JLOOP) = MAX(0.,ZTHV_UP_F2(JLOOP)-ZTHV_PLUS_HALF(JLOOP))*ZKIC_INIT / &
(ZTHV_UP_F2(JLOOP)-ZTHVMIX_F2(JLOOP))
END IF
!Mean ZKIC over the cloudy part
ZKIC(JLOOP)=MAX(MIN(0.5*(ZKIC(JLOOP)+ZKIC_F2(JLOOP)),1.),0.)
END IF
END DO
! 3.3 Integration of PDF
! According to Kain and Fritsch (1990), we replace delta Mt
! in eq. (7) and (8) using eq. (5). Here we compute the ratio
! of integrals without computing delta Me
!Constant PDF
!For this PDF, eq. (5) is delta Me=0.5*delta Mt
DO JLOOP=1,SIZE(OTEST)
IF(OTEST(JLOOP)) THEN
ZEPSI(JLOOP) = ZKIC(JLOOP)**2. !integration multiplied by 2
ZDELTA(JLOOP) = (1.-ZKIC(JLOOP))**2. !idem
ENDIF
ENDDO
!Triangular PDF
!Calculus must be verified before activating this part, but in this state,
!results on ARM case are almost identical
!For this PDF, eq. (5) is also delta Me=0.5*delta Mt
!WHERE(OTEST)
! !Integration multiplied by 2
! WHERE(ZKIC<0.5)
! ZEPSI(:)=8.*ZKIC(:)**3/3.
! ZDELTA(:)=1.-4.*ZKIC(:)**2+8.*ZKIC(:)**3/3.
! ELSEWHERE
! ZEPSI(:)=5./3.-4*ZKIC(:)**2+8.*ZKIC(:)**3/3.
! ZDELTA(:)=8.*(1.-ZKIC(:))**3/3.
! ENDWHERE
!ENDWHERE
! 3.4 Computation of PENTR and PDETR
DO JLOOP=1,SIZE(OTEST)
IF(OTEST(JLOOP)) THEN
ZEPSI_CLOUD=MIN(ZDELTA(JLOOP), ZEPSI(JLOOP))
PENTR_CLD(JLOOP) = (1.-PPART_DRY(JLOOP))*ZCOEFFMF_CLOUD*PRHODREF(JLOOP)*ZEPSI_CLOUD
PDETR_CLD(JLOOP) = (1.-PPART_DRY(JLOOP))*ZCOEFFMF_CLOUD*PRHODREF(JLOOP)*ZDELTA(JLOOP)
PENTR(JLOOP) = PENTR(JLOOP)+PENTR_CLD(JLOOP)
PDETR(JLOOP) = PDETR(JLOOP)+PDETR_CLD(JLOOP)
ELSE
PENTR_CLD(JLOOP) = 0.
PDETR_CLD(JLOOP) = 0.
ENDIF
ENDDO
IF (LHOOK) CALL DR_HOOK('COMPUTE_ENTR_DETR',1,ZHOOK_HANDLE)
END SUBROUTINE COMPUTE_ENTR_DETR
END MODULE MODE_COMPUTE_ENTR_DETR