Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
!=== COPYRIGHT AND LICENSE STATEMENT ===
!
! This file is part of the TensorProductMultigrid code.
!
! (c) The copyright relating to this work is owned jointly by the
! Crown, Met Office and NERC [2014]. However, it has been created
! with the help of the GungHo Consortium, whose members are identified
! at https://puma.nerc.ac.uk/trac/GungHo/wiki .
!
! Main Developer: Eike Mueller
!
! TensorProductMultigrid is free software: you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public License as
! published by the Free Software Foundation, either version 3 of the
! License, or (at your option) any later version.
!
! TensorProductMultigrid is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU Lesser General Public License for more details.
!
! You should have received a copy of the GNU Lesser General Public License
! along with TensorProductMultigrid (see files COPYING and COPYING.LESSER).
! If not, see <http://www.gnu.org/licenses/>.
!
!=== COPYRIGHT AND LICENSE STATEMENT ===
!==================================================================
!
! MPI communication routines for multigrid code
!
! Eike Mueller, University of Bath, Feb 2012
!
!==================================================================
module communication
use messages
use datatypes

Juan Escobar
committed
#ifndef MNH
use mpi
#else
use modd_mpif

Juan Escobar
committed
#endif

ESCOBAR MUNOZ Juan
committed
use mode_mnh_allocate_mg_halo
implicit none
public::comm_preinitialise
public::comm_initialise
public::comm_finalise
public::scalarprod

Juan Escobar
committed
public::print_scalaprod2

Juan Escobar
committed
public::boundary_mnh
public::haloswap
public::ihaloswap
public::collect
public::distribute
public::i_am_master_mpi
public::master_rank
public::pproc
public::MPI_COMM_HORIZ
public::comm_parameters
public::comm_measuretime
! Number of processors
! n_proc = 2^(2*pproc), with integer pproc
integer :: pproc
! Rank of master process
integer, parameter :: master_rank = 0
! Am I the master process?
logical :: i_am_master_mpi
integer, parameter :: dim = 3 ! Dimension
integer, parameter :: dim_horiz = 2 ! Horizontal dimension
integer :: MPI_COMM_HORIZ ! Communicator with horizontal partitioning
private
! Data types for halo exchange in both x- and y-direction
integer, dimension(:,:,:), allocatable :: halo_type

ESCOBAR MUNOZ Juan
committed
! Array for Halo Exchange <-> GPU copy/managed
type type_halo_T
real, dimension(:,:,:), pointer, contiguous :: haloTin,haloTout
end type type_halo_T
! MPI vector data types
! Halo for data exchange in north-south direction
integer, allocatable, dimension(:,:) :: halo_ns

Juan Escobar
committed
integer, allocatable, dimension(:,:) :: halo_nst

ESCOBAR MUNOZ Juan
committed
type(type_halo_T), allocatable, dimension(:,:) :: tab_halo_nt
type(type_halo_T), allocatable, dimension(:,:) :: tab_halo_st

Juan Escobar
committed
integer, allocatable, dimension(:,:) :: halo_wet

ESCOBAR MUNOZ Juan
committed
type(type_halo_T), allocatable, dimension(:,:) :: tab_halo_wt
type(type_halo_T), allocatable, dimension(:,:) :: tab_halo_et
! Vector data type for interior of field a(level,m)
integer, allocatable, dimension(:,:) :: interior

ESCOBAR MUNOZ Juan
committed
integer, allocatable, dimension(:,:) :: interiorT
type(type_halo_T), allocatable, dimension(:,:) :: tab_interiorT_ne,tab_interiorT_sw,tab_interiorT_se
! Vector data type for one quarter of interior of field
! at level a(level,m). This has the same size (and can be
! used for communications with) the interior of a(level,m+1)
integer, allocatable, dimension(:,:) :: sub_interior

ESCOBAR MUNOZ Juan
committed
integer, allocatable, dimension(:,:) :: sub_interiorT
type(type_halo_T), allocatable, dimension(:,:) :: tab_sub_interiorT_ne,tab_sub_interiorT_sw,tab_sub_interiorT_se
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
! Timer for halo swaps
type(time), allocatable, dimension(:,:) :: t_haloswap
! Timer for collect and distribute
type(time), allocatable, dimension(:) :: t_collect
type(time), allocatable, dimension(:) :: t_distribute
! Parallelisation parameters
! Measure communication times?
logical :: comm_measuretime
! Parallel communication parameters
type comm_parameters
! Size of halos
integer :: halo_size
end type comm_parameters
type(comm_parameters) :: comm_param
! Data layout
! ===========
!
! The number of processes has to be of the form nproc = 2^(2*pproc) to
! ensure that data can be distributed between processes.
! The processes are arranged in a (2^pproc) x (2^pproc) cartesian grid
! in the horizontal plane (i.e. vertical columns are always local to one
! process), which is implemented via the communicator MPI_COMM_HORIZ.
! This MPI_cart_rank() and MPI_cart_shift() can then be used to
! easily identify neighbouring processes.
! The number of data grid cells in each direction has to be a multiply
! of 2**(L-1) where L is the number of levels (including the coarse
! and fine level), with the coarse level corresponding to level=1.
! Also define L_split as the level where we start to pull together
! data. For levels > L_split each position in the cartesian grid is
! included in the work, below this only a subset of processes is
! used.
!
! Each grid a(level,m) is identified by two numbers:
! (1) The multigrid level it belongs to (level)
! (2) The number of active processes that operate on it (2^(2*m)).
!
! For level > L_split, m=procp. For L_split we store a(L_split,pproc) and
! a(L_split,pproc-1), and only processes with even coordinates in both
! horizontal directions use this grid.
! Below that level, store a(L_split-1,pproc-1) and a(L_split-1,pproc-2),
! where only processes for which both horiontal coordinates are
! multiples of four use the latter. This is continued until only on
! process is left.
!
!
! level
! L a(L,pproc)
! L-1 a(L-1,pproc)
! ...
! L_split a(L_split,pproc) a(L_split ,pproc-1)
! L_split-1 a(L_split-1,pproc-1) a(L_split-1,pproc-2)
!
! ... a(3,1)
! a(2,1)
! a(1,1)
!
! When moving from left to right in the above graph the total number of
! grid cells does not change, but the number of data points per process
! increases by a factor of 4.
!
! Parallel operations
! ===================
!
! (*) Halo exchange. Update halo with data from neighbouring
! processors in cartesian grid on current (level,m)
! (*) Collect data on all processes at (level,m) on those
! processes that are still active on (level,m-1).
! (*) Distribute data at (level,m-1) and duplicate on all processes
! that are active at (level,m).
!
! Note that in the cartesian processor grid the first coordinate
! is the North-South (y-) direction, the second coordinate is the
! East-West (x-) direction, i.e. the layout is this:
!
! p_0 (0,0) p_1 (0,1) p_2 (0,2) p_3 (0,3)
!
! p_4 (1,0) p_5 (1,1) p_6 (1,2) p_7 (1,3)
!
! p_8 (2,0) p_9 (2,1) p_10 (2,2) p_11 (2,3)
!
! [...]
!
!
! Normal multigrid restriction and prolongation are used to
! move between levels with fixed m.
!
!
contains
!==================================================================
! Pre-initialise communication routines
!==================================================================
subroutine comm_preinitialise()
implicit none
integer :: nproc, ierr, rank
call mpi_comm_size(MPI_COMM_WORLD, nproc, ierr)
call mpi_comm_rank(MPI_COMM_WORLD, rank, ierr)
i_am_master_mpi = (rank == master_rank)
! Check that nproc = 2^(2*p)

ESCOBAR Juan
committed
!pproc = floor(log(1.0d0*nproc)/log(4.0d0))
pproc = nint(log(1.0d0*nproc)/log(4.0d0))
if ( (nproc - 4**pproc) .ne. 0) then

ESCOBAR Juan
committed
print*,"Number of processors has to be 2^(2*pproc) with integer nproc,pproc=",nproc,pproc
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
call fatalerror("Number of processors has to be 2^(2*pproc) with integer pproc.")
end if
if (i_am_master_mpi) then
write(STDOUT,'("PARALLEL RUN")')
write(STDOUT,'("Number of processors : 2^(2*pproc) = ",I10," with pproc = ",I6)') &
nproc, pproc
end if
! Create halo data types
end subroutine comm_preinitialise
!==================================================================
! Initialise communication routines
!==================================================================
subroutine comm_initialise(n_lev, & !} multigrid parameters
lev_split, & !}
grid_param, & ! Grid parameters
comm_param_in) ! Parallel communication
! parameters
implicit none
integer, intent(in) :: n_lev
integer, intent(in) :: lev_split
type(grid_parameters), intent(inout) :: grid_param
type(comm_parameters), intent(in) :: comm_param_in
integer :: n
integer :: nz
integer :: rank, nproc, ierr
integer :: count, blocklength, stride
integer, dimension(2) :: p_horiz
integer :: m, level, nlocal
logical :: reduced_m
integer :: halo_size
character(len=32) :: t_label
integer,parameter :: nb_dims=3
integer,dimension(nb_dims) :: profil_tab,profil_sous_tab,coord_debut
n = grid_param%n
nz = grid_param%nz
comm_param = comm_param_in
halo_size = comm_param%halo_size
call mpi_comm_size(MPI_COMM_WORLD, nproc, ierr)
! Create cartesian topology
call mpi_cart_create(MPI_COMM_WORLD, & ! Old communicator name
dim_horiz, & ! horizontal dimension
(/2**pproc,2**pproc/), & ! extent in each horizontal direction
(/.false.,.false./), & ! periodic?

ESCOBAR MUNOZ Juan
committed
.false., & ! reorder?
MPI_COMM_HORIZ, & ! Name of new communicator
ierr)
! calculate and display rank and corrdinates in cartesian grid
call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
! Local size of (horizontal) grid
nlocal = n/2**pproc
! === Set up data types ===
! Halo for exchange in north-south direction

Juan Escobar
committed
if (LUseO) allocate(halo_ns(n_lev,0:pproc))
if (LUseT) allocate(halo_nst(n_lev,0:pproc))

ESCOBAR MUNOZ Juan
committed
if (LUseT) allocate(tab_halo_nt(n_lev,0:pproc))
if (LUseT) allocate(tab_halo_st(n_lev,0:pproc))

Juan Escobar
committed
if (LUseT) allocate(halo_wet(n_lev,0:pproc))

ESCOBAR MUNOZ Juan
committed
if (LUseT) allocate(tab_halo_wt(n_lev,0:pproc))
if (LUseT) allocate(tab_halo_et(n_lev,0:pproc))
! Interior data types
if (LUseO) allocate(interior(n_lev,0:pproc))
if (LUseO) allocate(sub_interior(n_lev,0:pproc))
if (LUseT) allocate(interiorT(n_lev,0:pproc))
if (LUseT) allocate(sub_interiorT(n_lev,0:pproc))

ESCOBAR MUNOZ Juan
committed
if (LUseT) allocate(tab_interiorT_ne(n_lev,0:pproc))
if (LUseT) allocate(tab_interiorT_sw(n_lev,0:pproc))
if (LUseT) allocate(tab_interiorT_se(n_lev,0:pproc))
if (LUseT) allocate(tab_sub_interiorT_ne(n_lev,0:pproc))
if (LUseT) allocate(tab_sub_interiorT_sw(n_lev,0:pproc))
if (LUseT) allocate(tab_sub_interiorT_se(n_lev,0:pproc))
! Timer
allocate(t_haloswap(n_lev,0:pproc))
allocate(t_collect(0:pproc))
allocate(t_distribute(0:pproc))
do m=0,pproc
write(t_label,'("t_collect(",I3,")")') m
call initialise_timer(t_collect(m),t_label)
write(t_label,'("t_distribute(",I3,")")') m
call initialise_timer(t_distribute(m),t_label)
end do
m = pproc
level = n_lev
reduced_m = .false.
do while (level > 0)
! --- Create halo data types ---

Juan Escobar
committed
if (LUseO) then
! NS- (y-) direction
count = nlocal
blocklength = (nz+2)*halo_size
stride = (nlocal+2*halo_size)*(nz+2)
call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION, &
halo_ns(level,m),ierr)
call mpi_type_commit(halo_ns(level,m),ierr)

Juan Escobar
committed
endif
! tranpose
if (LUseT) then
! NS- (y-) transpose direction
count = nz+2 ! nlocal
blocklength = nlocal*halo_size ! (nz+2)*halo_size
stride = (nlocal+2*halo_size) * (nlocal+2*halo_size) ! (nlocal+2*halo_size)*(nz+2)
call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION, &
halo_nst(level,m),ierr)
call mpi_type_commit(halo_nst(level,m),ierr)

ESCOBAR MUNOZ Juan
committed
! allocate send/recv buffer for GPU copy/managed
call mnh_allocate_mg_halo(tab_halo_nt(level,m)%haloTin,nlocal,halo_size,nz+2)
call mnh_allocate_mg_halo(tab_halo_nt(level,m)%haloTout,nlocal,halo_size,nz+2)
call mnh_allocate_mg_halo(tab_halo_st(level,m)%haloTin,nlocal,halo_size,nz+2)
call mnh_allocate_mg_halo(tab_halo_st(level,m)%haloTout,nlocal,halo_size,nz+2)

Juan Escobar
committed
! WE- (x-) transpose direction
count = (nz+2)*(nlocal+2*halo_size)*halo_size ! nlocal
blocklength = 1*halo_size ! (nz+2)*halo_size
stride = nlocal+2*halo_size ! (nlocal+2*halo_size)*(nz+2)
call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION, &
halo_wet(level,m),ierr)
call mpi_type_commit(halo_wet(level,m),ierr)

ESCOBAR MUNOZ Juan
committed
! allocate send/recv buffer for GPU copy/managed !
call mnh_allocate_mg_halo(tab_halo_wt(level,m)%haloTin,halo_size,nlocal+2*halo_size,nz+2)
call mnh_allocate_mg_halo(tab_halo_wt(level,m)%haloTout,halo_size,nlocal+2*halo_size,nz+2)
call mnh_allocate_mg_halo(tab_halo_et(level,m)%haloTin,halo_size,nlocal+2*halo_size,nz+2)
call mnh_allocate_mg_halo(tab_halo_et(level,m)%haloTout,halo_size,nlocal+2*halo_size,nz+2)

Juan Escobar
committed
endif
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Commit halo_ns failed in mpi_type_commit().")
#endif
! --- Create interior data types ---
if (LUseO) then
count = nlocal
blocklength = nlocal*(nz+2)
stride = (nz+2)*(nlocal+2*halo_size)
call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION,interior(level,m),ierr)
call mpi_type_commit(interior(level,m),ierr)
count = nlocal/2
blocklength = nlocal/2*(nz+2)
stride = (nlocal+2*halo_size)*(nz+2)
call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION,sub_interior(level,m),ierr)
call mpi_type_commit(sub_interior(level,m),ierr)
end if
if (LUseT) then
! interiorT
if ( nlocal /= 0 ) then
profil_tab = (/ nlocal+2*halo_size , nlocal+2*halo_size , nz+2 /)
profil_sous_tab = (/ nlocal , nlocal , nz+2 /)
coord_debut = (/ 0 , 0 , 0 /)
call MPI_TYPE_CREATE_SUBARRAY(nb_dims,profil_tab,profil_sous_tab,coord_debut,&
MPI_ORDER_FORTRAN,MPI_DOUBLE_PRECISION,interiorT(level,m),ierr)
call mpi_type_commit(interiorT(level,m),ierr)

ESCOBAR MUNOZ Juan
committed
call mnh_allocate_mg_halo(tab_interiorT_ne(level,m)%haloTin,nlocal,nlocal,nz+2)

ESCOBAR MUNOZ Juan
committed
call mnh_allocate_mg_halo(tab_interiorT_ne(level,m)%haloTout,nlocal,nlocal,nz+2)

ESCOBAR MUNOZ Juan
committed
call mnh_allocate_mg_halo(tab_interiorT_sw(level,m)%haloTin,nlocal,nlocal,nz+2)

ESCOBAR MUNOZ Juan
committed
call mnh_allocate_mg_halo(tab_interiorT_sw(level,m)%haloTout,nlocal,nlocal,nz+2)

ESCOBAR MUNOZ Juan
committed
call mnh_allocate_mg_halo(tab_interiorT_se(level,m)%haloTin,nlocal,nlocal,nz+2)

ESCOBAR MUNOZ Juan
committed
call mnh_allocate_mg_halo(tab_interiorT_se(level,m)%haloTout,nlocal,nlocal,nz+2)
end if
! sub_interiorT
if ( (nlocal/2) /= 0 ) then
profil_tab = (/ nlocal+2*halo_size , nlocal+2*halo_size , nz+2 /)
profil_sous_tab = (/ nlocal/2 , nlocal/2 , nz+2 /)
coord_debut = (/ 0 , 0 , 0 /)
call MPI_TYPE_CREATE_SUBARRAY(nb_dims,profil_tab,profil_sous_tab,coord_debut,&
MPI_ORDER_FORTRAN,MPI_DOUBLE_PRECISION,sub_interiorT(level,m),ierr)
call mpi_type_commit(sub_interiorT(level,m),ierr)

ESCOBAR MUNOZ Juan
committed
call mnh_allocate_mg_halo(tab_sub_interiorT_ne(level,m)%haloTin,nlocal/2,nlocal/2,nz+2)

ESCOBAR MUNOZ Juan
committed
call mnh_allocate_mg_halo(tab_sub_interiorT_ne(level,m)%haloTout,nlocal/2,nlocal/2,nz+2)

ESCOBAR MUNOZ Juan
committed
call mnh_allocate_mg_halo(tab_sub_interiorT_sw(level,m)%haloTin,nlocal/2,nlocal/2,nz+2)

ESCOBAR MUNOZ Juan
committed
call mnh_allocate_mg_halo(tab_sub_interiorT_sw(level,m)%haloTout,nlocal/2,nlocal/2,nz+2)

ESCOBAR MUNOZ Juan
committed
call mnh_allocate_mg_halo(tab_sub_interiorT_se(level,m)%haloTin,nlocal/2,nlocal/2,nz+2)

ESCOBAR MUNOZ Juan
committed
call mnh_allocate_mg_halo(tab_sub_interiorT_se(level,m)%haloTout,nlocal/2,nlocal/2,nz+2)
end if
end if
! --- Create timers ---
write(t_label,'("t_haloswap(",I3,",",I3,")")') level,m
call initialise_timer(t_haloswap(level,m),t_label)
! If we are below L_split, split data
if ( (level .le. lev_split) .and. (m > 0) .and. (.not. reduced_m)) then
reduced_m = .true.
m = m-1
nlocal = 2*nlocal
cycle
end if
reduced_m = .false.
level = level-1
nlocal = nlocal/2
end do
end subroutine comm_initialise
!==================================================================
! Finalise communication routines
!==================================================================
subroutine comm_finalise(n_lev, & ! } Multigrid parameters
lev_split, & !}
grid_param ) ! } Grid parameters
implicit none
integer, intent(in) :: n_lev
integer, intent(in) :: lev_split
type(grid_parameters), intent(in) :: grid_param
! local var
logical :: reduced_m
integer :: level, m
integer :: ierr
integer :: nlocal,n
character(len=80) :: s
! Local size of (horizontal) grid
n = grid_param%n
nlocal = n/2**pproc
m = pproc
level = n_lev
reduced_m = .false.
if (i_am_master_mpi) then
write(STDOUT,'(" *** Finalising communications ***")')
end if
call print_timerinfo("--- Communication timing results ---")
do while (level > 0)
write(s,'("level = ",I3,", m = ",I3)') level, m
call print_timerinfo(s)
! --- Print out timer information ---
call print_elapsed(t_haloswap(level,m),.True.,1.0_rl)
! --- Free halo data types ---

Juan Escobar
committed
if (LUseO) call mpi_type_free(halo_ns(level,m),ierr)
if (LUseT) call mpi_type_free(halo_nst(level,m),ierr)
if (LUseT) call mpi_type_free(halo_wet(level,m),ierr)
! --- Free interior data types ---
if (LUseO) call mpi_type_free(interior(level,m),ierr)
if (LUseO) call mpi_type_free(sub_interior(level,m),ierr)
if (LUseT .and. (nlocal /= 0 ) ) call mpi_type_free(interiorT(level,m),ierr)
if (LUseT .and. ( (nlocal/2) /= 0 ) ) call mpi_type_free(sub_interiorT(level,m),ierr)
! If we are below L_split, split data
if ( (level .le. lev_split) .and. (m > 0) .and. (.not. reduced_m)) then
reduced_m = .true.
m = m-1
nlocal = 2*nlocal
cycle
end if
reduced_m = .false.
level = level-1
nlocal = nlocal/2
end do
do m=pproc,0,-1
write(s,'("m = ",I3)') m
call print_timerinfo(s)
! --- Print out timer information ---
call print_elapsed(t_collect(m),.True.,1.0_rl)
call print_elapsed(t_distribute(m),.True.,1.0_rl)
end do
! Deallocate arrays

Juan Escobar
committed
if (LUseO) deallocate(halo_ns)
if (LUseT) deallocate(halo_nst,halo_wet)
if (LUseO) deallocate(interior)
if (LUseO) deallocate(sub_interior)
if (LUseT) deallocate(interiorT)
if (LUseT) deallocate(sub_interiorT)
deallocate(t_haloswap)
deallocate(t_collect)
deallocate(t_distribute)
if (i_am_master_mpi) then
write(STDOUT,'("")')
end if
end subroutine comm_finalise
!==================================================================
! Scalar product of two fields
!==================================================================
subroutine scalarprod_mnh(m, a, b, s)

ESCOBAR MUNOZ Juan
committed
#ifdef MNH_MPPDB

ESCOBAR Juan
committed
USE MODE_MPPDB
#endif
implicit none
integer, intent(in) :: m
type(scalar3d), intent(in) :: a
type(scalar3d), intent(in) :: b
real(kind=rl), intent(out) :: s
!local var
integer :: nprocs, rank, ierr
integer :: p_horiz(2)
integer :: stepsize
integer, parameter :: dim_horiz = 2

Juan Escobar
committed
real(kind=rl) :: local_sum, global_sum
real(kind=rl) :: local_sumt,global_sumt

Juan Escobar
committed
integer :: ix,iy,iz
integer :: iy_min,iy_max, ix_min,ix_max

ESCOBAR Juan
committed
integer :: icompy_min,icompy_max, icompx_min,icompx_max

ESCOBAR MUNOZ Juan
committed
real , dimension(:,:,:) , pointer , contiguous :: za_st,zb_st
nlocal = a%ix_max-a%ix_min+1
nz = a%grid_param%nz
iy_min = a%iy_min
iy_max = a%iy_max
ix_min = a%ix_min
ix_max = a%ix_max

ESCOBAR Juan
committed
icompy_min = a%icompy_min
icompy_max = a%icompy_max
icompx_min = a%icompx_min
icompx_max = a%icompx_max
! Work out coordinates of processor
call mpi_comm_size(MPI_COMM_HORIZ,nprocs,ierr)
call mpi_comm_rank(MPI_COMM_HORIZ,rank,ierr)
stepsize = 2**(pproc-m)
if (nprocs > 1) then
! Only inlcude local sum if the processor coordinates
! are multiples of stepsize
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
if ( (stepsize == 1) .or. &
( (stepsize > 1) .and. &
(mod(p_horiz(1),stepsize)==0) .and. &
(mod(p_horiz(2),stepsize)==0) ) ) then

Juan Escobar
committed
if (LUseO) then
local_sum = 0.0_rl
do i = 1, nlocal
local_sum = local_sum &
+ ddot((nz+2)*nlocal,a%s(0,1,i),1,b%s(0,1,i),1)
end do
end if
if (LUseT) then
local_sumt = 0.0_rl
za_st => a%st
zb_st => b%st

WAUTELET Philippe
committed
!$acc kernels

ESCOBAR MUNOZ Juan
committed
!$acc loop collapse(3) reduction(+:local_sumt)

Juan Escobar
committed
do iz=0,nz+1

ESCOBAR Juan
committed
do iy=icompy_min,icompy_max
do ix=icompx_min,icompx_max

Juan Escobar
committed
local_sumt = local_sumt &
+ za_st(ix,iy,iz)*zb_st(ix,iy,iz)

Juan Escobar
committed
end do
end do
end do

WAUTELET Philippe
committed
!$acc end kernels

Juan Escobar
committed
end if

Juan Escobar
committed
if (LUseO) local_sum = 0.0_rl
if (LUseT) local_sumt = 0.0_rl

Juan Escobar
committed
if (LUseO) call mpi_allreduce(local_sum,global_sum,1,MPI_DOUBLE_PRECISION, &
MPI_SUM,MPI_COMM_HORIZ,ierr)
if (LUseT) call mpi_allreduce(local_sumt,global_sumt,1,MPI_DOUBLE_PRECISION, &
MPI_SUM,MPI_COMM_HORIZ,ierr)
else

Juan Escobar
committed
if (LUseO) then
global_sum = 0.0_rl
do i = 1, nlocal
global_sum = global_sum &
+ ddot((nz+2)*nlocal,a%s(0,1,i),1,b%s(0,1,i),1)
end do

Juan Escobar
committed
endif
if (LUseT) then
za_st => a%st
zb_st => b%st

Juan Escobar
committed
global_sumt = 0.0_rl
!$acc kernels

Juan Escobar
committed
do iz=0,nz+1
do iy=iy_min,iy_max
do ix=ix_min,ix_max

Juan Escobar
committed
global_sumt = global_sumt &
+ za_st(ix,iy,iz)*zb_st(ix,iy,iz)

Juan Escobar
committed
end do
end do
end do
!$acc end kernels

Juan Escobar
committed
endif

Juan Escobar
committed
if (LUseO) then
s = global_sum
else
s = global_sumt
end if

ESCOBAR Juan
committed
#ifdef MNH
!!$ CALL MPPDB_CHECK0D_REAL_MG(s,"scalarprod_mnh")
#endif

Juan Escobar
committed
end subroutine scalarprod_mnh
!-------------------------------------------------------------------------------
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
subroutine scalarprod(m, a, b, s)
implicit none
integer, intent(in) :: m
type(scalar3d), intent(in) :: a
type(scalar3d), intent(in) :: b
real(kind=rl), intent(out) :: s
integer :: nprocs, rank, ierr
integer :: p_horiz(2)
integer :: stepsize
integer, parameter :: dim_horiz = 2
real(kind=rl) :: local_sum, global_sum
integer :: nlocal, nz, i
real(kind=rl) :: ddot
nlocal = a%ix_max-a%ix_min+1
nz = a%grid_param%nz
! Work out coordinates of processor
call mpi_comm_size(MPI_COMM_HORIZ,nprocs,ierr)
call mpi_comm_rank(MPI_COMM_HORIZ,rank,ierr)
stepsize = 2**(pproc-m)
if (nprocs > 1) then
! Only inlcude local sum if the processor coordinates
! are multiples of stepsize
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
if ( (stepsize == 1) .or. &
( (stepsize > 1) .and. &
(mod(p_horiz(1),stepsize)==0) .and. &
(mod(p_horiz(2),stepsize)==0) ) ) then
local_sum = 0.0_rl
do i = 1, nlocal
local_sum = local_sum &
+ ddot((nz+2)*nlocal,a%s(0,1,i),1,b%s(0,1,i),1)
end do
else
local_sum = 0.0_rl
end if
call mpi_allreduce(local_sum,global_sum,1,MPI_DOUBLE_PRECISION, &
MPI_SUM,MPI_COMM_HORIZ,ierr)
else
global_sum = 0.0_rl
do i = 1, nlocal
global_sum = global_sum &
+ ddot((nz+2)*nlocal,a%s(0,1,i),1,b%s(0,1,i),1)
end do
end if
s = global_sum
end subroutine scalarprod
!==================================================================

Juan Escobar
committed
! Pritn Scalar product^2 of 1 fields
!==================================================================
subroutine print_scalaprod2(l,m, a, message )
implicit none
integer, intent(in) :: l,m
type(scalar3d), intent(in) :: a
character(len=*) , intent(in) :: message
!local
real(kind=rl) :: s
call scalarprod_mnh(m, a, a, s)
s = sqrt(s)
if (i_am_master_mpi) then
write(STDOUT,'("Print_norm::",A,2I3,E23.15)') message, l,m,s
call flush(STDOUT)
end if
end subroutine print_scalaprod2
!==================================================================

Juan Escobar
committed
! Boundary Neumann
!==================================================================
subroutine boundary_mnh(a) ! data field
implicit none
type(scalar3d), intent(inout) :: a

Juan Escobar
committed
!local var

Juan Escobar
committed
integer :: n, ix_min,ix_max,iy_min,iy_max
integer :: icompx_max,icompy_max

ESCOBAR MUNOZ Juan
committed
real , dimension(:,:,:) , pointer , contiguous :: za_st

Juan Escobar
committed

Juan Escobar
committed
! Update Real Boundary for Newman case u(0) = u(1) , etc ...
!return

Juan Escobar
committed
n = a%grid_param%n
ix_min = a%ix_min
ix_max = a%ix_max
iy_min = a%iy_min
iy_max = a%iy_max

Juan Escobar
committed
if (LUseO) then

Juan Escobar
committed
if ( ix_min == 1 ) then
a%s(:,:,0) = a%s(:,:,1)
endif
if ( ix_max == n ) then
a%s(:,:,a%icompx_max+1) = a%s(:,:,a%icompx_max)
endif
if ( iy_min == 1 ) then
a%s(:,0,:) = a%s(:,1,:)
endif
if ( iy_max == n ) then
a%s(:,a%icompy_max+1,:) = a%s(:,a%icompy_max,:)
endif

Juan Escobar
committed
endif
if (LUseT) then
! transpose
za_st => a%st
icompx_max = a%icompx_max
icompy_max = a%icompy_max
!$acc kernels

Juan Escobar
committed
if ( ix_min == 1 ) then
!acc kernels
za_st(0,:,:) = za_st(1,:,:)
!acc end kernels

Juan Escobar
committed
endif
if ( ix_max == n ) then
!acc kernels
za_st(icompx_max+1,:,:) = za_st(icompx_max,:,:)
!acc end kernels

Juan Escobar
committed
endif
if ( iy_min == 1 ) then
!acc kernels
za_st(:,0,:) = za_st(:,1,:)
!acc end kernels

Juan Escobar
committed
endif
if ( iy_max == n ) then
!acc kernels
za_st(:,icompy_max+1,:) = za_st(:,icompy_max,:)
!acc end kernels

Juan Escobar
committed
endif
!$acc end kernels

Juan Escobar
committed
endif

Juan Escobar
committed
end subroutine boundary_mnh
!==================================================================
! Initiate asynchronous halo exchange
!
! For all processes with horizontal indices that are multiples
! of 2^(pproc-m), update halos with information held by
! neighbouring processes, e.g. for pproc-m = 1, stepsize=2
!
! N (0,2)
! ^
! !
! v
!
! W (2,0) <--> (2,2) <--> E (2,4)
!
! ^
! !
! v
! S (4,2)
!
!==================================================================
subroutine ihaloswap_mnh(level,m, & ! multigrid- and processor- level
a, & ! data field
send_requests, & ! send requests (OUT)

Juan Escobar
committed
recv_requests, & ! recv requests (OUT)
send_requestsT, & ! send requests T (OUT)
recv_requestsT & ! recv requests T (OUT)
)
implicit none
integer, intent(in) :: level
integer, intent(in) :: m
integer, intent(out), dimension(4) :: send_requests
integer, intent(out), dimension(4) :: recv_requests

Juan Escobar
committed
integer, intent(out), dimension(4) :: send_requestsT
integer, intent(out), dimension(4) :: recv_requestsT
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
type(scalar3d), intent(inout) :: a
integer :: a_n ! horizontal grid size
integer :: nz ! vertical grid size
integer, dimension(2) :: p_horiz
integer :: stepsize
integer :: ierr, rank, sendtag, recvtag
integer :: stat(MPI_STATUS_SIZE)
integer :: halo_size
integer :: neighbour_n_rank
integer :: neighbour_s_rank
integer :: neighbour_e_rank
integer :: neighbour_w_rank
integer :: yoffset, blocklength
halo_size = comm_param%halo_size
! Do nothing if we are only using one processor
if (m > 0) then
a_n = a%ix_max-a%ix_min+1
nz = a%grid_param%nz
stepsize = 2**(pproc-m)
! Work out rank, only execute on relevant processes
call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
! Work out ranks of neighbours
! W -> E
call mpi_cart_shift(MPI_COMM_HORIZ,1, stepsize, &
neighbour_w_rank,neighbour_e_rank,ierr)
! N -> S
call mpi_cart_shift(MPI_COMM_HORIZ,0, stepsize, &
neighbour_n_rank,neighbour_s_rank,ierr)
if ( (stepsize == 1) .or. &
( (mod(p_horiz(1),stepsize) == 0) .and. &
(mod(p_horiz(2),stepsize) == 0) ) ) then
if (halo_size == 1) then
! Do not include corners in send/recv
yoffset = 1
blocklength = a_n*(nz+2)*halo_size
else
yoffset = 1-halo_size
blocklength = (a_n+2*halo_size)*(nz+2)*halo_size
end if
! Receive from north

Juan Escobar
committed
recvtag = 1002
if (LUseO) call mpi_irecv(a%s(0,0-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_n_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(1), ierr)

Juan Escobar
committed
recvtag = 1012

ESCOBAR MUNOZ Juan
committed
if (LUseT) then
call mpi_irecv(a%st(1,0-(halo_size-1),0),1, &
halo_nst(level,m),neighbour_n_rank,recvtag, &
MPI_COMM_HORIZ, recv_requestsT(1), ierr)
end if

Juan Escobar
committed
recvtag = 1003
if (LUseO) call mpi_irecv(a%s(0,a_n+1,1),1, &
halo_ns(level,m),neighbour_s_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(2), ierr)

Juan Escobar
committed
recvtag = 1013

ESCOBAR MUNOZ Juan
committed
if (LUseT) then
call mpi_irecv(a%st(1,a_n+1,0),1, &
halo_nst(level,m),neighbour_s_rank,recvtag, &
MPI_COMM_HORIZ, recv_requestsT(2), ierr)
end if

Juan Escobar
committed
sendtag = 1002
if (LUseO) call mpi_isend(a%s(0,a_n-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_s_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(1), ierr)

Juan Escobar
committed
sendtag = 1012

ESCOBAR MUNOZ Juan
committed
if (LUseT) then
call mpi_isend(a%st(1,a_n-(halo_size-1),0),1, &
halo_nst(level,m),neighbour_s_rank,sendtag, &
MPI_COMM_HORIZ, send_requestsT(1), ierr)
end if

Juan Escobar
committed
sendtag = 1003
if (LUseO) call mpi_isend(a%s(0,1,1),1, &
halo_ns(level,m),neighbour_n_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(2), ierr)

Juan Escobar
committed
sendtag = 1013

ESCOBAR MUNOZ Juan
committed
if (LUseT) then
call mpi_isend(a%st(1,1,0),1, &

Juan Escobar
committed
halo_nst(level,m),neighbour_n_rank,sendtag, &
MPI_COMM_HORIZ, send_requestsT(2), ierr)

ESCOBAR MUNOZ Juan
committed
end if

Juan Escobar
committed
recvtag = 1000
if (LUseO) call mpi_irecv(a%s(0,yoffset,0-(halo_size-1)),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_w_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(3), ierr)

Juan Escobar
committed
recvtag = 1010

ESCOBAR MUNOZ Juan
committed
if (LUseT) then
call mpi_irecv(a%st(0-(halo_size-1),0,0),1, &
halo_wet(level,m),neighbour_w_rank,recvtag, &
MPI_COMM_HORIZ, recv_requestsT(3), ierr)
end if

Juan Escobar
committed
sendtag = 1001
if (LUseO) call mpi_irecv(a%s(0,yoffset,a_n+1),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_e_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(4), ierr)

Juan Escobar
committed
sendtag = 1011

ESCOBAR MUNOZ Juan
committed
if (LUseT) then
call mpi_irecv(a%st(a_n+1,0,0),1, &
halo_wet(level,m),neighbour_e_rank,recvtag, &
MPI_COMM_HORIZ, recv_requestsT(4), ierr)
end if

Juan Escobar
committed
sendtag = 1000
if (LUseO) call mpi_isend(a%s(0,yoffset,a_n-(halo_size-1)),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_e_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(3), ierr)

Juan Escobar
committed
sendtag = 1010

ESCOBAR MUNOZ Juan
committed
if (LUseT) then
call mpi_isend(a%st(a_n-(halo_size-1),0,0),1, &
halo_wet(level,m),neighbour_e_rank,sendtag, &
MPI_COMM_HORIZ, send_requestsT(3), ierr)
end if

Juan Escobar
committed
recvtag = 1001
if (LUseO) call mpi_isend(a%s(0,yoffset,1),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_w_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(4), ierr)

Juan Escobar
committed
recvtag = 1011

ESCOBAR MUNOZ Juan
committed
if (LUseT) then
call mpi_isend(a%st(1,0,0),1, &

Juan Escobar
committed
halo_wet(level,m),neighbour_w_rank,sendtag, &
MPI_COMM_HORIZ, send_requestsT(4), ierr)

ESCOBAR MUNOZ Juan
committed
end if
end if
end if
end subroutine ihaloswap_mnh
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!==================================================================
subroutine ihaloswap(level,m, & ! multigrid- and processor- level
a, & ! data field
send_requests, & ! send requests (OUT)
recv_requests & ! recv requests (OUT)
)
implicit none
integer, intent(in) :: level
integer, intent(in) :: m
integer, intent(out), dimension(4) :: send_requests
integer, intent(out), dimension(4) :: recv_requests
type(scalar3d), intent(inout) :: a
integer :: a_n ! horizontal grid size
integer :: nz ! vertical grid size
integer, dimension(2) :: p_horiz
integer :: stepsize
integer :: ierr, rank, sendtag, recvtag
integer :: stat(MPI_STATUS_SIZE)
integer :: halo_size
integer :: neighbour_n_rank
integer :: neighbour_s_rank
integer :: neighbour_e_rank
integer :: neighbour_w_rank
integer :: yoffset, blocklength
halo_size = comm_param%halo_size
! Do nothing if we are only using one processor
if (m > 0) then
a_n = a%ix_max-a%ix_min+1
nz = a%grid_param%nz
stepsize = 2**(pproc-m)
! Work out rank, only execute on relevant processes
call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
! Work out ranks of neighbours
! W -> E
call mpi_cart_shift(MPI_COMM_HORIZ,1, stepsize, &
neighbour_w_rank,neighbour_e_rank,ierr)
! N -> S
call mpi_cart_shift(MPI_COMM_HORIZ,0, stepsize, &
neighbour_n_rank,neighbour_s_rank,ierr)
if ( (stepsize == 1) .or. &
( (mod(p_horiz(1),stepsize) == 0) .and. &
(mod(p_horiz(2),stepsize) == 0) ) ) then
if (halo_size == 1) then
! Do not include corners in send/recv
yoffset = 1
blocklength = a_n*(nz+2)*halo_size
else
yoffset = 1-halo_size
blocklength = (a_n+2*halo_size)*(nz+2)*halo_size
end if
! Receive from north
recvtag = 2
call mpi_irecv(a%s(0,0-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_n_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(1), ierr)
! Receive from south
recvtag = 3
call mpi_irecv(a%s(0,a_n+1,1),1, &
halo_ns(level,m),neighbour_s_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(2), ierr)
! Send to south
sendtag = 2
call mpi_isend(a%s(0,a_n-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_s_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(1), ierr)
! Send to north
sendtag = 3
call mpi_isend(a%s(0,1,1),1, &
halo_ns(level,m),neighbour_n_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(2), ierr)