Newer
Older
!MNH_LIC Copyright 1996-2022 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
!####################
MODULE MODE_ONE_WAY_n
!####################
use mode_msg
implicit none
private
public :: ONE_WAY_n
contains
! ####################################################################
SUBROUTINE ONE_WAY_n(KDAD,PTSTEP,KMI,KTCOUNT, &
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
KDXRATIO,KDYRATIO,KDTRATIO, &
HLBCX,HLBCY,KRIMX,KRIMY, &
KKLIN_LBXU,PCOEFLIN_LBXU,KKLIN_LBYU,PCOEFLIN_LBYU, &
KKLIN_LBXV,PCOEFLIN_LBXV,KKLIN_LBYV,PCOEFLIN_LBYV, &
KKLIN_LBXW,PCOEFLIN_LBXW,KKLIN_LBYW,PCOEFLIN_LBYW, &
KKLIN_LBXM,PCOEFLIN_LBXM,KKLIN_LBYM,PCOEFLIN_LBYM, &
OSTEADY_DMASS,HCLOUD,OUSECHAQ,OUSECHIC, &
PLBXUM,PLBYUM,PLBXVM,PLBYVM,PLBXWM,PLBYWM, &
PLBXTHM,PLBYTHM, &
PLBXTKEM,PLBYTKEM, &
PLBXRM,PLBYRM,PLBXSVM,PLBYSVM, &
PDRYMASST,PDRYMASSS, &
PLBXUS,PLBYUS,PLBXVS,PLBYVS,PLBXWS,PLBYWS, &
PLBXTHS,PLBYTHS, &
PLBXTKES,PLBYTKES, &
PLBXRS,PLBYRS,PLBXSVS,PLBYSVS )
! ####################################################################
!
!!**** *ONE_WAY_n* - Refreshing of a nested model Large Scale sources
!!
!! PURPOSE
!! -------
!! The purpose of ONE_WAY$n is to 'refresh' Large Scale sources
!! of all the prognostic variables of the current nested model when the
!! current time step is in phase with its outer (DAD) model $n.
!! It also computes the dry mass at time t and the corresponding source,
!! by integration of the dry density of outer model $n over the inner domain.
!
!
!!** METHOD
!! ------
!! The basic task consists in interpolating fields from outer model $n
!! to present inner model, using horizontal Bikhardt interpolation.
!! The dry density reads:
!! P
!! Rhod = --------------------------
!! Rd*Theta*PI*(1+rv*Rv/Rd)
!! The total dry mass is deduced from Rhod and the Jacobian (the integration
!! is performed on the inner points):
!!
!! Md = SUM rhod J
!! i,j,k
!! Caution: J is deduced from RHODJ and RHODREF depending on the system of
!! ------- equations (CEQNSYS) with:
!! RHODJ = RHODeff * J
!! and RHODeff = RHODREF if CEQNSYS = MAE or LHE
!! THVREF*(1+RVREF)
!! or RHODeff = RHODREF* --------------- if CEQNSYS = DUR
!! TH00
!!
!! EXTERNAL
!! --------
!!
!! Function VER_INTERP_LIN : performs the vertical interpolation
!!
!! Subroutine BIKHARDT : performs the horizontal interpolation
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAMETERS: JPHEXT,JPVEXT
!!
!! Module MODD_CST: XRD,XRV,XCPD,XP00,XTH00
!!
!! Module MODD_CONF: CEQNSYS
!!
!! Module MODD_FIELD$n : XUT,XVT,XWT,XRT,XTHT,XPABST
!!
!! Module MODD_REF$n : XRHODJ, XRVREF,XTHVREF, XRHODREF
!!
!! REFERENCE
!! ---------
!!
!! AUTHOR
!! ------
!! J. P. Lafore *Meteo-France*
!!
!! MODIFICATIONS
!! -------------
!! Original 22/10/96
!! J. P. Lafore 20/01/97 nesting procedure for DRYMASS
!! J. P. Lafore 21/10/97 DRYMASS correction to account for the
!! equations system (CEQNSYS)
!! J. Stein 22/12/97 use the LB fields for lbc
!! J. Stein 08/04/99 merge uvw_ls_nesting and scalar_ls_nesting
!! P. Jabouille 19/04/00 parallelisation (without use of LB comlib routines)
!! J.-P. Pinty 02/11/00 modify the LB*SVS for the C2R2 scheme
!! J.-P. Pinty 29/11/02 modify the LB*SVS for the C3R5 scheme
!! and add ICE2, ICE4, CELEC
!! O.Geoffroy 03/2006 Add KHKO scheme
!! 05/2006 Remove EPS
!! M. Leriche 11/2009 modify the LB*SVS for the aqueous phase chemistry
!! 07/2010 idem for ice phase chemical species
!! Bosseur & Filippi 07/2013 Adds Forefire
!! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
!! J.Escobar : 18/12/2015 : Correction of bug in bound in // for NHALO <>1
!! Modification 01/2016 (JP Pinty) Add LIMA

WAUTELET Philippe
committed
! P. Wautelet: 05/2016-04/2018: new data structures and calls for I/O
! P. Wautelet 10/04/2019: replace ABORT and STOP calls by Print_msg
! P. Wautelet 03/05/2019: restructuration of one_wayn and ini_one_wayn
! P. Wautelet 04/06/2020: correct call to Set_conc_lima + initialize ZCONCT
!------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
USE MODD_CH_MNHC_n, only: LUSECHAQ, LUSECHIC

RODIER Quentin
committed
USE MODD_CONF, only: CEQNSYS,CCONF
USE MODD_CST, only: XCPD, XP00, XRD, XRV, XTH00

WAUTELET Philippe
committed
USE MODD_DYN_n, ONLY: LOCEAN
USE MODD_FIELD_n, only: XPABST, XRT, XSVT, XUT, XVT, XWT, XTHT, XTKET
USE MODD_NESTING, only: NXOR_ALL, NXEND_ALL, NYOR_ALL, NYEND_ALL
USE MODD_NSV, only: NSV_A, NSV_C1R3BEG_A, NSV_C1R3_A, NSV_C2R2BEG_A, NSV_C2R2_A, NSV_CHEMBEG_A, NSV_CHEMEND_A, &
NSV_CHEM_A, NSV_CHICBEG_A, NSV_CHIC_A, NSV_DSTBEG_A, NSV_DST_A, &
NSV_ELECBEG_A, NSV_ELEC_A, NSV_LGBEG_A, NSV_LG_A, NSV_LIMA_A, NSV_LIMA_BEG_A, &
NSV_PPBEG_A, NSV_PP_A, &
NSV_SLTBEG_A, NSV_SLT_A, NSV_USER_A, &
NSV_AERBEG_A, NSV_AER_A, NSV_CSBEG_A, NSV_CS_A
#ifdef MNH_FOREFIRE
USE MODD_NSV, only: NSV_FF_A, NSV_FFBEG_A
#endif
USE MODD_PARAMETERS, only: JPHEXT, JPVEXT
USE MODD_PARAM_n, only: CCLOUD

WAUTELET Philippe
committed
USE MODD_REF, ONLY: LCOUPLES
USE MODD_REF_n, only: XRHODJ, XRHODREF, XRVREF, XTHVREF
!
use mode_bikhardt

WAUTELET Philippe
committed
use mode_ll, only: GET_CHILD_DIM_ll, GO_TOMODEL_ll, &
LS_FORCING_ll, LWEST_ll, LEAST_ll, LNORTH_ll, LSOUTH_ll, &
SET_LSFIELD_1WAY_ll, UNSET_LSFIELD_1WAY_ll
USE MODE_MODELN_HANDLER, only: GOTO_MODEL
use mode_sum_ll, only: SUM3D_ll

WAUTELET Philippe
committed
use mode_tools_ll, only: GET_DIM_EXT_ll
USE MODI_SET_CONC_ICE_C1R3
USE MODI_SET_CONC_RAIN_C2R2
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
!
INTEGER, INTENT(IN) :: KDAD ! Number of the DAD model
REAL, INTENT(IN) :: PTSTEP ! Time step
INTEGER, INTENT(IN) :: KMI ! model number
INTEGER, INTENT(IN) :: KTCOUNT ! Temporal loop COUNTer
! (=1 at the segment beginning)
! interpolation coefficients
REAL, DIMENSION(:), INTENT(IN) :: PBMX1,PBMX2,PBMX3,PBMX4 ! Mass points in X-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBMY1,PBMY2,PBMY3,PBMY4 ! Mass points in Y-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBFX1,PBFX2,PBFX3,PBFX4 ! Flux points in X-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBFY1,PBFY2,PBFY3,PBFY4 ! Flux points in Y-direc.
!
INTEGER, INTENT(IN) :: KDXRATIO ! x and y-direction resolution RATIO
INTEGER, INTENT(IN) :: KDYRATIO ! between inner model and outer model
INTEGER, INTENT(IN) :: KDTRATIO ! Time step resolution RATIO
CHARACTER (LEN=4), DIMENSION (2), INTENT(IN) :: HLBCX ! type of lateral
CHARACTER (LEN=4), DIMENSION (2), INTENT(IN) :: HLBCY ! boundary conditions
INTEGER, INTENT(IN) :: KRIMX,KRIMY ! size of the RIM area
! coefficients for the vertical interpolation of the LB fields
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXU,KKLIN_LBYU
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXU,PCOEFLIN_LBYU
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXV,KKLIN_LBYV
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXV,PCOEFLIN_LBYV
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXW,KKLIN_LBYW
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXW,PCOEFLIN_LBYW
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXM,KKLIN_LBYM
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXM,PCOEFLIN_LBYM
!
LOGICAL, INTENT(IN) :: OSTEADY_DMASS ! Md evolution logical switch
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Indicator of the cloud scheme
LOGICAL, INTENT(IN) :: OUSECHAQ ! logical for aqueous phase chemistry
LOGICAL, INTENT(IN) :: OUSECHIC ! logical for ice phase chemistry
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBXUM,PLBXVM,PLBXWM ! Large Scale fields at t-dt
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBYUM,PLBYVM,PLBYWM
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBXTHM ,PLBYTHM ! Large Scale fields at t-dt
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBXTKEM,PLBYTKEM ! Theta, TKE
REAL, DIMENSION(:,:,:,:),INTENT(IN) :: PLBXRM ,PLBYRM ! Moisture and SV
REAL, DIMENSION(:,:,:,:),INTENT(IN) :: PLBXSVM ,PLBYSVM ! in x and y-dir.
!
REAL, INTENT(INOUT) :: PDRYMASST ! Mass of dry air Md
REAL, INTENT(INOUT) :: PDRYMASSS ! Md source
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXUS,PLBXVS,PLBXWS ! Large Scale source terms
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBYUS,PLBYVS,PLBYWS
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXTHS ,PLBYTHS ! Large Scale fields sources
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXTKES,PLBYTKES ! Theta, TKE
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PLBXRS ,PLBYRS ! Moisture and SV
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PLBXSVS ,PLBYSVS ! in x and y-dir.
!
!
!* 0.2 declarations of local variables
!
REAL :: ZTIME ! Interpolation duration
INTEGER :: IIB,IIE,IJB,IJE,IIU,IJU
REAL :: ZBIGTSTEP ! time step of the dad model ($n)
REAL :: ZRV_O_RD ! = Rv / Rd
REAL :: ZRD_O_CPD ! = Rd / Cpd
REAL :: ZDRYMASST,ZDRYMASSM
!REAL, DIMENSION(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3)) :: ZJ,ZRHOD
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZJ,ZRHOD
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZWORK
!
INTEGER :: IRR,ISV_USER ! Number of moist and scalar variables
INTEGER :: JRR,JSV ! Loop index
!
! reduced array for the interpolation coefficients
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZCOEFLIN_LBXM_RED,ZCOEFLIN_LBYM_RED
INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: IKLIN_LBXM_RED,IKLIN_LBYM_RED
!
INTEGER :: IINFO_ll, IDIMX, IDIMY
!
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZTUT, ZTVT, ZTWT, ZTTHT, ZTTKET
REAL, DIMENSION(:,:,:,:), ALLOCATABLE ::ZTRT,ZTSVT
!
CHARACTER(LEN=4) :: ZINIT_TYPE
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZCONCT
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZCHEMT
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZCHEMTI
!
integer :: igrid

RODIER Quentin
committed
IF (LCOUPLES) THEN
PDRYMASST=0.
PDRYMASSS=0.
PLBXUS=0.
PLBXVS=0.
PLBXWS=0.
PLBXTHS=0.
PLBYTHS=0.
PLBXTKES=0.
PLBYTKES =0.
PLBXRS =0.
PLBYRS=0.
PLBXSVS =0.
PLBYSVS=0.
ELSE
!-------------------------------------------------------------------------------
!
!* 0. INITIALISATION
! --------------
CALL GOTO_MODEL(KDAD)
ALLOCATE(ZJ(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3)))
ALLOCATE(ZRHOD(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3)))
!
!!$CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
CALL GET_DIM_EXT_ll ('B',IIU,IJU)
IIB=1
IIE=IIU
IJB=1
IJE=IJU
ALLOCATE(ZWORK(IIB:IIE,IJB:IJE,SIZE(PLBXTHM,3))) ! can be smaller than child extended subdomain
! LS_FORCING routine can not correctly manage extra halo zone
! LB will be filled only with one layer halo zone for the moment
!
!
ZRV_O_RD = XRV / XRD
ZRD_O_CPD = XRD / XCPD
!
ZTIME = PTSTEP * (1+KDTRATIO)
ZJ(:,:,:) =0.
ZRHOD(:,:,:)=0.
!
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
ISV_USER=MIN(NSV_USER_A(KDAD),NSV_USER_A(KMI))
!
IF (LWEST_ll() .AND. LEAST_ll()) THEN
ALLOCATE (ZCOEFLIN_LBXM_RED(2,SIZE(PLBXTHM,2),SIZE(PLBXTHM,3)))
ALLOCATE ( IKLIN_LBXM_RED(2,SIZE(PLBXTHM,2),SIZE(PLBXTHM,3)))
ELSE
ALLOCATE (ZCOEFLIN_LBXM_RED(1,SIZE(PLBXTHM,2),SIZE(PLBXTHM,3)))
ALLOCATE ( IKLIN_LBXM_RED(1,SIZE(PLBXTHM,2),SIZE(PLBXTHM,3)))
ENDIF
!
IF (LSOUTH_ll() .AND. LNORTH_ll()) THEN
ALLOCATE (ZCOEFLIN_LBYM_RED(SIZE(PLBYTHM,1),2,SIZE(PLBYTHM,3)))
ALLOCATE ( IKLIN_LBYM_RED(SIZE(PLBYTHM,1),2,SIZE(PLBYTHM,3)))
ELSE
ALLOCATE (ZCOEFLIN_LBYM_RED(SIZE(PLBYTHM,1),1,SIZE(PLBYTHM,3)))
ALLOCATE ( IKLIN_LBYM_RED(SIZE(PLBYTHM,1),1,SIZE(PLBYTHM,3)))
ENDIF
!
IF(LWEST_ll()) THEN
ZCOEFLIN_LBXM_RED(1,:,:)=PCOEFLIN_LBXM(1,:,:)
IKLIN_LBXM_RED(1,:,:)=KKLIN_LBXM(1,:,:)
ENDIF
IF(LEAST_ll()) THEN
ZCOEFLIN_LBXM_RED(SIZE(ZCOEFLIN_LBXM_RED,1),:,:) = &
PCOEFLIN_LBXM(SIZE(PCOEFLIN_LBXM,1),:,:)
IKLIN_LBXM_RED(SIZE(IKLIN_LBXM_RED,1),:,:) = &
KKLIN_LBXM(SIZE(IKLIN_LBXM_RED,1),:,:)
ENDIF
IF ( SIZE(PLBYTHM,2) /= 0 ) THEN
IF(LSOUTH_ll()) THEN
ZCOEFLIN_LBYM_RED(:,1,:)=PCOEFLIN_LBYM(:,1,:)
IKLIN_LBYM_RED(:,1,:)=KKLIN_LBYM(:,1,:)
ENDIF
IF(LNORTH_ll()) THEN
ZCOEFLIN_LBYM_RED(:,SIZE(ZCOEFLIN_LBYM_RED,2),:) = &
PCOEFLIN_LBYM(:,SIZE(PCOEFLIN_LBYM,2),:)
IKLIN_LBYM_RED(:,SIZE(IKLIN_LBYM_RED,2),:) = &
KKLIN_LBYM(:,SIZE(IKLIN_LBYM_RED,2),:)
ENDIF
END IF
!
!
!
!* 1 GATHER LB FIELD FOR THE CHILD MODEL KMI
!
! 1.1 Must be on the father model to call get_child_dim
!
CALL GO_TOMODEL_ll(KDAD, IINFO_ll)
CALL GET_CHILD_DIM_ll(KMI, IDIMX, IDIMY, IINFO_ll)
!
!
!-------------------------------------------------------------------------------
!
ALLOCATE(ZTUT(IDIMX,IDIMY,SIZE(XUT,3)))
ZTUT(:,:,:)=0
ALLOCATE(ZTVT(IDIMX,IDIMY,SIZE(XVT,3)))
ZTVT(:,:,:)=0
ALLOCATE(ZTWT(IDIMX,IDIMY,SIZE(XWT,3)))
ZTWT(:,:,:)=0
ALLOCATE(ZTTHT(IDIMX,IDIMY,SIZE(XTHT,3)))
ZTTHT(:,:,:)=0
IF (SIZE(XTKET) /= 0) ALLOCATE(ZTTKET(IDIMX,IDIMY,SIZE(XTKET,3)))
IF (IRR /= 0) ALLOCATE(ZTRT(IDIMX,IDIMY,SIZE(XRT,3),IRR))
IF (NSV_A(KMI)/= 0) ALLOCATE(ZTSVT(IDIMX,IDIMY,SIZE(XSVT,3),NSV_A(KMI)))
!
! 1.3 Specify the ls "source" fields and receiver fields
!
CALL SET_LSFIELD_1WAY_ll(XUT,ZTUT,KMI)
CALL SET_LSFIELD_1WAY_ll(XVT,ZTVT,KMI)
CALL SET_LSFIELD_1WAY_ll(XWT,ZTWT,KMI)
CALL SET_LSFIELD_1WAY_ll(XTHT,ZTTHT,KMI)
IF (ALLOCATED(ZTTKET)) CALL SET_LSFIELD_1WAY_ll(XTKET,ZTTKET,KMI)
!
DO JRR=1,IRR
CALL SET_LSFIELD_1WAY_ll(XRT(:,:,:,JRR),ZTRT(:,:,:,JRR),KMI)
ENDDO
!
IF (ALLOCATED(ZTSVT)) ZTSVT=0. ! to treat ISV_USER+1:NSV_USER_A(KMI) section
! USERs scalar variables
DO JSV=1,ISV_USER
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV),ZTSVT(:,:,:,JSV),KMI)
ENDDO
!
! Checking if it is necessary to compute the Nc and Nr
! concentrations to use the C2R2(or KHKO) microphysical scheme
! (FATHER does not use C2R2(or KHKO) and CHILD uses C2R2(or KHKO))
!
IF (CCLOUD/="NONE" .AND. CCLOUD/="C2R2" .AND. CCLOUD/="KHKO") THEN
ZINIT_TYPE="NONE"
ALLOCATE(ZCONCT(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),3))
IF (CCLOUD == "REVE") THEN
ELSE IF (CCLOUD == "KESS" ) THEN
ZINIT_TYPE = "INI2"
END IF
CALL SET_CONC_RAIN_C2R2(ZINIT_TYPE,XRHODREF,XRT,ZCONCT)
DO JSV=1,3
CALL SET_LSFIELD_1WAY_ll(ZCONCT(:,:,:,JSV),&
&ZTSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KMI)),KMI)
ENDDO
ELSE
DO JSV=1,NSV_C2R2_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KMI)),KMI)
END DO
ENDIF
ENDIF
!
! Checking also if it is necessary to compute the Ni
! concentrations to use the C3R5 microphysical scheme
! (FATHER does not use C3R5 and CHILD uses C3R5)
!
IF (HCLOUD=="C3R5") THEN
IF ( CCLOUD(1:3)=="ICE" ) THEN
ZINIT_TYPE="NONE"
ALLOCATE(ZCONCT(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),5))
IF (CCLOUD == "REVE") THEN
ELSE IF (CCLOUD == "KESS" ) THEN
ZINIT_TYPE = "INI2"
END IF
CALL SET_CONC_RAIN_C2R2(ZINIT_TYPE,XRHODREF,XRT,ZCONCT)
DO JSV=1,3
CALL SET_LSFIELD_1WAY_ll(ZCONCT(:,:,:,JSV),&
&ZTSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KMI)),KMI)
ENDDO
ZINIT_TYPE="INI3"
CALL SET_CONC_ICE_C1R3 (XRHODREF,XRT,ZCONCT)
DO JSV=4,5
CALL SET_LSFIELD_1WAY_ll(ZCONCT(:,:,:,JSV),&
&ZTSVT(:,:,:,JSV-4+NSV_C1R3BEG_A(KMI)),KMI)
ENDDO
ELSE
DO JSV=1,NSV_C2R2_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KMI)),KMI)
END DO
DO JSV=1,NSV_C1R3_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_C1R3BEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_C1R3BEG_A(KMI)),KMI)
END DO
ENDIF
ENDIF
!
! LIMA Scheme
!
IF (HCLOUD=="LIMA" ) THEN
IF (CCLOUD/="LIMA") THEN
ALLOCATE(ZCONCT(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),NSV_LIMA_A(KMI)))
ZCONCT(:, :, :, :) = 0.
IF (CCLOUD == "REVE") THEN
ZINIT_TYPE = "INI1"
ELSE
ZINIT_TYPE = "NONE"
END IF

WAUTELET Philippe
committed
CALL SET_CONC_LIMA (KMI,ZINIT_TYPE,XRHODREF,XRT,ZCONCT)
DO JSV=1,NSV_LIMA_A(KMI)
CALL SET_LSFIELD_1WAY_ll(ZCONCT(:,:,:,JSV),&
&ZTSVT(:,:,:,JSV-1+NSV_LIMA_BEG_A(KMI)),KMI)
ENDDO
ELSE
IF ( NSV_LIMA_A(KMI) /= NSV_LIMA_A(KDAD) ) &
call Print_msg( NVERB_FATAL, 'GEN', 'ONE_WAY_n', 'NSV_LIMA_A(KMI)/=NSV_LIMA_A(KDAD)' )
DO JSV=1,NSV_LIMA_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_LIMA_BEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_LIMA_BEG_A(KMI)),KMI)
END DO
END IF
ENDIF
!
! electrical variables
!
DO JSV=1,MIN(NSV_ELEC_A(KMI),NSV_ELEC_A(KDAD))
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_ELECBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_ELECBEG_A(KMI)),KMI)
END DO
!
! chemical Scalar variables
! Checking if it is necessary to compute the Caq
! concentrations to use the aqueous phase chemistry
! (FATHER does not use aqueous phase chemistry and CHILD uses it)
!
IF (OUSECHAQ) THEN
IF (.NOT.(LUSECHAQ)) THEN
ALLOCATE(ZCHEMT(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),&
NSV_CHEM_A(KMI)))
CALL SET_CHEMAQ_1WAY(XRHODREF,&
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
XSVT(:,:,:,NSV_CHEMBEG_A(KDAD):NSV_CHEMEND_A(KDAD)),ZCHEMT)
DO JSV=1,NSV_CHEM_A(KMI)
CALL SET_LSFIELD_1WAY_ll(ZCHEMT(:,:,:,JSV),&
&ZTSVT(:,:,:,JSV-1+NSV_CHEMBEG_A(KMI)),KMI)
ENDDO
ELSE
DO JSV=1,NSV_CHEM_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CHEMBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_CHEMBEG_A(KMI)),KMI)
END DO
ENDIF
ELSE
!
DO JSV=1,NSV_CHEM_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CHEMBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_CHEMBEG_A(KMI)),KMI)
END DO
ENDIF
!
! Checking if it is necessary to compute the Cic
! concentrations to use the ice phase chemistry
! (FATHER does not use ice phase chemistry and CHILD uses it)
!
IF (OUSECHIC) THEN
IF (.NOT.(LUSECHIC)) THEN
ALLOCATE(ZCHEMTI(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),&
NSV_CHIC_A(KMI)))
ZCHEMTI(:,:,:,:) = 0.
DO JSV=1,NSV_CHIC_A(KMI)
CALL SET_LSFIELD_1WAY_ll(ZCHEMTI(:,:,:,JSV),&
&ZTSVT(:,:,:,JSV-1+NSV_CHICBEG_A(KMI)),KMI)
ENDDO
ELSE
DO JSV=1,NSV_CHIC_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CHICBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_CHICBEG_A(KMI)),KMI)
END DO
ENDIF
ELSE
DO JSV=1,NSV_CHIC_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CHICBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_CHICBEG_A(KMI)),KMI)
END DO
ENDIF
!
!
! dust Scalar variables
!
DO JSV=1,NSV_DST_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_DSTBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_DSTBEG_A(KMI)),KMI)
END DO
!
!
! sea salt Scalar variables
!
DO JSV=1,NSV_SLT_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_SLTBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_SLTBEG_A(KMI)),KMI)
END DO
!
! Orilam aerosol Scalar variables
!
DO JSV=1,NSV_AER_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_AERBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_AERBEG_A(KMI)),KMI)
END DO
!
! lagrangian variables
!
DO JSV=1,NSV_LG_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_LGBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_LGBEG_A(KMI)),KMI)
END DO
!
! Passive pollutants
!
DO JSV=1,NSV_PP_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_PPBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_PPBEG_A(KMI)),KMI)
END DO
#ifdef MNH_FOREFIRE
!
! ForeFire variables
!
DO JSV=1,NSV_FF_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_FFBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_FFBEG_A(KMI)),KMI)
END DO
#endif
!
! Conditional sampling
!
DO JSV=1,NSV_CS_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CSBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_CSBEG_A(KMI)),KMI)
END DO
!
! Communication
!
CALL LS_FORCING_ll(KMI,IINFO_ll)
CALL GO_TOMODEL_ll(KMI,IINFO_ll)
CALL UNSET_LSFIELD_1WAY_ll()
IF (ALLOCATED(ZCONCT)) DEALLOCATE(ZCONCT)
IF (ALLOCATED(ZCHEMT)) DEALLOCATE(ZCHEMT)
IF (ALLOCATED(ZCHEMTI)) DEALLOCATE(ZCHEMTI)
!
!* 1. U FIELD TREATMENT
! -----------------
IGRID = 2
CALL Compute_LB( PLBXUM, PLBYUM, PLBXUS, PLBYUS, ZTUT, ZTIME, ZWORK, &
PBMX1, PBMX2, PBMX3, PBMX4, PBMY1, PBMY2, PBMY3, PBMY4, &
PBFX1, PBFX2, PBFX3, PBFX4, PBFY1, PBFY2, PBFY3, PBFY4, &
IIB, IIE, IJB, IJE, IGRID, &
IDIMX, IDIMY, KDXRATIO, KDYRATIO, HLBCX, HLBCY, KRIMX, KRIMY, &
KKLIN_LBXU, KKLIN_LBYU, &
PCOEFLIN_LBXU, PCOEFLIN_LBYU )
DEALLOCATE(ZTUT)
!
!-------------------------------------------------------------------------------
!
!* 2. V FIELD TREATMENT
! -----------------
IGRID = 3
CALL Compute_LB( PLBXVM, PLBYVM, PLBXVS, PLBYVS, ZTVT, ZTIME, ZWORK, &
PBMX1, PBMX2, PBMX3, PBMX4, PBMY1, PBMY2, PBMY3, PBMY4, &
PBFX1, PBFX2, PBFX3, PBFX4, PBFY1, PBFY2, PBFY3, PBFY4, &
IIB, IIE, IJB, IJE, IGRID, &
IDIMX, IDIMY, KDXRATIO, KDYRATIO, HLBCX, HLBCY, KRIMX, KRIMY, &
KKLIN_LBXV, KKLIN_LBYV, &
PCOEFLIN_LBXV, PCOEFLIN_LBYV )
DEALLOCATE(ZTVT)
!
!-------------------------------------------------------------------------------
!
!* 3. W FIELD TREATMENT
! -----------------
IGRID = 4
CALL Compute_LB( PLBXWM, PLBYWM, PLBXWS, PLBYWS, ZTWT, ZTIME, ZWORK, &
PBMX1, PBMX2, PBMX3, PBMX4, PBMY1, PBMY2, PBMY3, PBMY4, &
PBFX1, PBFX2, PBFX3, PBFX4, PBFY1, PBFY2, PBFY3, PBFY4, &
IIB, IIE, IJB, IJE, IGRID, &
IDIMX, IDIMY, KDXRATIO, KDYRATIO, HLBCX, HLBCY, KRIMX, KRIMY, &
KKLIN_LBXW, KKLIN_LBYW, &
PCOEFLIN_LBXW, PCOEFLIN_LBYW )
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
DEALLOCATE(ZTWT)
!
!
!-------------------------------------------------------------------------------
!
!* 4. COMPUTE LARGE SCALE DRY MASS Md SOURCE
! --------------------------------------
CALL GO_TOMODEL_ll(KDAD, IINFO_ll)
!
IF(OSTEADY_DMASS) PDRYMASSS = 0.
!
IF(.NOT. OSTEADY_DMASS) THEN
!
!* 4.0 inner model mask preparation relative to the outer model
!
!
!* 4.1 compute the jacobian J
!
IF ( CEQNSYS == 'DUR' ) THEN
IF ( SIZE(XRVREF,1) == 0 ) THEN
ZJ(:,:,:) = XRHODJ(:,:,:)*XTH00/(XRHODREF(:,:,:)*XTHVREF(:,:,:))
ELSE
ZJ(:,:,:) = XRHODJ(:,:,:)*XTH00/(XRHODREF(:,:,:)*XTHVREF(:,:,:) &
*(1.+XRVREF(:,:,:)))
END IF
ELSEIF ( CEQNSYS == 'MAE' .OR. CEQNSYS == 'LHE' ) THEN
ZJ(:,:,:) = XRHODJ(:,:,:)/XRHODREF(:,:,:)
END IF
!
!* 4.2 computing of dry density at t
!
IF(SIZE(XRT,4) == 0) THEN
! dry air case
! ------------
ZRHOD(:,:,:) = XPABST(:,:,:)/(XPABST(:,:,:)/XP00)**ZRD_O_CPD &
/(XRD*XTHT(:,:,:))
ELSE ! moist air case
! --------------
ZRHOD(:,:,:) = XPABST(:,:,:)/(XPABST(:,:,:)/XP00)**ZRD_O_CPD &
/(XRD*XTHT(:,:,:)*(1.+ZRV_O_RD*XRT(:,:,:,1)))
ENDIF
!
!* 4.3 computing of the dry mass at t
!
!
ZDRYMASST = SUM3D_ll (ZJ(:,:,:)*ZRHOD(:,:,:),IINFO_ll,NXOR_ALL(KMI)+JPHEXT,NYOR_ALL(KMI)+JPHEXT, &
1+JPVEXT,NXEND_ALL(KMI)-JPHEXT,NYEND_ALL(KMI)-JPHEXT,SIZE(XRHODJ,3)-JPVEXT)
!
!
!* 4.4 normal processing (not at the segment beginning)
!
IF( KTCOUNT /= 1 ) THEN
ZBIGTSTEP = PTSTEP*KDTRATIO ! time step of the dad model
ZDRYMASSM = PDRYMASST - PDRYMASSS*ZBIGTSTEP ! backward integration over this time step
PDRYMASST = ZDRYMASST
PDRYMASSS = (PDRYMASST - ZDRYMASSM) / ZBIGTSTEP
ELSE
!
!* 4.5 segment beginning (we have first to recover the dry mass at T-DT)
!

RODIER Quentin
committed
PDRYMASST = ZDRYMASST
IF ( CCONF /= 'RESTA' ) PDRYMASSS = 0.
ENDIF
!
END IF
DEALLOCATE(ZJ,ZRHOD)
!
CALL GO_TOMODEL_ll(KMI, IINFO_ll)
!
!-------------------------------------------------------------------------------
!
!* 5. COMPUTE LARGE SCALE SOURCES FOR POTENTIAL TEMPERATURE
! -----------------------------------------------------
!
!
IGRID = 1
CALL Compute_LB( PLBXTHM, PLBYTHM, PLBXTHS, PLBYTHS, ZTTHT, ZTIME, ZWORK, &
PBMX1, PBMX2, PBMX3, PBMX4, PBMY1, PBMY2, PBMY3, PBMY4, &
PBFX1, PBFX2, PBFX3, PBFX4, PBFY1, PBFY2, PBFY3, PBFY4, &
IIB, IIE, IJB, IJE, IGRID, &
IDIMX, IDIMY, KDXRATIO, KDYRATIO, HLBCX, HLBCY, KRIMX, KRIMY, &
KKLIN_LBXM, KKLIN_LBYM, &
PCOEFLIN_LBXM, PCOEFLIN_LBYM, &
PTH00 = XTH00, &
KKLIN_LBX_RED = IKLIN_LBXM_RED, KKLIN_LBY_RED = IKLIN_LBYM_RED, &
PCOEFLIN_LBX_RED = ZCOEFLIN_LBXM_RED, PCOEFLIN_LBY_RED = ZCOEFLIN_LBYM_RED )
DEALLOCATE(ZTTHT)
!
!
!-------------------------------------------------------------------------------
!
!* 6. COMPUTE LARGE SCALE SOURCES FOR TURBULENT KINETIC ENERGY
! --------------------------------------------------------
!
IF (SIZE(XTKET,3) == 0 .OR. SIZE(PLBXTKEM,3) == 0) THEN
PLBXTKES(:,:,:) = 0. ! turbulence not activated
PLBYTKES(:,:,:) = 0.
ELSE
IGRID = 1
CALL Compute_LB( PLBXTKEM, PLBYTKEM, PLBXTKES, PLBYTKES, ZTTKET, ZTIME, ZWORK, &
PBMX1, PBMX2, PBMX3, PBMX4, PBMY1, PBMY2, PBMY3, PBMY4, &
PBFX1, PBFX2, PBFX3, PBFX4, PBFY1, PBFY2, PBFY3, PBFY4, &
IIB, IIE, IJB, IJE, IGRID, &
IDIMX, IDIMY, KDXRATIO, KDYRATIO, HLBCX, HLBCY, KRIMX, KRIMY, &
KKLIN_LBXM, KKLIN_LBYM, &
PCOEFLIN_LBXM, PCOEFLIN_LBYM, &
KKLIN_LBX_RED = IKLIN_LBXM_RED, KKLIN_LBY_RED = IKLIN_LBYM_RED, &
PCOEFLIN_LBX_RED = ZCOEFLIN_LBXM_RED, PCOEFLIN_LBY_RED = ZCOEFLIN_LBYM_RED )
DEALLOCATE(ZTTKET)
END IF
!
!-------------------------------------------------------------------------------
!
!* 7. COMPUTE LARGE SCALE SOURCES FOR MOIST VARIABLES
! -----------------------------------------------
!
IF (IRR == 0) THEN
PLBXRS(:,:,:,:) = 0. ! water cycle not activated
PLBYRS(:,:,:,:) = 0.
ELSE
DO JRR = 1,IRR
IGRID = 1
CALL Compute_LB( PLBXRM(:,:,:,JRR), PLBYRM(:,:,:,JRR), PLBXRS(:,:,:,JRR), PLBYRS(:,:,:,JRR), &
ZTRT(:,:,:,JRR), ZTIME, ZWORK, &
PBMX1, PBMX2, PBMX3, PBMX4, PBMY1, PBMY2, PBMY3, PBMY4, &
PBFX1, PBFX2, PBFX3, PBFX4, PBFY1, PBFY2, PBFY3, PBFY4, &
IIB, IIE, IJB, IJE, IGRID, &
IDIMX, IDIMY, KDXRATIO, KDYRATIO, HLBCX, HLBCY, KRIMX, KRIMY, &
KKLIN_LBXM, KKLIN_LBYM, &
PCOEFLIN_LBXM, PCOEFLIN_LBYM, &
KKLIN_LBX_RED = IKLIN_LBXM_RED, KKLIN_LBY_RED = IKLIN_LBYM_RED, &
PCOEFLIN_LBX_RED = ZCOEFLIN_LBXM_RED, PCOEFLIN_LBY_RED = ZCOEFLIN_LBYM_RED )
END DO
DEALLOCATE(ZTRT)
!
IF ( SIZE(PLBXRS,1) /= 0 ) PLBXRS(:,:,:,IRR+1:SIZE(PLBXRS,4)) = 0.
IF ( SIZE(PLBYRS,1) /= 0 ) PLBYRS(:,:,:,IRR+1:SIZE(PLBYRS,4)) = 0.
!
END IF
!
!-------------------------------------------------------------------------------
!
!* 8. COMPUTE LARGE SCALE SOURCES FOR SCALAR VARIABLES
! ------------------------------------------------
!
IF (NSV_A(KMI) > 0) THEN
DO JSV = 1,NSV_A(KMI)
IGRID = 1
CALL Compute_LB( PLBXSVM(:,:,:,JSV), PLBYSVM(:,:,:,JSV), PLBXSVS(:,:,:,JSV), PLBYSVS(:,:,:,JSV), &
ZTSVT(:,:,:,JSV), ZTIME, ZWORK, &
PBMX1, PBMX2, PBMX3, PBMX4, PBMY1, PBMY2, PBMY3, PBMY4, &
PBFX1, PBFX2, PBFX3, PBFX4, PBFY1, PBFY2, PBFY3, PBFY4, &
IIB, IIE, IJB, IJE, IGRID, &
IDIMX, IDIMY, KDXRATIO, KDYRATIO, HLBCX, HLBCY, KRIMX, KRIMY, &
KKLIN_LBXM, KKLIN_LBYM, &
PCOEFLIN_LBXM, PCOEFLIN_LBYM, &
KKLIN_LBX_RED = IKLIN_LBXM_RED, KKLIN_LBY_RED = IKLIN_LBYM_RED, &
PCOEFLIN_LBX_RED = ZCOEFLIN_LBXM_RED, PCOEFLIN_LBY_RED = ZCOEFLIN_LBYM_RED )
END DO
DEALLOCATE(ZTSVT)
ELSE
PLBXSVS(:,:,:,:) = 0.
PLBYSVS(:,:,:,:) = 0.
END IF
!
DEALLOCATE(ZWORK)
DEALLOCATE(ZCOEFLIN_LBXM_RED,ZCOEFLIN_LBYM_RED,IKLIN_LBXM_RED,IKLIN_LBYM_RED)
!
!------------------------------------------------------------------------------

WAUTELET Philippe
committed
ENDIF ! END LCOUPLES coupling

RODIER Quentin
committed
!
END SUBROUTINE ONE_WAY_n
!#################################################################################
SUBROUTINE Compute_LB(PLBXM,PLBYM,PLBX,PLBY,PTFIELD,PTIME,PWORK, &
PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
KIB,KIE,KJB,KJE, KGRID, &
KDIMX,KDIMY,KDXRATIO,KDYRATIO,HLBCX,HLBCY,KRIMX,KRIMY, &
KKLIN_LBX,KKLIN_LBY, &
PCOEFLIN_LBX,PCOEFLIN_LBY, &
PTH00, &
KKLIN_LBX_RED,KKLIN_LBY_RED, &
PCOEFLIN_LBX_RED,PCOEFLIN_LBY_RED )
!#################################################################################
use MODE_INI_ONE_WAY_n, only: Compute_ini_LB
IMPLICIT NONE
!* 0.1 declarations of arguments
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBXM,PLBYM ! Large-scale field at t-dt
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBX,PLBY ! source term
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTFIELD ! ls forcing array
REAL, INTENT(IN) :: PTIME ! Interpolation duration
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PWORK
! interpolation coefficients
REAL, DIMENSION(:), INTENT(IN) :: PBMX1,PBMX2,PBMX3,PBMX4 ! Mass points in X-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBMY1,PBMY2,PBMY3,PBMY4 ! Mass points in Y-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBFX1,PBFX2,PBFX3,PBFX4 ! Flux points in X-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBFY1,PBFY2,PBFY3,PBFY4 ! Flux points in Y-direc.
INTEGER, INTENT(IN) :: KIB,KIE,KJB,KJE
INTEGER, INTENT(IN) :: KGRID ! code of grid point
INTEGER, INTENT(IN) :: KDIMX, KDIMY
INTEGER, INTENT(IN) :: KDXRATIO ! x and y-direction resolution RATIO
INTEGER, INTENT(IN) :: KDYRATIO ! between inner model and outer model
CHARACTER (LEN=4), DIMENSION (2), INTENT(IN) :: HLBCX ! type of lateral
CHARACTER (LEN=4), DIMENSION (2), INTENT(IN) :: HLBCY ! boundary conditions
INTEGER, INTENT(IN) :: KRIMX,KRIMY ! size of the RIM area
INTEGER, DIMENSION(:,:,:), INTENT(IN) :: KKLIN_LBX,KKLIN_LBY
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCOEFLIN_LBX,PCOEFLIN_LBY
REAL, OPTIONAL, INTENT(IN) :: PTH00 ! reference temperature
INTEGER, DIMENSION(:,:,:), optional, INTENT(IN) :: KKLIN_LBX_RED,KKLIN_LBY_RED
REAL, DIMENSION(:,:,:), optional, INTENT(in) :: PCOEFLIN_LBX_RED,PCOEFLIN_LBY_RED
CALL Compute_ini_LB( PLBX, PLBY, PTFIELD, PWORK, &
PBMX1, PBMX2, PBMX3, PBMX4, PBMY1, PBMY2, PBMY3, PBMY4, &
PBFX1, PBFX2, PBFX3, PBFX4, PBFY1, PBFY2, PBFY3, PBFY4, &
KIB, KIE, KJB, KJE, KGRID, &
KDIMX, KDIMY, KDXRATIO, KDYRATIO, HLBCX, HLBCY, KRIMX, KRIMY, &
KKLIN_LBX, KKLIN_LBY, &
PCOEFLIN_LBX, PCOEFLIN_LBY, &
PTH00 = PTH00, &
KKLIN_LBX_RED = KKLIN_LBX_RED, KKLIN_LBY_RED = KKLIN_LBY_RED, &
PCOEFLIN_LBX_RED = PCOEFLIN_LBX_RED, PCOEFLIN_LBY_RED = PCOEFLIN_LBY_RED )
PLBX(:,:,:) = (PLBX(:,:,:) - PLBXM(:,:,:)) / PTIME
PLBY(:,:,:) = (PLBY(:,:,:) - PLBYM(:,:,:)) / PTIME
end SUBROUTINE Compute_LB
end MODULE MODE_ONE_WAY_n