Skip to content
Snippets Groups Projects
ui.R 43.8 KiB
Newer Older
thierrychambert's avatar
thierrychambert committed
rm(list = ls(all.names = TRUE))

thierrychambert's avatar
thierrychambert committed
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initial stuff
{
  ## Load libraries
  library(shiny)
  library(shinyjs)
  library(shinyBS)
thierrychambert's avatar
thierrychambert committed
  library(shinyMatrix)
  library(tidyverse)
  library(eolpop)
thierrychambert's avatar
thierrychambert committed

  ## Load species list
  species_data <- read.csv("./inst/ShinyApp/species_list.csv", sep = ",")
  species_list <- unique(as.character(species_data$NomEspece)) %>% sort
  species_list <- c(species_list, "Espce gnrique")
thierrychambert's avatar
thierrychambert committed

  ## Load survival and fecundities data
  data_sf <- read.csv("./inst/ShinyApp/survivals_fecundities_species.csv", sep = ",")#, encoding = "UTF-8")

  ##### Fixed parameters #####
thierrychambert's avatar
thierrychambert committed
  # We define theta = 1 (same as in PBR) - for simplicity, given large uncertainty of real shape of density-dependence in nature
thierrychambert's avatar
thierrychambert committed
  # Coefficient of environmental variation (SD)
    ## Environnmental variance set at 8%, based on values found for birds in the literature:
    ## (Saeher & Engen 2002) : between 7% et 14 ==> average : 10%
    ## (Sther et al. 2005) : between 2.5% et 10% ==> average : 6%
  coeff_var_environ = sqrt(0.08) # SD ~28%

  # Coverage probability used for lower/upper interval input values
  CP = 0.99
thierrychambert's avatar
thierrychambert committed

  # Values of pop_growth (assumed), when the "trend" option is chosen
  growth_weak <- 1.05
  growth_average <- 1.10
  growth_strong <- 1.15

  decline_weak <- 0.97
  decline_average <- 0.94
  decline_strong <- 0.91

  pop_stable <- 1
  trend_se <- 0.03 # SE to use for pop_growth, when the "trend" option is chosen
thierrychambert's avatar
thierrychambert committed
}
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Pre-fill data
{
  ## Data elicitation pre-fill data
  # fatalities
  eli_fatalities <- c(1.0, 2, 5, 8,  0.80,
                      0.2, 0, 3, 6,  0.90,
                      0.2, 2, 4, 10, 0.90,
                      0.1, 1, 3, 7,  0.70)

  # population size
  eli_pop_size <-   c(1.0, 150, 200, 250, 0.80,
                      0.5, 120, 180, 240, 0.90,
                      0.8, 170, 250, 310, 0.90,
                      0.3, 180, 200, 230, 0.70)

  # carrying capacity
  eli_carrying_cap <- c(1.0, 500, 700, 1000, 0.80,
                        0.5, 1000, 1500, 2000, 0.90,
                        0.8, 800, 1200, 1600, 0.90,
                        0.3, 100, 1200, 1500, 0.70)

  # population growth rate
  eli_pop_growth <- c(1.0, -5, -2, 0, 0.95,
                      0.2, -3, 0, 1, 0.90,
                      0.5, -8, -4, -1, 0.90,
                      0.3, -10, -5, -2, 0.70)
thierrychambert's avatar
thierrychambert committed
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
thierrychambert's avatar
thierrychambert committed

Marie-Bocage's avatar
Marie-Bocage committed

Marie-Bocage's avatar
Marie-Bocage committed

###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
thierrychambert's avatar
thierrychambert committed
##  User Interface
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
thierrychambert's avatar
thierrychambert committed
# fluidPage
{ui <- fluidPage(

thierrychambert's avatar
thierrychambert committed
  useShinyjs(),
thierrychambert's avatar
thierrychambert committed
  titlePanel("eolpop : Impact demographique des collisions aviaires avec les oliennes"),
Marie-Bocage's avatar
Marie-Bocage committed


thierrychambert's avatar
thierrychambert committed
  ###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
  # Head Panel 1 : type of analysis and species
  {wellPanel(
    p("Choix d'analyse et espce", style="font-size:28px"),

thierrychambert's avatar
thierrychambert committed
    {fluidRow(

      # Select type of analysis : cumulated impacted or not
      {column(width = 4,
              # Choose analysis type (radioButton)
              {radioButtons(inputId = "analysis_choice",
                           label = h4(strong("Type d'analyse"),
                                      bsButton("Q_analysis_choice", label = "", icon = icon("question"), size = "extra-small"),
                                      bsPopover(id = "Q_analysis_choice",
                                                title = "Choix du type d\\'analyse",
                                                content = HTML(
                                                  "<b>Impacts non cumuls</b> : pour analyser l\\'impact d\\'<b>un seul parc olien</b>. <br><br> <b>Impact cumuls</b> : pour analyser l\\'impact de <b>plusieurs parcs oliens</b> (attention : il faudra fournir des valeurs de mortalits propres  chaque parc)."
                                                ),
                                                placement = "right",
                                                trigger = "click",
                                                options = list(container='body')
                                      )
                           ),
                           choices = c("Impacts non cumuls" = "single_farm", "Impacts cumuls" = "cumulated", "Multiple scnarios" = "multi_scenario")
              # Choose species (selectInput)
              {selectInput(inputId = "species_choice",
                          selected = "Aigle de Bonelli", width = '80%',
                          label = h4(strong("Slectionner une espce"),
                                     bsButton("Q_species_choice", label = "", icon = icon("question"), size = "extra-small"),
                                     bsPopover(id = "Q_species_choice",
                                               title = "Choix de l\\'espce",
                                               content = HTML(
                                                 "Ncessaire pour fixer les valeurs de <b>paramtres dmographiques</b> (survie, fcondit). <br> La liste fournie correspond  une liste d\\'espces prioritaires. Au besoin, une option \\'espce gnrique\\' est disponible  la fin de la liste."
                                               ),
                                               placement = "right",
                                               trigger = "click",
                                               options = list(container='body')
                                     )
                          ),
                          choices = species_list)},

              br(),
              # Show dispersal distances : mean and d = 5%
              h4(strong("Distances de dispersion"),
                 bsButton("Q_dispersal_info", label = "", icon = icon("question"), size = "extra-small"),
                 bsPopover(id = "Q_dispersal_info",
                           title = "Distances de dispersion",
                           content = HTML(
                             "(1) <b>Distance moyenne de dispersion</b> de l\\'espce, estime  partir des relations allomtriques publies dans l\\'article de Claramunt (2021).<br><br> (2) Distance quivalente  un <b>taux de dispersion relatif de 5%</b>, sous l\\'hypothse que la distance de dispersion suit une loi exponentielle.<br><br><u>Reference cite</u> : Claramunt, S. (2021). Flight efficiency explains differences in natal dispersal distances in birds. <i>Ecology</i>, e03442."
                             ),
                           placement = "right",
                           trigger = "click",
                           options = list(container='body')
                 )
              ),
              #br(),
              span(textOutput(outputId = "dispersal_mean_info"), style="font-size:16px"),
              br(),
              span(textOutput(outputId = "dispersal_d03p_info"), style="font-size:16px"),
              span(textOutput(outputId = "dispersal_d05p_info"), style="font-size:16px"),
              span(textOutput(outputId = "dispersal_d10p_info"), style="font-size:16px"),
thierrychambert's avatar
thierrychambert committed
      )}, # close column

      # Show vital rate values (tableOutput)
thierrychambert's avatar
thierrychambert committed
      {column(width = 4,
              fluidRow(
                h4(strong("Paramtres dmographiques"),
                   bsButton("Q_vital_rates_info", label = "", icon = icon("question"), size = "extra-small"),
                   bsPopover(id = "Q_vital_rates_info",
                             title = "Paramtres dmographiques",
                             content = HTML(
                               "Valeurs de <b>survie et fcondits par classe d\\'ge</b>, pour l\\'espce slectionne. <br><br><b>Juv 0</b> correspond  un individu n dans l\\'anne, n\\'ayant <u>pas encore</u> 1 an rvolu.<br><b>Juv 1</b> correspond  un individu ayant 1 an rvolu, donc dans sa 2<sup>e</sup> anne de vie.<br>Etc."
                               ),
                               placement = "right",
                             trigger = "click",
                             options = list(container='body')
                   )
                ),
thierrychambert's avatar
thierrychambert committed
                tableOutput(outputId = "vital_rates_info"),
              # Display the intrinsic lambda(i.e., based solely on the Leslie matrix)
              # Output display (intrinsic lambda)
              h5(strong("Taux de croissance intrinsque"),
                 bsButton("Q_lambda0_info", label = "", icon = icon("question"), size = "extra-small"),
                 bsPopover(id = "Q_lambda0_info",
                           title = "Taux de croissance intrinsque",
                           content = HTML(
thierrychambert's avatar
thierrychambert committed
                             "Taux de croissance bas seulement sur la matrice de Leslie (survies et fcondits de l\\'espce), <b> avant considration de la tendance de population locale</b>. <br><br>Ce taux de croissance est fourni simplement  titre informatif. La valeur qui sera utilise dans les simulations correspond au taux de croissance fourni dans la partie \\'Taux de croissance\\'."
                           ),
                           placement = "right",
                           trigger = "click",
                           options = list(container='body')
                 )
              ),
thierrychambert's avatar
thierrychambert committed
              span(textOutput(outputId = "lambda0_info", inline = TRUE), style = "color:black; font-size:16px"),
thierrychambert's avatar
thierrychambert committed
      )}, # close column


      ## Modify vital rates, if needed (actionButton and matrixInput)
thierrychambert's avatar
thierrychambert committed
      {column(width = 4,
              tags$style(HTML('#button_vital_rates{background-color:#C2C8D3}')),
              actionButton(inputId = "button_vital_rates",
                           label = tags$span("Modifier les paramtres dmographiques",
                                             style = "font-weight: bold; font-size: 18px;")
              ),

              br(" "),
              numericInput(inputId = "vr_mat_number_age_classes",
                           label = "Nombre de classes d'age",
                           value = 3, min = 2, max = Inf, step = 1),
thierrychambert's avatar
thierrychambert committed
              matrixInput(inputId = "mat_fill_vr",
                          label = "",
                          value = matrix(data = NA, 3, 2,
                                         dimnames = list(c("Juv 0", "Sub 1", "Adulte"), c("Survie", "Fcondit"))),
thierrychambert's avatar
thierrychambert committed
                          class = "numeric",
                          rows = list(names = TRUE),
                          cols = list(names = TRUE)
              )

      )}, # close column

    )}, # End fluidRow
  )}, # End wellPanel
  ###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
  ###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
thierrychambert's avatar
thierrychambert committed
  # Head Panel 2 : Model parameters
  {wellPanel(

thierrychambert's avatar
thierrychambert committed
    ## Enter parameter values (TITLE)
    {p("Saisie des paramtres", style="font-size:28px",
      bsButton("Q_param_enter", label = "", icon = icon("question"), size = "extra-small"),
      bsPopover(id = "Q_param_enter",
                title = "Saisie des paramtres pour l\\'analyse",
                content = HTML(
                "Cliquer sur les boutons ci-dessous pour saisir les valeurs des quatre paramtres requis pour l\\'analyse : <br>(1) Mortalits annuelles, <br>(2) Taille de la population, <br>(3) Tendance de la population, <br>(4) Capacit de charge."
                ),
                placement = "right",
                trigger = "click",
                options = list(container='body')
      )
thierrychambert's avatar
thierrychambert committed
    )},
thierrychambert's avatar
thierrychambert committed

    {fluidRow(

      ##~~~~~~~~~~~~~~~~~~~~~~~~~
      ##  1. Fatalities
      ##~~~~~~~~~~~~~~~~~~~~~~~~~
      {column(width = 3,

              tags$style(HTML('#button_fatalities{background-color:#C2C8D3}')),
              actionButton(inputId = "button_fatalities", width = '100%',
thierrychambert's avatar
thierrychambert committed
                           label = tags$span("Mortalits annuelles", style = "font-weight: bold; font-size: 18px;")
              ),
              bsPopover(id = "button_fatalities",
                        title = "Mortalits annuelles",
                        content = HTML(
                        "Nombre de mortalits totales <b><u>annuelles</u> (cad. sur 12 mois) </b> attendues, pour l\\'espce slectionne, sur chaque parc olien concern (somme des mortalits attendues sur toutes les oliennes d\\'un parc)."
                        ),
                        placement = "top",
                        trigger = "hover",
                        options = list(container='body')
              ),
thierrychambert's avatar
thierrychambert committed

              ### Part for non-cumulated impacts
              # Input type
              {conditionalPanel("output.hide_fatalities",
                                br(),

                                {wellPanel(style = "background:#FFF8DC",
                                           radioButtons(inputId = "fatalities_unit", inline = FALSE,
                                                        label = "Unit",
thierrychambert's avatar
thierrychambert committed
                                                        choices = c("Nombre de mortalits" = "M",
                                                                    "Taux de mortalit (%)" = "h"),
                                                        selected = "M"),
                                {wellPanel(style = "background:#F0F8FF",

                                           radioButtons(inputId = "fatalities_input_type",
                                                        label = "Type de saisie",
                                                        choices = c("Intervalle" = "itvl",
                                                                    "Valeurs" = "val",
thierrychambert's avatar
thierrychambert committed
                                                                    "Elicitation d'expert" = "eli_exp"),
                                           numericInput(inputId = "fatalities_lower",
                                                        label = "Borne infrieure (mortalits annuelles)",
                                                        min = 0, max = Inf, step = 0.5),

                                           numericInput(inputId = "fatalities_upper",
                                                        label = "Borne suprieure (mortalits annuelles)",
                                                        min = 0, max = Inf, step = 0.5),

                                           # Values
                                           numericInput(inputId = "fatalities_mean",
                                                        label = "Moyenne (mortalits annuelles)",
                                                        min = 0, max = Inf, step = 0.5),
                                           numericInput(inputId = "fatalities_se",
                                                        label = "Erreur-type (mortalits annuelles)",
                                                        min = 0, max = Inf, step = 0.1),
                                           numericInput(inputId = "fatalities_number_expert",
                                                        label = "Nombre d'experts",
                                                        value = 4, min = 1, max = Inf, step = 1),

                                           matrixInput(inputId = "fatalities_mat_expert",
                                                       value = matrix(data = eli_fatalities, nrow = 4, ncol = 5,
                                                                      dimnames = list(c("#1", "#2", "#3", "#4"),
                                                                                      c("Poids", "Min", "Best", "Max", "% IC" )),
                                                                      byrow = TRUE),
                                                       class = "numeric",
                                                       rows = list(names = TRUE),
                                                       cols = list(names = TRUE)),

                                           actionButton(inputId = "fatalities_run_expert", label = "Utiliser valeurs experts"),

                                           ### Part for cumulated impacts

                                           numericInput(inputId = "farm_number_cumulated",
                                                        label = "Nombre de parcs oliens",
                                                        value = 3, min = 2, max = Inf, step = 1),

                                           matrixInput(inputId = "fatalities_mat_cumulated",
                                                       label = span("Mortalits dans chaque parc",
                                                                      bsButton("Q_fatalities_mat_cumulated", label = "", icon = icon("question"), size = "extra-small"),
                                                                      bsPopover(id = "Q_fatalities_mat_cumulated",
                                                                                title = "Mortalits cumules",
                                                                                content = HTML(
                                                                                  "1 ligne = 1 parc <br><br>Les parcs doivent tre fournis dans l\\'<b>ordre chronologique</b> de leur mise en service (\\'Anne dbut\\'). <br><br>Pour chaque parc, veuillez indiquer la <u>moyenne</u> et l\\'<u>erreur-type</u> du nombre de mortalits estimes, ainsi que son <u>anne de mise en service</u>."
                                                                                  ),
                                                                                placement = "right",
                                                                                trigger = "click",
                                                                                options = list(container='body')
                                                                      )
                                                       ),
thierrychambert's avatar
thierrychambert committed
                                                       value = matrix(c(8, 0.5, 2010,
thierrychambert's avatar
thierrychambert committed
                                                                        15, 0.5, 2018),
                                                                      nrow = 3, ncol = 3, byrow = TRUE,
                                                                      dimnames = list(c(paste0("Parc num.", c(1:3))),
                                                                                      c("Moyenne",
                                                                                        "Erreur-type",
                                                                                        "Anne de mise en service du parc"))),
                                                       class = "numeric",
                                                       rows = list(names = TRUE),
                                                       cols = list(names = TRUE)),


                                           ### Part for "scenarios option"
                                           selectizeInput(inputId = "fatalities_vec_scenario",
                                             label = HTML(
                                               "Saisir chaque valeur de mortalit<br>
                                               (sparer par un espace)"
                                               ),
                                             choices = NULL,
                                             multiple = TRUE,
                                             options = list(
                                               create = TRUE,
                                               delimiter = ' ',
                                               create = I("function(input, callback){
                                                              return {
                                                              value: input,
                                                              text: input
                                                            };
                                                          }")
                                             )
                                           ),






                                )}, # close wellPanel

              )}, # close conditional panel
Marie-Bocage's avatar
Marie-Bocage committed

thierrychambert's avatar
thierrychambert committed
      ###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
Marie-Bocage's avatar
Marie-Bocage committed


thierrychambert's avatar
thierrychambert committed
      ##~~~~~~~~~~~~~~~~~~~~~~~~~
      ##  2. Population Size
      ##~~~~~~~~~~~~~~~~~~~~~~~~~
      {column(width = 3,

              tags$style(HTML('#button_pop_size{background-color:#C2C8D3}')),
              actionButton(inputId = "button_pop_size", width = '100%',
thierrychambert's avatar
thierrychambert committed
                           label = tags$span("Taille de la population", style = "font-weight: bold; font-size: 18px;")
              ),
              bsPopover(id = "button_pop_size",
                        title = "Taille de la population",
                        content = HTML(
                        "Effectif de la population cible pour l\\'analyse d\\'impact. <br> Il peut s\\'agir soit du <b>nombre de couples</b>, soit de l\\'<b>effectif total</b> de la population (cad. toutes classes d\\'ge incluses)."
                        ),
                        placement = "top",
                        trigger = "hover",
                        options = list(container='body')
              ),
              {conditionalPanel("output.hide_pop_size",
                              br(),
                              {wellPanel(style = "background:#FFF8DC",
thierrychambert's avatar
thierrychambert committed
                                 radioButtons(inputId = "pop_size_unit", inline = TRUE,
                                              label = "Unit",
                                              choices = c("Nombre de couples" = "Npair", "Effectif total" = "Ntotal"),
                                              selected = "Npair"),
                              {wellPanel(style = "background:#F0F8FF",

                                         radioButtons(inputId = "pop_size_input_type",
                                                      label = "Type de saisie",
                                                      choices = c("Intervalle" = "itvl",
                                                                  "Valeurs" = "val",
                                                                  "Elicitation d'expert" = "eli_exp")),

                                         # Interval
                                         numericInput(inputId = "pop_size_lower",
                                                      label = "Borne infrieure (taille population)",
                                                      value = 350,
                                                      min = 0, max = Inf, step = 10),

                                         numericInput(inputId = "pop_size_upper",
                                                      label = "Borne suprieure (taille population)",
                                                      value = 350,
                                                      min = 0, max = Inf, step = 10),

                                         # Values
                                         numericInput(inputId = "pop_size_mean",
                                                      label = "Moyenne de la taille de la population",
                                                      min = 0, max = Inf, step = 50),

                                         numericInput(inputId = "pop_size_se",
                                                      label = "Erreur-type de la taille de la population",
                                         # Matrix for expert elicitation
                                         numericInput(inputId = "pop_size_number_expert",
                                                      label = "Nombre d'experts",
                                                      value = 4, min = 1, max = Inf, step = 1),

                                         matrixInput(inputId = "pop_size_mat_expert",
                                                     value = matrix(data = eli_pop_size, nrow = 4, ncol = 5,
                                                                    dimnames = list(c("#1", "#2", "#3", "#4"),
                                                                                    c("Poids", "Min", "Best", "Max", "% IC" )),
                                                                    byrow = TRUE),
                                                     class = "numeric",
                                                     rows = list(names = TRUE),
                                                     cols = list(names = TRUE)),

                                         actionButton(inputId = "pop_size_run_expert", label = "Utiliser valeurs experts"),
                              )}, # close wellPanel 2


                              # Display matrix for stable age distribution
                              h5(strong("Effectifs par classe d'ge")),
                              tableOutput("pop_size_by_age"),

      ###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
Marie-Bocage's avatar
Marie-Bocage committed

thierrychambert's avatar
thierrychambert committed

      ##~~~~~~~~~~~~~~~~~~~~~~~~~
      ##  3. Population Growth
      ##~~~~~~~~~~~~~~~~~~~~~~~~~
      {column(width = 3,

              tags$style(HTML('#button_pop_growth{background-color:#C2C8D3}')),
              actionButton(inputId = "button_pop_growth", width = '100%',
                           label = tags$span("Taux de croissance", style = "font-weight: bold; font-size: 18px;")
              bsPopover(id = "button_pop_growth",
                        title = "Taux de croissance",
thierrychambert's avatar
thierrychambert committed
                          "Taux d\\'accroissement annuel de la population <b>en %</b> : valeur positive pour une population en croissance; valeur <b>ngative</b> pour une population en <b>dclin</b> (ex :  -4  pour un dclin de 4% par an) ; 0 pour une population stable.<br><br>A dfaut, on pourra juste cocher la <b>tendance globale</b> (dclin, stabilit ou croissance) et l\\'intensit de cette tendance (faible, moyenne, forte)."
                        placement = "top",
                        trigger = "hover",
                        options = list(container='body')
              ),
              {conditionalPanel("output.hide_pop_growth",
                                br(),
                                {wellPanel(style = "background:#F0F8FF",
                                           radioButtons(inputId = "pop_growth_input_type",
                                                        label = "Type de saisie",
                                                        choices = c("Intervalle" = "itvl",
                                                                    "Elicitation d'expert" = "eli_exp",
                                                                    "Tendance population" = "trend")),
                                           # Interval
                                           numericInput(inputId = "pop_growth_lower",
                                                        label = HTML("Borne infrieure<br>(taux d'accroissement en %)"),
                                                        min = -100, max = 100, step = 1),

                                           numericInput(inputId = "pop_growth_upper",
                                                        label = HTML("Borne suprieure<br>(taux d'accroissement en %)"),
                                                        value = -6,
                                                        min = -100, max = 100, step = 1),
                                           ## Input values: mean and se
                                           numericInput(inputId = "pop_growth_mean",
                                                        label = "Moyenne (taux d'accroissement en %)",
                                                        min = -100, max = 100, step = 1),

                                           numericInput(inputId = "pop_growth_se",
                                                        label = "Erreur-type (aussi en %)",
                                                        min = 0, max = Inf, step = 0.5),
                                           ## Input expert elicitation: table
                                           numericInput(inputId = "pop_growth_number_expert",
                                                        label = "Nombre d'experts",
                                                        value = 4, min = 1, max = Inf, step = 1),

                                           matrixInput(inputId = "pop_growth_mat_expert",
                                                       value = matrix(data = eli_pop_growth, nrow = 4, ncol = 5,
                                                                      dimnames = list(c("#1", "#2", "#3", "#4"),
                                                                                      c("Poids", "Min", "Best", "Max", "% IC" )),
                                                                      byrow = TRUE),
                                                       class = "numeric",
                                                       rows = list(names = TRUE),
                                                       cols = list(names = TRUE)),

                                           actionButton(inputId = "pop_growth_run_expert", label = "Utiliser valeurs experts"),

                                           ## Input trend: radio buttons
                                           {fluidRow(
                                             # Trend
                                             column(6,
                                                    radioButtons(inputId = "pop_trend",
                                                                 label = "Tendance",
                                                                 choices = c("En croissance" = "growth",
                                                                             "En dclin" = "decline")),
                                             ),

                                             # Strength of trend
                                             column(6,
                                                    radioButtons(inputId = "pop_trend_strength",
thierrychambert's avatar
thierrychambert committed
                                                                 label = "Intensit",
                                                                             "Moyenne" = "average",
                                                                             "Forte" = "strong")),
                                             ),
                                           )}, # close fluidRow
                                           actionButton(inputId = "button_calibrate_vr", label = "Calibrer survies et fcondits"),


                                )}, # close wellPanel

              )}, # close conditional panel
      ###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
Marie-Bocage's avatar
Marie-Bocage committed

Marie-Bocage's avatar
Marie-Bocage committed

thierrychambert's avatar
thierrychambert committed
      ##~~~~~~~~~~~~~~~~~~~~~~~~~
      ##  4. Carrying capacity
      ##~~~~~~~~~~~~~~~~~~~~~~~~~
      {column(width = 3,
Marie-Bocage's avatar
Marie-Bocage committed

thierrychambert's avatar
thierrychambert committed
              tags$style(HTML('#button_carrying_cap{background-color:#C2C8D3}')),
              actionButton(inputId = "button_carrying_cap", width = '100%',
thierrychambert's avatar
thierrychambert committed
                           label = tags$span("Capacit de charge", style = "font-weight: bold; font-size: 18px;")
              ),
Marie-Bocage's avatar
Marie-Bocage committed

              bsPopover(id = "button_carrying_cap",
                        title = "Capacit de charge (K)",
                          "La capacit de charge (K) correspond  la <b>taille maximale que peut atteindre la population</b> dans son environnement et les limites spatiales considres. <br><br><u>Note:</u> Ce chiffre sera exprim dans la <b>mme unit</b> que la taille de population (cad. nombre de couples ou effectif total). <br>Il n\\'a pas besoin d\\'tre trs prcis&nbsp;; il doit simplement fournir un ordre de grandeur de la taille limite au-del de laquelle la population ne peut plus crotre (environnement local satur)."
                          ),
                        placement = "top",
                        trigger = "hover",
                        options = list(container='body')
              ),


              {conditionalPanel("output.hide_carrying_cap",
                                br(),

                                {wellPanel(style = "background:#FFF8DC",
                                           span(textOutput(outputId = "carrying_cap_unit_info"), style="font-size:16px"),

                                )}, # close wellPanel 1

                                {wellPanel(style = "background:#F0F8FF",

                                           radioButtons(inputId = "carrying_cap_input_type",
                                                        label = "Type de saisie",
                                                        choices = c("Intervalle" = "itvl",
                                                                    "Valeur" = "val",
                                                                    "Elicitation d'expert" = "eli_exp",
                                                                    "Absence de K" = "no_K")),
                                           # Interval
                                           numericInput(inputId = "carrying_capacity_lower",
                                                        label = "Borne infrieure (capacit de charge)",
                                                        value = 850,
                                                        min = 0, max = Inf, step = 100),

                                           numericInput(inputId = "carrying_capacity_upper",
                                                        label = "Borne suprieure (capacit de charge)",
                                                        value = 1250,
                                                        min = 0, max = Inf, step = 100),

                                           # Values
                                           numericInput(inputId = "carrying_capacity_mean",
                                                        label = "Moyenne de la capacit de charge",
                                                        value = 1000,
                                           numericInput(inputId = "carrying_capacity_se",
                                                        label = "Erreur-type de la capacit de charge",
                                                        value = 100,
                                                        min = 0, max = Inf, step = 50),


                                           # Expert Elicitation Matrix
                                           numericInput(inputId = "carrying_cap_number_expert",
                                                        label = "Nombre d'experts",
                                                        value = 4, min = 1, max = Inf, step = 1),

                                           matrixInput(inputId = "carrying_cap_mat_expert",
                                                       value = matrix(data = eli_carrying_cap, nrow = 4, ncol = 5,
                                                                      dimnames = list(c("#1", "#2", "#3", "#4"),
                                                                                      c("Poids", "Min", "Best", "Max", "% IC" )),
                                                                      byrow = TRUE),
                                                       class = "numeric",
                                                       rows = list(names = TRUE),
                                                       cols = list(names = TRUE)),

                                           actionButton(inputId = "carrying_cap_run_expert", label = "Utiliser valeurs experts"),

                                )}, # close wellPanel 2
Marie-Bocage's avatar
Marie-Bocage committed

Marie-Bocage's avatar
Marie-Bocage committed

thierrychambert's avatar
thierrychambert committed
      ###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
Marie-Bocage's avatar
Marie-Bocage committed

Marie-Bocage's avatar
Marie-Bocage committed

thierrychambert's avatar
thierrychambert committed
    )}, # # End fluidRow
thierrychambert's avatar
thierrychambert committed
  )}, # # End wellPanel
  ###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
thierrychambert's avatar
thierrychambert committed
  ###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
  {sidebarLayout(

    ##  Side Panel : Parameter information
thierrychambert's avatar
thierrychambert committed
    {sidebarPanel(
      p("Valeurs slectionnes", style="font-size:28px",
        bsButton("Q_selected_values", label = "", icon = icon("question"), size = "extra-small"),
        bsTooltip(id = "Q_selected_values",
                  title = "Rappel des valeurs de paramtres actuellement slectionnes.",
                  placement = "right",
                  trigger = "click",
                  options = list(container='body')
        )
      ),
thierrychambert's avatar
thierrychambert committed
      {wellPanel(style = "background:#DCDCDC",
                 p("Mortalits annuelles", style="font-size:20px; font-weight: bold"),
                 shiny::tags$u(textOutput(outputId = "fatalities_unit_info"), style="font-size:16px"),
                 p(""),
thierrychambert's avatar
thierrychambert committed
                 span(textOutput(outputId = "fatalities_mean_info"), style="font-size:16px"),
                 span(textOutput(outputId = "fatalities_se_info"), style="font-size:16px"),
      )},
thierrychambert's avatar
thierrychambert committed
      # Taille de population
      {wellPanel(style = "background:#DCDCDC",
                 p("Taille de la population", style="font-size:20px; font-weight: bold"),
                 shiny::tags$u(textOutput(outputId = "pop_size_unit_info"), style="font-size:16px"),
                 p(""),
                 span(textOutput(outputId = "pop_size_mean_info"), style="font-size:16px"),
                 span(textOutput(outputId = "pop_size_se_info"), style="font-size:16px"),
Marie-Bocage's avatar
Marie-Bocage committed

thierrychambert's avatar
thierrychambert committed
      # Tendance de la population
      {wellPanel(style = "background:#DCDCDC",
                 p(HTML("Taux de croissance (&lambda;)"), style="font-size:20px; font-weight: bold"),
thierrychambert's avatar
thierrychambert committed
                 span(textOutput(outputId = "pop_growth_mean_info"), style="font-size:16px"),
                 span(textOutput(outputId = "pop_growth_se_info"), style="font-size:16px"),
      )},
Marie-Bocage's avatar
Marie-Bocage committed

thierrychambert's avatar
thierrychambert committed
      {wellPanel(style = "background:#DCDCDC",
                 p("Capacit de charge", style="font-size:20px; font-weight: bold"),
                 shiny::tags$u(textOutput(outputId = "carrying_capacity_unit_info"), style="font-size:16px"),
                 p(""),
                 span(textOutput(outputId = "carrying_capacity_mean_info"), style="font-size:16px"),
                 span(textOutput(outputId = "carrying_capacity_se_info"), style="font-size:16px"),
Marie-Bocage's avatar
Marie-Bocage committed


thierrychambert's avatar
thierrychambert committed
    )}, # End sidebarPanel
Marie-Bocage's avatar
Marie-Bocage committed

Marie-Bocage's avatar
Marie-Bocage committed

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    ###  Main Panel
Marie-Bocage's avatar
Marie-Bocage committed

thierrychambert's avatar
thierrychambert committed
    {mainPanel(
thierrychambert's avatar
thierrychambert committed
      tabsetPanel(

        ## Parameter distribution
        {tabPanel(title = "Distribution paramtres",
                 span(textOutput(outputId = "title_distri_plot"), style="font-size:24px; font-weight:bold"),
                 plotOutput(outputId = "distri_plot"),
        )}, # End tabPanel
        ## Population Impact : simulations
        {tabPanel(title = "Impact population",
                 numericInput(inputId = "time_horizon",
                              label = "Nombre d'annes",
                              value = 30, min = 5, max = Inf, step = 10),

                 br(),
                 numericInput(inputId = "nsim",
                              label = "Nombre de simulations",
                 actionButton(inputId = "run", label = "Lancer l'analyse"),
                 hr(),

                 span(textOutput("title_indiv_impact_result"), align = "left", style = "font-weight: bold; font-size: 18px;"),
thierrychambert's avatar
thierrychambert committed
                 strong(span(tableOutput("indiv_impact_table"), style="color:green; font-size:18px", align = "left")),
                 span(textOutput("title_impact_result"), align = "left", style = "font-weight: bold; font-size: 18px;"),
                 strong(span(tableOutput("impact_table"), style="color:blue; font-size:18px", align = "left")),
Marie-Bocage's avatar
Marie-Bocage committed
                 br(),
                 span(textOutput("title_PrExt_result"), align = "left", style = "font-weight: bold; font-size: 18px;"),
thierrychambert's avatar
thierrychambert committed
                 strong(span(tableOutput("PrExt_table"), style="color:orange; font-size:18px", align = "left")),
thierrychambert's avatar
thierrychambert committed
                 hr(),

                 tags$h4(textOutput("title_impact_plot"), align = "center"),
                 plotOutput("impact_plot", width = "100%", height = "550px"),
Marie-Bocage's avatar
Marie-Bocage committed
                 hr(),
                 tags$h4(textOutput("title_traj_plot"), align = "center"),
                 plotOutput("traj_plot", width = "100%", height = "550px")
        )}, # End tabPanel
        ## Report
        {tabPanel(title = "Rapport",
Marie-Bocage's avatar
Marie-Bocage committed
                 br(),
                 radioButtons(inputId = "lifestyle",
                              h4("Mode de vie de l'espce"),
                              choices = c("Sdentaire", "Non-sdentaire nicheur", "Non-sdentaire hivernant", "Migrateur de passage")),
thierrychambert's avatar
thierrychambert committed
                 numericInput(inputId = "wind_farm_nb",
Marie-Bocage's avatar
Marie-Bocage committed
                              h4("Nombre de parcs"),
                              value = 1, min = 0, max = Inf, step = 1),
thierrychambert's avatar
thierrychambert committed
                 numericInput(inputId = "wind_turbine_nb",
                              h4("Nombre d'oliennes"),
Marie-Bocage's avatar
Marie-Bocage committed
                              value = 1, min = 0, max = Inf, step = 1)
thierrychambert's avatar
thierrychambert committed

        )} # End tabPanel
Marie-Bocage's avatar
Marie-Bocage committed
      ) # End tabSetPanel
thierrychambert's avatar
thierrychambert committed
    )} # End mainPanel

  )} # sidebarLayout

)} # FluidPage
thierrychambert's avatar
thierrychambert committed
# End UI #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
Marie-Bocage's avatar
Marie-Bocage committed